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The behaviour of the stress tensor under conformal transformations of both flat and curved 
spaces is investigated for free theories in a classical background metric. In flat space •d it is 
derived by the operator product expansion of two stress tensors. For Weyl transformations of 
curved manifolds it is given by the effective potential for the metric. In four dimensions the 
general form of the potential and its consistency conditions are analysed. These issues are relevant 
for the possible generalizations of the central charge in higher dimensions. The related subject of 
the Casimir effect is studied by means  of closed expressions for the bosonic partition function on 
the manifolds T d and S 1 × S d-1. The general relationship between the Casimir effect on R × S d 1 
and the trace anomaly is emphasized. 

1. Introduction 

The study of the conformal invariant field theory in two dimensions has led to 
rather remarkable results [1]. The theory is labelled by a number, the central charge 
c of the Virasoro algebra [2]; moreover for 0 < c < 1 the requirements of unitarity 
[3] and existence of the partition function on a torus [4] completely determine the 
scaling dimensions and the multiplicities of the fields, leading to a classification of 
conformal theories [5]. Explicit realizations of these theories are provided by 
statistical models at the critical point; in their continuum formulation, they exhibit 
local scale invariance. This identification yields exact critical exponents and univer- 
sality classes. 

In this paper we investigate some of these methods in higher dimensions, having 
in mind their possible applications to critical phenomena. First of all, we must 
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explain what  we call a conformal  t ransformation in higher dimensions. Actually, 

there are two approaches which coexist in two dimensions, but  are rather different 
in higher dimensions. 

In  the first, more  general approach,  the field theory is defined on a manifold with 

classical background  metric g , , ,  by  an euclidean action S [ g ~  q,] of  some fields ~. A 

conformal  t ransformat ion is a local scale t ransformation of  the metric 

g .~ (  x ) = e2°(X)g~.(  x ) , (1.1a) 

in which the coordinates are left fixed; this is also called a Weyl  t ransformation [6]. 

The  "e lementary"  fields t ransform according to their scaling dimension A, indepen- 
dent ly  of  their spin 

~ ( x )  = e -ao (x )~ ' (x ) ,  (1.1b) 

The  variat ion of  the action under  an infinitesimal change of  the metric defines the 
s t ress -energy  tensor T~, 

~ s [ g  .", ,1 = s [ g  ." + ~g .~ . ,  + 8,1 - s [ g . " .  ~.1 

1 
2sa f daxv~T..,~g "" , (1.2) 

which we normalize by including the factor S d = 2 ~ r d / 2 / 1 " ( d / 2 ) ,  the area of the unit 

sphere S d-1 in R d. It follows that theories invariant under  local transformations 

(1.1) have a traceless s t ress-energy tensor at the classical level. Moreover,  
reparametr iza t ion invariance, 

x . ~  x ' .  = x .  + ~ ( x ) ,  

6 g .  ~ = D.~  . + D ~ "  , 

(1.3a) 

(1.3b) 

leads to covariant  conservation of  T~, D~T, ,  = 0. The quantizat ion of the field 

mus t  preserve this property in order to have consistent results in different coordi- 

na te  patches. Then, the former invariance is in general broken,  leading to the 

conformal  (trace) anomaly [7]. This is, in two dimensions 

(T~ ~)  = - ~ c R ,  (1.4) 

where R is the scalar curvature*. 

* In eq. (1.4) we use the notation of ref. [8] for R and we omit a constant term, because we set 
(T~) - 0 in flat space. 
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The second, more familiar approach, sets the theory in flat space and consider 
local coordinate transformations (1.3), possibly singular at some points, which scale 
the metric as in eq. (1.1a). This implies the conditions 

2 
0~.+ 0.~.= ~(o.~) ~... (1.5) 

The infinitesimal decomposition 

= 1 + - -  [ 8 2 + ½ ( 0 , , ~ " - 0 ~ g ; ~ )  1 8" " " 

= (1 - o(x) )R: (x )S2(x) ,  (1.6) 

shows that these transformations are made of a local dilatation o(x) and rotation 
R~(x), the shear part  being absent, S~ = 3 7. 

As a consequence, the fields are scaled and also displaced and rotated. In any 
dimension d there are fields which transform homogeneously, for example 

~ ( x )  ~ e x p ( - a o ( x ) ) ~ ( x ' ) ,  

dx ' "  
A~(x) --+ exp( - (A -- 1) o(x)) --~xA~(x'), 

dx'" dx '~ 
B,,(x) --, e x p ( - - ( a  -- 2 ) o ( x ) )  dx"  dx" B~(x ' ) ,  (1.7) 

for dimension A and spin zero, one and two, respectively; exp(do) = de t (Ox/Ox ' )  is 
the Jacobian. In the WeyMnvariant theory this corresponds to a Weyl transforma- 

tion composed with a reparametrization giving back the flat metric. The infinitesi- 
mal form is 

~(x)--,~(x)+~,(x)=~(x)+ .~)+(~-o) ~(x), 

A~(x) --,A.(x) +~A.(x)=A~(x) + -2(0. ~) + (~-O) A(x) 

+½(O.~-O%)A~(x), 

+ ½(o.~ o -  o%)~o~(x) + ½(o~B- o~.)s~p(x). 

(1.8) 
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The Ward identities follow by inserting the two sides of eq. (1.8) in correlation 
functions averaged with action S and S + 3 S ,  respectively. 

In two dimensions, the conditions (1.5) are solved by analytic reparametrizations 
f ( z )  of z = xX+ i x  e and antianalytic g(~) of ~ = x 1 -  ix2; they form an infinite- 
dimensional algebra and given local Ward identities, which put stringent conditions 
on the dynamics of the theory [1]. The fields transforming according to eqs. (1.7) 
and (1.8) are called primary fields. Since the coordinate transformations yield an 
infinite subset of Weyl transformations of the metric, these two approaches are, 
from the physical point of view, very similar, because both test the theory for local 
scale transformations. 

In higher dimension d, the conditions (1.5) leave only the finite algebra 
so(d + 1,1) of translations, dilatations, rotations, and special conformal transforma- 
tions 

~ ' (  x ) = b ~" + ) t x  ~ + oa~' x ~ + a " x  2 - 2 ( a - x ) x  r' , (1.9) 

where b ~, )% w,~ = -%~,  a t are the respective parameters. The fields transforming 
homogeneously, eqs. (1.7) and (1.8), under transformations (1.9) are called quasi- 
primary. Conformal invariance in four-dimensional flat space was analyzed in detail 
in the literature [9-13], especially in the hamiltonian operatorial formalism. It gives 
less conditions than in the two-dimensional case. 

Therefore, we are led to follow the first, more general, approach in higher 
dimension, and to consider theories classically invariant under the infinite algebra 
(1.1) in a curved space; in the following we shall speak of conformal invariance in 
this sense. These theories are invariant under coordinate transformations (1.9) in flat 
space, that we shall refer to as "regular" conformal transformations. In this paper 
we shall work out some explicit examples for the free bosonic and fermionic field 
theories, which already display non-trivial properties under conformal transforma- 
tions. We shall also present results which are valid for a larger class of theories. 

An important issue of conformal theories is the transformation of the stress 
tensor: in two dimensions it is, for z ~ z' = z + ~(z), [~1 << 1, 

d~ ]T~(z d3~ 
--1 c T z ~ ( Z ) - - * T ~ ( z ) + 3 I T ~ ( z )  = l + 2 ~ z  ] -[-~)q- 12 dz 3 

d~ 
= T z z + 2 ( ~ z ) T =  +~j( d d3~ (1.10) 

~ z  T~) + l a2Cdz  3 . 

We see that eq. (1.10) contains the homogeneous terms for a primary field of spin 
and dimension two, eq. (1.8), and an anomalous term which gives the central 
extension in the Virasoro algebra. There is a one-to-one correspondence between the 
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transformation (1.10) and the operator product expansion (OPE) [1] 

7 1 1  

c 2 1 3 
Tzz(Z)Tz*(W) 2(z - -  W x4) + (Z -- W) 2T=(w) + --Z--W OW T,~(W) 

+ regular terms for z --+ w. (1.11) 

It is given by the Ward identity 

d z  

a Wzz( W ) = z )Wzz( z )Wzz(  W ) , (1.12) 

where C is a contour around the point w: the singular terms of eq. (1.11) determine 
the contour integral and give eq. (1.10); conversely one represents eq. (1.10) as a 
Cauchy integral and determines the singular terms of eq. (1.11) because ~(z) is an 
arbitrary analytic function. Actually, eq. (1.11) is a local form of the Ward identity 
(1.12). 

In sect. 2, after introducing the free bosonic and fermionic theories invariant 
under eq. (1.1) and their stress tensors, we compute the OPE T~(x)Tpo(0) in fiat 
space R a by the Wick theorem. The O([x - y [ - a )  and O([x - y [ - a + x )  singularities 
determine the transformation of T~ under eq. (1.9) by means of an analogous Ward 
identity derived in ref. [13]. One verifies that T~ is a quasi-primary field, i.e. it 
transforms homogeneously as in eq. (1.8). However, in higher dimensions many 
different forms of the OPE are compatible with the transformation law, because 
~ ( x )  in eq. (1.9) is not an arbitrary function. 

The leading singularity O([x _ y [ - 2 d )  is a unique function determined up to a 
constant [10,13], which can be considered as a generalization of the central charge; 
we shall give its value for the free field theories. One expects that T~ develops 
anomalous terms for more general transformations (1.1a), as in two dimensions, eq. 
(1.10); their relation to the OPE TtL~Tp, , in particular to the leading singularity, is 
presently unrevealed. 

On the other hand, these anomalous terms are determined from the trace 
anomaly. The effective potential for the conformal factor o(x) in eq. (1.1a) is 
considered 

g ~ , g ~ - e - 2  = - l o g Z [ g ~ ] + l o g Z  ' ] (1.13) 

where Z[g~,] is the partition function. This is obtained by integration of eq. (1.2) 
along a conformal transformation (1.1) and it involves the trace anomaly [1]. The 
variation of F with respect to g~, gives the expectation value (T,,) .  In two 
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dimensions, one gets for infinitesimal transformations 

d230 

(Tzz(z))g~ = (T; '~(z))g L - ~c d z  2 . (1.14) 

The relation with eq. (1.10) follows by composing the conformal transformation 
with a reparametrization z--- ,z '  = z + ~ ( z )  giving back the flat metric; then 
3o = - ~ ( d ~ / d z  + d ~ / d z )  and T; ' ( z )  = (dz'/dz)2Tz'z(z'). Under reparametriza- 
tions, T~, transforms without anomalous terms because we assumed the general 
covariance of the quantum theory. The method of the effective potential extends to 
higher dimension for conformal invariant theories; the first non-trivial case - four 
dimensions - will be discussed in detail by developing refs. [14,15]. 

Besides their theoretical interest, the anomalous term in the transformation of T~ 
determines in two dimensions the vacuum energy E 0 - the Casimir effect - in the 
finite geometry of the strip [0, T] x S 1, with S 1 of radius ~ .  In the limit T -~ ~ ,  it is 
a cylinder and one has [16] 

1 C 
lim ~ l o g Z = - E  0 -  . (1.15) 

T-*oo 12.~ 

(The volume and surface terms are subtracted in log Z, in order to have E 0 = 0 for 
~ oo.) Since the cylinder is related to flat space by a conformal transformation 

(1.1), eqs. (1.13) and (1.14) apply for ( T ~ )  and determine E 0. 

In sect. 3, the partition function of the scalar field is obtained in closed form for 
two interesting manifolds which generalize the strip, the torus T a =  (S1) a and the 
manifold S 1 x S a-1. This yields the corresponding Casimir effects. The expressions 
of the parti t ion functions may also be useful in the related subject of quantization of 
membranes  [17]. 

In sect. 4, we apply the method of the effective potential, eqs. (1.13) and (1.14), to 
relate the trace anomaly to the Casimir effect on the cylinder R x S a-  1, which is 
conformally equivalent to flat space R a [18,19]. As a result, E 0 vanishes in odd 

dimensions, due to the absence of gravitational trace anomaly. In four dimensions, 
the effective potential is obtained for the general form of the gravitational trace 
anomaly. This yields the anomalous transformation of ( T ~ )  and the value of E 0 on 

$ 3 ×  R in terms of parameters in the trace anomaly. E 0 agrees with the direct 
calculation of sect. 3. Moreover, we show that the Wess -Zumino  consistency 
condition [20] on the effective potential rules out one term in the trace anomaly for 
a conformal  invariant theory. 

In  summary,  three quantities are studied: the stress tensor OPE, the trace 
anomaly and the Casimir energy. They are related by the transformation properties 
of T~  and provide possible generalizations of the central charge in higher dimen- 
sions. The relation between the trace anomaly and the Casimir energy in any 
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dimension is clarified; that between OPE and trace anomaly is left to future 
developments of this work. 

2. Operator product expansion of the stress tensor 

2.1. STRESS TENSOR OF FREE THEORIES 

A real scalar field rp(x) on a d-dimensional Riemannian manifold with metric 
g~,(x) has the action [6] 

S [ g.., ep] = ½ f daxl/fg(g""O.cp O.~ + #R~2). (2.1) 

For  £ =  ( d - 2 ) / 4 ( d - 1 ) ,  it is invariant under conformal transformations (1.1) 
where A = ~ ( d -  2) is the scaling dimension of % 

The stress-energy tensor is obtained by the variation of the action with respect to 
the metric, according to eq. (1.2). In the classical theory, the variation of the matter 
field rp can be neglected because it gives a contribution proportional to the 
equations of motion, while in the quantum theory we are not allowed to use them in 
general. Then, the correct expression of T,, to be quantized later is obtained by 
varying both the metric and the field. Away from d = 2, q0 acquires a physical 
dimension and then it is sensitive to the local scale variation associated with 3g ~". 
By requiring the invariance of the dimensionless scalar q0(det gt, v) a /zd  w e  obtain the 
transformation law 

A 
8ep( x ) = - ~ g , , (  x ) 8g""( x )~p( x ) , (2.2) 

which generalizes eq. (1.1b). We use the variational formulae 

I /iv ~ =  - ~ v ~ s g  , 

~R = R.~ 8g." + ( g % .  - 8 ) ~ : ) D ~  Do 8g." , (2.3) 

where D x is the covariant derivative, and we discard boundary terms in the 
integration by parts. The result is 

Sa - 4~-~[_-i) R . . -  -~g..R 

1( 
2(d-- 1) dO~pOrp-g~,g~OcpOBe p 

d-2 ) 
- ( d - 2 ) q o D .  D.qo+ d gjpD2eP ' (2.4) 
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which agrees with ref. [6]. This tensor is symmetric, traceless without the use of the 
equations of motion and covariantly conserved with the use of them, as it should be. 
In the flat space R a it reduces to 

T~ ,_  d ( d - 2  ) 
S d 2 ( d - l )  P;"? OoePa,eq~-T~POoOl~P , (2.5) 

where P ~  = ½8~8~ + ½8~8~- ( 1 / d ) g ~ g  °p is the projector on the traceless sym- 
metric part. Notice that the canonical stress tensor for the theory in flat space, 
defined by eq. (1.2), with eqs. (1.3) for 8g ~, is not necessarily traceless at the 
classical level. The invariance of the action under regular conformal transformations 
(1.9) requires only its trace to be a total divergence. An "improved" traceless tensor 
can be found and has to be used [21, 22]. On the contrary, the canonical T,, for the 
conformal theory in curved space (2.1) is traceless and gives, in the flat-space limit, 
the improved one of ref. [22], modulo terms proportional to the equation of motion. 

Similarly, we consider the euclidean Dirac fermions with action 

S[e~,,g,] = ½ f d~'x~(g,(x).y,(x)B,q,(x)-~(x)bS(x)q,(x)), (2.6) 

which is conformal invariant with scaling dimension A = l ( d - 1 )  of ~. The 
fermionic action is a functional of the moving frame e~(x) 

E 2 ( x ) e b ( x )  =8 b , 

a b e~ (X)~abe ~ (x )  = g~v(x). (2.7) 

The covariant derivative acting on spinors contains the spin connection and the 
gamma matrices are y~(x) = E~(x)y  a (see ref. [23] for details)*. T.~ is now defined 
by 

1 fv/_gT~,E2SE¢~ab (2.8) 8S= - -~a 

As before, we vary the moving frame and the matter field, which scales and rotates, 
and obtain 

s~ 
_ !po.  _ b e + )  (2.9) 

* In  o d d  d i m e n s i o n  d = 2 k  + 1 we take  the C l i f fo rd  a lgeb ra  o f  d = 2 k  a n d  a d d  y2k+l  = ik71 . . ,  72k for  
the  a d d i t i o n a l  coo rd ina t e .  
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which in flat space reduces to 

s .  

715 

(2.10) 

2.2. OPERATOR PRODUCT EXPANSIONS IN FLAT SPACE 

Wick theorem allows to compute the operator product expansion (OPE) of two 
stress tensors for the previous theories. The classical expression for T~ is replaced 
by the normal-ordered operator :T , / ,  bilinear in the fields [24]. The contractions are 

( r ( x ) r ( y ) )  - 
1 1 

S d ( d - -  2) I x - y l  d-2 ' 

(x ~ - y ~ )  
(+a(X)~b(Y) )  = ('/tZ)ab 1Sd [x_y[d  (2.11) 

The calculations in this section are all lengthy but straightforward. The OPE is of 
the form 

2c  a 
:T~,~,(x): :X~,o,(O). = e,,,:,P;,:, ~Z(~a( G -  2 ~ ) ( 8 ~ o -  2 ~ o )  

+ 
2(d--A) 1 ) 

_ _ ~ ( k )  (2~. :q~(0)~(0): .) + regular terms 
k=l I x l  k - ~ ° o ~  ' " "  ' 

(2.12) 

where £*' = xJ* / lx[ ,  . . ~ ' ~  is a tensor of .~  times bilinears of the field in the theory 
: ~ (0)~ (0): or derivatives of them evaluated at the point x = 0, and the sum over k 
extends to d + 2 (d + 1) for the scalar (fermion) theory. 

The leading singularity is proportional to the identity operator and it is the 
unique contribution to the correlation (T~(x)T0o(0)) in flat space. Its form is 
completely determined by symmetry, tracelessness and conservation of T,, [10,13]. 
The constant c a is not arbitrary because the normalization of T~ is fixed by the 
definitions eqs. (1.2) and (2.1, 6). One finds 

d 
ca = 2 ( d -  1) ' scalar field, (2.13a) 

d 
c a = ~ 2  [d/21 , Dirac fermion. (2.13b) 
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The constant 2 [a/21 is the trace of unity in the Clifford space and [d/2] is the integer 
part of d /2 .  Notice that c a is a non-trivial constant times the number of field 
components, c 2 = 1 for a scalar field and a pair of Majorana fermions is recovered 
in two dimensions. 

The form of the other terms in eq. (2.12) depends on the theory. Let us present 
them in the following form. For the scalar theory 

:Tee (x )  : :Tp,.,(0) : 

= (T~,¢(x)T¢ . , (0 ) )  + 2 ( d - l )  °d Ixl a+2 

( [28~o ~o + (d + 2)( -4  8 ~ o  + (a + 4) ~ o ~ o ) ] :  ~(x) r (0): 
d 2) 2 

+ [ x l 2 ( d - 2 )  [(28~o~ ~ - ( d +  2 ) ~ p R ~ ) : e p ( x ) % ( 0 )  : 

- (2~a~o- (a+ 2)~/o~o) :~(x) , (o) : ]  

+ Ixl 2 4 ( 3 ~ 0 - d ~ p ) : % ( x ) c & ( 0 ) :  

( d -  2)z ( ~ :( cp( x )%o(O) : + ~ o2o cp~(x)cp(O):)] + ~  

2(d- 2) 
+lxl~ d [~.:~(x)r~o(O):-~o:~(x),o(O):] 

4 d - 2  } 
+ l x l  ~ 5 - : % ~ ( x ) % 0 ( 0 ) :  , (2.14) 

where % = 0,ep and so on. The terms ~¢~(~ of eq. (2.12) are obtained by expanding 
cp(x) in powers of x. In the fermionic theory one has 

:Tee (x ) :  :To,o,(0): = (T.,~,(x)To,o,(0)) + ~.o a 

+ Ixl (~3B: a~+ (x)r.rBro+ (o):-  ~ :  ~(x)r.~,~r~ a°~ (o):) 

1 (0) :] + conjugate} (2.15) - ixl2~x~: o ~ ( x )  ~ v p  a.~ 
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where the conjugation is, for example, (: ~(Xl)T~b(x2):)* = - : ~7(x2)-tJ~ (x~):. Some 
terms in the expressions (2.14) and (2.15) combine to give T,~(0) and its derivatives, 
both others do not, that is the OPE T~Too does not close on T,~ in more than two 
dimensions. The tensor coefficients multiplying the additional operators vanish for 
d = 2 and eq. (1.11) is recovered; notice the identity 

P~,%~,P~,~,(8,o - 2,~,.~p) 8~, = 0 ( d =  2). (2.16) 

In refs. [13,19], the following Ward identity was derived for regular conformal 
transformations (1.9) of an arbitrary operator tV(x) 

~¢)(x)  = f z  d S ~ ( y ) ~ ( y ) T ~ ( y ) O ( x ) .  (2.17) 

The integral is done on a surface Nx surrounding the point x and it does not 
depend on its size due to conservation of T,, and eq. (1.5). For a sphere centered at 
x one has dS~(y)  = d~2(y)(x - y )~[x  _y[d-2,  normalized by fd~2 = 1. 

The Ward identity gives us a relation between OPE (2.12) and the transformation 
8,T,~. One inserts eq. (2.12) into eq. (2.17) and observes that only terms which give 
an adimensional integrand can contribute: they are ~(d-1)  for translations, d (d) 
for dilatations and rotations, and ~¢(d+~), d ( d )  and d (d-~) for special conformal 
transformations. For example, consider the fermionic theory and a dilatation 
~ ( y )  = Xy ~. Eq. (2.17) reads 

~xT¢o,(0) = fzodSl*'(y))t yCT~,~,(y)T¢,,,(O) 

~ ~,~,__~p,,:, : ¢(0) ¢ (0):) + vanishing integrals 
~o 

1~ pa 

× {[ y%: (o):- y%: (o) oo+ (o): 

- (8,o - ( d +  2))~)~))~)~B : O~(0)  y~yZT~+ (0) :] + conjugate) 

= XdTp,,,(0). (2.18) 

We see that we cannot understand the r61e of the other singular terms by looking 
only at conformal transformations of the flat space. The same happens in two 
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dimensions if we limit to projective transformations of the plane : the leading 
singularity in eq. (1.11), which gives the anomalous term in the transformation 
(1.10), does not contribute. In sect. 4 we shall obtain the anomalous terms in higher 
dimensions by other methods. Their relation to the leading singularity in eq. (2.12) 
remains to be understood. 

We continue the analysis of regular conformal transformations and the terms 
d~(d+l), d~(d) and d (a-l). We verified that the terms .~,(d) and .~(a-1) gives the 

correct transformation of T,, as a quasi-primary field, of dimension d and spin 2, 
eq. (1.8), for both theories (2.14) and (2.15). Notice that the term .~,(a+l) has the 
dimension for contributing to special conformal transformations ~(y) - O((x - y ) 2 ) ,  

but we checked it has a vanishing integral in our cases. This singularity must never 
contribute to the transformation of a quasi-primary field, which only feels the local 
rotation, dilatation and translation in a special conformal transformation by the 
terms ~(d) and d (d-~) [13]. 

More generally, 8~T.. is homogeneous in T,~, while the corresponding OPE terms 
contain additional operators whose tensor coefficients vanish in the integration 
(2.17). The possibility of such terms not contributing to 8~T.~ implies that this part 
of the OPE depends on the details of the theory; at variance with two dimensions, 
eqs. (1.10) and (1.11), the OPE determines 8~T~ but the converse is not true. 

Let us discuss in more detail the freedom in these OPE terms. For a scalar 
quasi-primary field % of dimension A, they have a unique form [13] : ~,¢d+1) = 0, 
,~(d-1) and z ~ ' y ) r e a d  

= - -  
' /"'" 1 ) 

d -  1 P~;' A i - ~ q ° ( O )  + ] x ~  -2f [ 2 ~ x  + ½(d-2)2~'x~xx]Oxep(O) 

+ less singular terms. (2.19) 

They are determined a priori from the general form of tensors in 2 ,  and 6~B by the 
constraints of symmetry, tracelessness and conservation of T,~, and the compatibil- 
ity with the transformation law eq. (1.8). In the case of the bosonic theory eq. (2.1) 
and qo the scalar field, eq. (2.19) is indeed verified. 

The OPE T,~(x)Ao(O ) with a quasi-primary vector field A o is already non-unique. 
Let us suppose that it closes on A. for the same terms 

1 1 
i x l d - - ' .  ° - x )  ixt -  

+ less and more singular terms. (2.20) 
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The previous constraints now leave one free parameter a for M(d) 

+ a[ ~(e  2 -  4)2,2~2020 + 8~,02~2,, + 61,,,2~2 o - ~d 80o2u2 ~ - 8~, o 8~°] } ,  

(2.21) 

and three for ~(a-1).  Moreover, if there are operators of different spin but same 
dimension as_A0, they may also appear in the OPE. For example, the fermionic 
current A o = +70q~ is a quasi-primary operator and it has the OPE 

1 
T~,~,(x)Ap(0) = (Y~,~,(x)Ao(O)) + i-ff-~r~oo(2)Ao(O) 

+ ½2~: O,~(0)y,[~,¢, y o ] ,  (0) :)] - conjugate} 

+ less singular terms, (2.22) 

where cg,~o° = ~ ( 2 °  in eq. (2.21) with a = 0 and A = d -  1. This freedom in the 
OPE T,~0 is reflected in the three-point correlation function (T,~O(,0), which is not 
completely fixed by so (d+  1,1) invafiance [25], unless, for 0, a scalar field [11]. Ref. 
[26] contains examples of these correlations and also stronger statements on the 
OPE T~Too in four dimensions. 

3. Partition functions and the Casimir effect 

In this section we specialize to the scalar field (eq. (2.1)) and derive its partition 
function on two compact manifolds, the torus - fd_  (Sa)d and the manifold S 1 × S d-1. 
These two manifolds generalize the two-dimensional torus. In this geometry confor- 
mal invariance predicts the form of finite-size corrections [16, 27] and, in combina- 
tion with modular invariance of the torus parametrization, it yields powerful means 
of investigation of conformal theories [4, 5]. In higher dimensions the torus main- 
tains the property of modular invariance, while finite-size effects are predictable on 
the cylinder R × S d-1. We first present our results and postpone this discussion to 
sect. 4. 
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The partition function is given by a determinant which is regularized by the 
method of the zeta function [28]. The zeta function of a Laplace-type operator K 
with non-negative eigenvalues on a compact manifold M is defined as 

1 
~M(S)  = E ~-~, (3.1)  

X>O 

where the sum is over the positive eigenvalues of K (with their multiplicites). It is 
analytically continued to the complex s plane from a region Re(s) > ~{ > 0 where it 
converges absolutely. 

The partition function is defined by 

Z = f ~ c p  e -  f~pK~p 

= . A r e x p ( l d ~ M ( s ) l ~ = o ) .  (3 2) 

If K has zero eigenvalues, their constant (infinite) contribution to Z is factorized by 
the usual Faddeev-Popov trick. Then the constant .AP~ 1 appears from then 
normalization of the measure ~9~, if one insists on having Z dimensionless. 

3.1. THE MANIFOLD S ~ × S a-1 

We consider the sphere S a- 1 of radius ~ ,  identify S 1 with the segment 0 < u _< T, 
and impose periodic boundary conditions for the qv field: qn(u + T ) =  ¢p(u). The 
metric is 

d s 2 =  du 2 + ~ 2  d~22, (3.3) 

with d~22 the usual metric on the unit hypersphere S d-1 (say, d~2 2 =  d0 2 for d =  2; 
dg22 = d0 2 + sin20dcp 2, d =  3; d~22 = d0 2 + sin20(dcp 2 + sin2epdx2), d =  4). The 

scalar operator in eq. (2.1) is therefore 

02 a d - 2  
K =  Ou 2 E D"D~ + 4 ( d -  1------~ R.  (3.4) 

~ 2  

D~D~ is the Laplacian on S d-1 [29] and the scalar curvature R = ( d -  1 ) ( d -  2 ) / ~  2 
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is constant. The eigenvalues are labelled by two integers n, l ~ 7/, l > 0 
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(2~r \2 1 
a t ' " =  -T-) n2 + ~ At 

A t = Z ( Z + d - 2  )+  - -  
d - 2  

4 ( d -  1) 
RS~2= ( l  + ½ ( d -  2))  2, (3.5) 

and appear with multiplicity 

( / + d -  3)! 
3(l) I! ( d - 2 ) !  (2 l+  d -  2). (3.6) 

Notice that for d > 2 there is no zero mode. 
The zeta function has the form, for d > 2 

~s,×s~-,(s) = E E a(l) 
> 0  . ~ z  ( X , , n )  s" 

(3.7) 

Some manipulations which are analogous to those of two-dimensional calculations 
[28] - Kronecker's second limit formula [30] - allow us to continue analytically this 
function in the region s - 0 and compute its term O(s). Then 

1 d 

= e x p ( _ l T  s a _ ~ ( _ l ) ) { t _ _ ~ o [ l _ e x p ( _  T_~/At)j__\]-~(,),I. (3.8) 

This expression requires a further analytic continuation in the term 

3(l) 
~s ~ l ( s ) =  • (3.9) 

l=o A~ 

This is obtained by rewriting eq. (3.9) as a finite sum of Riemann zeta functions 
S --  ~ - s  ~ R (  ) - -  ~ ' n =  1 n , whose continuation is known. After some calculations it reads 

( 1 )  [ (d-  3)/2] 

~ ' s ~ -  = E a ,~ f~O-a+2k)  
k=O 

{~,_ d = 2 n + l > 3 ,  
= ~ " + ~ w  ( 3 . 1 o )  

J ",,+1, d = 2 n + 2 > ~ 4 ,  
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where W, is a positive constant  depending on the first n Bernoulli numbers (its 

explicit formula  is given in the appendix A). 
Eq. (3.8) displays the general structure of the bosonic  parti t ion function: it 

contains  the product  of  factors for the Bose statistics ( 1 -  e -~ ' , )  -1 of inverse 

" t e m p e r a t u r e "  /3, equal to the time evolution T, and elementary excitations of 

energy e z = A ~ t / ~ .  There also appears the non-trivial prefactor corresponding to 

the vacuum energy E0; this dominates in the limit T ~ ~ (or/3 ~ 0) 

T 
l o g Z  - - T E  o = - - ~  (3.11) T~ .  ~ ~ Cd " 

F r o m  eq. (3.10), the vacuum energy is zero for any odd dimension: this is a general 

p roper ty  related to the absence of gravitational trace anomaly  (see sect. 4). In  even 

dimensions  it is, for example, 

5 2  1 = ~ 31 (3.12) = - -  ~ , C4 5 6  240 ' 60480 

(52 is computed  in subsect. 3.2). Notice the puzzling sign oscillation. 

On  the contrary,  a bosonic theory not  conformally invariant, i.e. ~ 4: ( d  - 2 ) / 4 ( d  - 1) 

in eq. (2.1), has a vacuum energy different f rom zero in any dimension. For  ~ = 0 

the analytic cont inuat ion of fs~-~(s) = ~ = 1 8 ( l ) [ l ( l  + d - 2)] -s in eq. (3.9) was done 

by  Weisberger,  ref. [29]; fs ~ 1 ( - 1 / 2 )  is expressed as an infinite sum of Riemann 

zeta functions,  to be estimated numerically. 

3.2. THE TORUS 

The  torus T d is the quotient of  the flat space R J by  the lattice A a generated by 

the vector modul i  to i, i = 1 . . . . .  d, which are the periods of  the field ~ ( x  + % )  = 
ep(x). The eigenvalues of  the Laplacian K = -0~0~ are 

X ~ X  . . . . . . . .  = ( 2 ~ r ) 2 l n l K 1  + - - - + n a K a l  2, n l ,  n 2 , . . . , n a ~ T l ,  (3.13) 

in terms of  the dual vectors Kj, obtained by the inversion of the matrix ~i~ = (°~i)j 

g j "  ~di = 8ij , (3.14) 

then (Ki)  J - Kij  = (w-1)j~. As in the previous case, we suppose that % . . . . .  o~ d span 

the spatial directions and only o.51 has a time component ,  which we can choose as 

the first one 

( % ) j = 0 ,  for j = l ,  i = 2 , . . . , d .  (3.15) 



A. Cappelli, A. Coste / Stress tensor 

T h e n  K 1 is a long the first axis 
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6911 = T > 0, K l l  = 1 / T ,  (3.16) 

and  the eigenvalues eq. (3.13) are rewrit ten as 

~ =  - -  [(,r/1 -]- yq)2- j - (T~ . )2] ,  

in te rms of m o m e n t a  q and energies c of e lementary  excitations 

q-= q-2 ..... ~. = n2K21 + " " " +ndKdl 

e = e , ,  2 . . . . . .  , l= [(n2K22 + . . .  +ndKd2)2+ . . .  +(n2K2d+ . . .  +ndKdd)2] 1/2 

(3.17) 

the ze ta- funct ion fT~ is defined by  eq. (3.1) and the zero m o d e  is subtracted in eq. 
(3.2), thus giving a factor  .A/'= V 1/d, where V is the volume of the torus. The  
K r o n e c k e r  l imit  formula  applies again and it yields 

1 d ) 1 
Z =  V1/aexp -~-~s;T.(s) = V t /a~exp ( -½T~T~_x( -½) )  

0 

t 1 - 1  X YI  [1 - e x p ( -  27rr(~ + iq))]  , 
n2~... ~ ?/dEZ 

(3.18) 

where  in the product  /7'  the zero mode  is omitted.  The  first factor  is given by  
analyt ic  cont inuat ion  of 

fT" l ( s )  = Y'/ 1 
n2 . . . . . .  dcz  (2~re,2 . . . . . .  d)2,"  (3.19) 

Eq. (3.18) has the same structure as eq. (3.8), displaying a vacuum energy and a 
p roduc t  of Bose terms. The  remaining analytic cont inuat ion of eq. (3.19) is done  by  
Eps te in ' s  funct ional  equation, which is a general izat ion of the R iemann  symmet ry  
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m 1 . . . . .  mp~TV ~ ( O )  s / 2  

~r-(P-s)/2F(( p - s ) / 2 )  ~,, 1 

m 1 . . . . . .  p~Z ~(D-1) (p-s)~2' (3.20) 

where cp(D) = ~iP,,j=lmiDijmj is a positive-definite quadrat ic  form. 
The  contr ibut ion of  the vacuum to Z dominates when at least one side of  the 

torus goes to infinity. By taking it as the time T we have, from eqs. (3.18)-(3.20), 
the Casimir  effect 

V y,[ 1 
log Z - - -  

~ n = T - ~  S d  n 2 . . . . . .  d ~ Z  I / ' / 2 6 0 2 +  " ' "  +nd60dl a " 
(3.21) 

In  eq. (3.21) we reinstated the d-dimensional vector notation. This rather general 
fo rmula  applies to all possible shapes of  the torus. For  example, the geometry of a 

slab made  of  two infinite ( d - 1 ) - h y p e r p l a n e s  at (spatial) distance 1602[ = L  is 

obta ined  by  letting 160il ~ o¢ for all i ~ 2. 
It yields 

1 1 2¢R(d) 
-~log Z L,i?d, ?d (Td)  Sd (3.22) 

For  example 

1 1 
72 = - -x~r ~3 = - ~'R(3) ~4 = -- - -7r2"  (3.23) 

6 ' ~ ' 90 

Its quali tative behaviour with the dimension is different f rom the cylinder in eq. 
(3.12), because it is non-zero in odd dimensions and is of  definite sign (~g(2k + 1) is 

k n o w n  only  numerically and ~g(2k) is proport ional  to the Bernoulli number  Bk). 

Our  results, eqs. (3.21) and (3.22), agree with previous calculations by hamil tonian 

canonical  quantizat ion:  the d =  3 case was recently derived for quantizat ion of 

extended objects like the three-dimensional membrane  [17]. In this context there 

appears  a factor  (D - 3) for any transverse direction in the D-dimensional  embed- 

ding space. The d = 4 slab Casimir effect agrees with the classical result for the 

electromagnet ic  field when a factor of  two is accounted for polarizations [32]. 

Besides the value of the vacuum energy, a closed expression of the parti t ion 

funct ion is interesting because it exhibits the invariance under  the modular  transfor- 

mat ions  of  the torus parametrization (60a . . . . .  60d). In  order to test it, a fully 
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covariant expression of Z is necessary; the three-dimensional case is 

7 2 5  

log Z ( % ,  ¢a02, ¢,D3) 

1 1~2 A ~0313 V y,f 1 
= -~log V2 "1- 4~" In2to2 + n3~313 

112 , n 3 

{ [--2~VIn2~3--n3~2[+i2~[n2(~1A~3)--n3(ce1Aco2)]'(ce2A~3)]} 
- Y'[ log 1 - e x p  

n 2 ,  n3 1% A l.,03 [2  • 

(3.24) 

(The analogous formula in d dimensions is given in appendix A.) 

The modular group in d dimensions is SL(d, Z ) / Z  2; it contains the transforma- 
tions 

TU: %--> ~i + t0j, o~j--> t0j, i 4 : j ,  

S i j :  o3 i ---+ oa j ,  tadj ~ - - 0 3  i . (3.25) 

Some of them are trivially satisfied in eq. (3.24), but a complete proof of modular 
invariance will not be discussed here. For a non-trivial check of this formula we 
computed (T~)n3 by differentiation with respected to t0i's and comparison to eq. 
(1.2) and we verified it has the correct symmetries (see the last of refs. [28] for the 
analogous calculation in two dimensions). 

4.  T r a c e  a n o m a l y  and C a s i m i r  e f f e c t  on  the  c y l i n d e r  S a -  1 × R 

In this section we consider the transformation of the stress tensor under confor- 
mal transformations (1.1) in curved space time. The method is based on the 
derivation of the effective potential for o(x), the conformal factor of the metric - the 
Liouville action in two dimensions [1,14]. After recalling the two-dimensional case, 
we present the four-dimensional one in a fully renormalized form and we clarify 
some technical aspects. 

A direct application of this transformation law is to the determination of the 
Casimir effect on a manifold related to fiat space by a conformal transformation, 
like the generalized cylinder S a - I ×  • we discussed in sect. 3. We would like to 
stress that some finite-size effects of this geometry are predicted by conformal 
invariance as in the two-dimensional case. We first set the problem by recalling the 
properties discussed in ref. [18], then we derive the transformation of T~ and the 
Casimir effect. 
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4.1. FINITE-SIZE EFFECTS 

The  cylinder S a -  1 × R is a mani fo ld  conformal ly  equivalent to R a, i.e. its metric 

can  be  put  in to  the form g ~ ( x )  = e x p ( 2 o ( x ) ) ~ ,  ~ = 8~; by eq. (3.3) it is 

ds2 = du2 + ~Z d~22 "= -U/~ d~2 = e-  ZO ds2 = dr2 + rZ d~22. (4.1) 

By the conformal  t ransformat ion  and the change of variable r = ~ e x p ( u / ~ )  it 
becomes  the flat  metr ic  of R a in spherical coordinates  (the point  at the origin of R a 

is excluded because  the change of variables is singular there). 
In  a conformal  invariant  theory, the correlation functions in these two geometries 

are related b y  the t ransformat ion  eqs. (1.1) and (4.1). For  example,  the two-point  
funct ion  (and the three-point  one) of any scalar field has a fo rm completely 
de te rmined  in flat  space by  its dimension A [9]. This implies on the cylinder 
R X S d- 1 the unique form 

<qS(ul, D1) q)(u2,0)>Rxs~-,  = ea ( '+~2) / s~(+( Ix ,  L, ~71)+(Ix21,0)>.,~ 

- e a ( ' +  u2)/Celxl - / 2 [ - 2 a  

- { , ~ 2 [ 2 c h ( ( u t - u 2 ) / , ~ ) -  2cos01l} -~, (4.2) 

where  801  is the geodesic distance on the sphere of  the first point  f rom the second 
on the polar  axis. 

The  relat ion between correlat ion functions on the two geometr ies  implies a 

co r respondence  between the two Hilber t  spaces. T ime (u)  translat ions in the 
cyl inder  cor responds  to dilatations in R a, then eigenvalues zl n of  the dilatation 
ope ra to r  ~ are equal to eigenvalues E, of the cylinder hamil tonian  , ~ :  a ' f 6 u  = 

8r / r  leading to [18] 

A n 
= E n - E 0 . (4.3) 

Eq. (4.3) can be useful in numerical  simulations of the transfer matr ix  of  a statistical 
mode l  on the geomet ry  of the sphere. On the other hand,  finite size effects on the 

torus  -ga, the tradit ional  geometry  for simulations [33], are not  predicted by 
confo rma l  invar iance for d > 2, because this geomet ry  is not related to R a by  a 
con fo rma l  t ransformat ion.  

The  expecta t ion  value ( T , , )  on the former  manifo ld  is given by  

1 
log Z = 2Sa fs, xsa_lddXgtg(T~v)Sg ~'r , (4.4) 
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which is the quantum analogue of eq. (1.2). The form of (T~.) is determined by its 
invariance under the isometries of the manifold [34]. It has a two-parameter 
freedom 

1 
(T .~(x)  ) = ~-2(  Ag.~(x ) + B~, 1 ~ , 1 )  , (4.5) 

where x ~ = u, S 1 is the segment 0 < u < T with periodic boundary conditions and 
x 2 .. . . .  x a are coordinates on the sphere S a-1. In this form (T,~) is also covariantly 
conserved. A non-vanishing trace (T~ ~) measures the lack of scale invariance of the 
parti t ion function: for a dilatation 3g~, = 2g,~ 8)t, eq. (4.4) reads 

8 1 T 
~-~log Z[g~.]  = - ~ f d ~ x v ~ ( T " )  = - ~ ( d A  + B). (4.6) 

For  example, the scalar field partition function obtained in sect. 3, eq. (3.8), is a 
function of T/~; then we proved that in any dimension 

( T ~ )  = 0 (scalar field on S 1 × sd-1)  . (4.7) 

This result is not trivial because, for a general conformal theory on a curved 
manifold, the stress tensor defined by eq. (4.4) does have an anomalous trace 
coming from the lack of scale invariance of the integration measure in Z [7]. 

The vacuum energy E 0 is related to the full expectation values (T~) .  The 
contribution of the vacuum is singled out in the limit T ~ 

1 
E 0 = lim - - - log  Z( [0 ,  TI x Sd-~). (4.8) 

T~oe  T 

Let us consider eq. (4.4) for a metric transformation 8g ~=  -28~',18~,18~. It  
corresponds to a parametric variation in eq. (4.8) for T ~ T(1 + Be). By comparing 

eqs. (4.4), (4.5) and (4.8) one obtains the vacuum energy in terms of the expectation 
value of ~Tll ) 

1 1 
E o T ~  TSd f daxv~(Tll) = -~(A + B). (4.9) 

4.2. THE EFFECTIVE POTENTIAL 

The expectation value (T . . )  can be obtained by integration along a conformal 
t ransformation into another manifold where (T.v) is known, namely R e where it is 

normalized to be zero. Let us consider two manifolds (M, g.~) and (1Q, ~ v )  with 
g~(x) = e2"(x)~..(x); let us first suppose they are compact so that there are no 
boundary  terms. Let ~...(t, x ) =  e2O(x't)~..(x) be a path interpolating between ~ 
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and g,, ,  with 6(x,  t) a smooth function of t ~ [0,1] and x satisfying 6(x,  0)= 0, 
6(x ,  1) = o(x);  for example, one can take 6(x,  t) = to(x) .  The difference between 
the partition functions for the two metrics is 

F[ g, ~1 = - l o g  Z[  g..] + log Z[  ~ . ]  

: d x d dx . . . .  
= - f o  d t ~ l ° g Z [ g ~ ' ]  = fo d t f  d :  ~ -d  ~/~(X) (T~(x))--d~-. (4.10) 

For theories which are conformally invariant at the classical level, the trace in the 
last term of eq. (4.10) is completely anomalous, that is it does not contain 
expectation values of dynamical fields. We shall limit ourselves to purely gravita- 
tional anomalies, so that it is a local functional of the metric ~, whose form is well 
known in two and four dimensions, and it appears already in free theories. In such a 
case the general form of the trace anomaly can be integrated in eq. (4.10). The result 
has the form of an effective potential for the o field in the reference metric ~ , .  

By definition F[g, ~] must satisfy the cocycle conditions [20] 

r[g,  ~1 + r[~, g] = o, 

r[g, ~1 + r[~, ~] + r[g, g] =0, (4.11) 

where g, ~ and g are metrics related by conformal transformations. They are a 
check that the effective potential is independent on the path of integration. 

For infinitesimal metrics, say g,~ = (1 + 2~o:)~,, = (1 + 280: + 2~o2)g,~, eq. 
(4.11) is the Wess-Zumino consistency condition on the trace anomaly. One has 

' r re  2°  ̂ g..] o, ( 8 ° , ~ ° 2 - ~ . 2 ~ o , J  [ g.~,  = (4.12) 

where the r.h.s, is zero because we have an abelian group of transformations. By eq. 
(4.4), eq. (4.12) is 

(4.13) 

This is a necessary condition for eq. (4.11). This general discussion will be relevant 
in four dimensions. 

Let us first recall the two-dimensional case. The trace (1.4) is inserted into eq. 
(4.10), written in terms of ~ and 6, R = e - 2 : ( / } - 2 [ ) 2 6 ) ,  where [)~ is the 
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covariant derivative with respect to ~ ,  (some useful formulae for this section are 
given in appendix B). The integration gives [1] 

C 

96~r 2 1 2 ^ 1 ^ c [S dxq~R~R-i dx~R~R I. (4.14) 

One can check that this potential satisfies the cocycle conditions eq. (4.11); this is 
trivial in the above non-local form. 

Once we have eq. (4.14), the difference between grg(T. . )  (living on M) and 
V~(1"..) (on 1VI) is obtained by varying with respect to ~.., o(x) being fixed, 
8gPa'(X) = e-2O(x) 8~t*V(x ) 

6F[g ,g]=  l-~ f ddx(-v/-g(T,~)Sg"~+V/~(T~)~g ) 
2SaJ  " 

= 1 

2s~ 
(4.15) 

For  eq. (4.14), this gives 

= B ^ x  e j  +  °(ox 

(4.16) 

where ~ = [)~o, d f  = [)¢E)fl and % = D,o, o f  = D ¢ D~o are covariant derivatives 
of the corresponding metrics. Eq. (4.16) was originally derived in ref. [14] from the 
effective potential given by dimensional regularization; after the variation (4.15) a 
suitable d ~ 2 limit was taken. 

Reparametrization invariance must be preserved throughout our discussion, and 
then the transformation law must be compatible with the covariant conservation of 
the stress tensor. From eq. (4.16) one obtains !/g D~(T~)  -- Vf~ f)~(3"~,). 

Let us emphasize the relation between eq. (4.16) and the result of Belavin et al. 
[1]. They consider an analytic coordinate transformation 2 = 2 ( z )  between flat 
metrics; in our approach it corresponds to a reparametrization followed by a 



730 A. Cappelli, A. Coste / Stress tensor 

conformal transformation of the metric 

~s~(£) = ~ --+ gz~(z) = ~ [d f /dz [  2 --+ g~(z) 2~  ̂= e gz~(Z) - 1 

For the conformal transformation, eq. (4.16) gives with o = - ~ log[d£/dz[  2 

C[ d 2 (]0t2 ] 
(T~(z )>- (~2~(z ) )=  --~[-~z2O+ ( dz ] ] 

[ d',/d, ,( / d, 
=i~c[--d~z3/--~z ~ l ~ z 2 / ~ z z )  = ~ c { £ , z } .  (4.17) 

Under  the reparametrization, l '~ transforms as a tensor because we assumed exact 
covariance of the theory. Eventually 

de?)2 
(Tzz(Z))=(~2zz(£)) dz  + l~C{£ 'z}"  (4.18) 

This is the result of refs. [1], with { 2, z } the schwartzian derivative. The transfor- 
mation there established for the field Tzz is recovered here for the expectation value 
(Tzz) (see also eq. (1.10)). Eq. (4.16) is actually a more general result which holds for 
non-analytic transformations, changing also (Tz~), but it is valid for expectation 
values only. 

Let us rederive the vacuum energy E 0 for the two-dimensional cylinder N × S t, 
eq. (1.15) [16]. The previous derivation is not strictly valid in this case, because this 
is not a compact manifold. However, (T , , )  describes the bulk properties of the 
system and should become insensitive to the time boundary conditions when the 
temporal extension goes to infinity. In this limit, eq. (4.16) is expected to hold. 
The conformal transformation to the flat space N 2, eq. (4.1), is then used in eq. 
(4.16). One sets ~,, = 8,~, the normalization (T,~)---0 and obtains (T~)  on the 
cylinder M. By substitution of (T~)  in eq. (4.9), the correct result for E0, eq. (1.15), 
is recovered. 

The higher dimensional case is analogous. As a starting point, we need the 
gravitational trace anomaly; it is expressed in terms of local functions of &,  and its 
derivatives, which are Lorentz scalars of dimension d. For d = 2 there is only the 
scalar curvature R, eq. (1.4); for d = 3 and any odd dimensions, one cannot form a 
scalar with an odd number of derivatives of g~, then ( T f ) =  0. For d =  4 the 
possible terms are [35] 

< v >  = +  R2) - D2R +  R2}, (4.19) 

where )t = (1440)-1, C,,o ° is the Weyl tensor [8], and the coefficients a, fl, ~,, c were 
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computed in ref. [36] for free theories of various spin values (a  = fi = 1, y = - 1, 
c = 0 for spin zero). 

Let us check the Wess-Zumino condition, eq. (4.13), on the trace anomaly eq. 
(4.19). It is satisfied by the first three terms, but the R 2 term gives by using eq. (2.3) 

~12¢X f d4x~@R[(D23o1) 3o2-3%(D230211. (4.20) 

It does not  vanish for a general transformation and this excludes such a term in a 
conformal invariant theory. Let us explain this point better. The transformation 
properties (4.12) must be always satisfied by the effective potential; if the R 2 term 
appears in the trace (4.19) there must also be additional terms not built from the 
metric, which compensate eq. (4.20). These are non-anomalous contributions, which 
appear already at the classical level. Therefore, the theories with an R 2 anomaly are 
not conformally invariant. On the other hand, consider the effective potential for a 
global scale transformation only; it is given by the integrated trace anomaly in eq. 
(4.6), which has a consistent form because eq. (4.20) vanishes in this case. It is 
possible that the previous non-anomalous contributions do not appear in the 
integrated anomaly. Therefore, theories with an R 2 anomaly may be scale invariant 
at most. 

These observation are confirmed by the known four-dimensional theories where 
such a term has been reported: free theories with spin greater then one, when their 
lagrangian is not conformally invariant at the classical level (see refs. [36,37]); 
interacting theories like q04 theory, and QED with fermions off the trivial fixed 

point [38]. 
Therefore, in the following we consider only theories with e -- 0 in eq. (4.19). The 

effective potential is again obtained by integration of eq. (4.10) and some formulas 

in appendix B: 

r[g,  ~1 = - ~  

(4.21) 

(8~ = E)~o, a t = D,a as before). A similar expression was given in ref. [15]. Eq. (4.21) 
can be rewritten in the form 

X 

1 2 2 +Sfl[(R~,R~"-½R2)o-(Duo) D o ] + ~ , R  2} 

2~r 2 

+ ! f l [ ( / ~ , / ~ , ,  ~/}2)0 ( b . a ) 2 b 2 o ]  ~3,/}2'~ (4.22) 2 - - - ~ 5  j -  
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Eq. (4.22) satisfies the cocycle conditions eq. (4.11); the first one is obvious, the 
second one requires a detailed calculation for the fl term. 

The variation with respect to ~ gives the stress tensor. The Weyl tensor vanishes 
for metrics of the form g. .  = e 2° ~.. that we shall consider, and we set C~0o = 0 

after this variation. Then, the a term drops out and the fl and 3' terms are given by 
the variational formulas in appendix B 

* 2^va 8 F  [ 

g i a fixed 

R 

+ Xgc~ - ( &,~ ~ g~,~ }, (4.23) 

where P~f  is the projector on the symmetric traceless part. Eq. (4.23) agrees with a 
previous calculation by dimensional regularization [14]. The covariant conservation 
of ( T )  is again compatible with eq. (4.23) for any value of/3 and 7, because the 
tensors multiplying these coefficients are both covariantly conserved [6]. 

A more explicit form of eq. (4.23) can be written in terms of o for conformal 
deformations of flat space ~ = ~ ,  ( l ' )  = 0 

( V ( x ) )  = Boo. [oo,- 2°°°,- as,(o: + )] 

4B[oo,  ooo,( + ) - + 2ooo, o ] 

- 2y [( O,,O, - 6%01~ + 6o, p , ) ( a x  x + oxox)] } (4.24) 

(% = 0~o, o,,¢ = O,0~o). In sects. 1 and 2, we showed that T~ is a quasi-primary 
field, i.e. it transforms homogeneously under coordinate transformations belonging 

to the group S O ( d +  1,1). Then eq. (4.24) vanishes for the corresponding finite 
conformal  transformations of the metric. This is manifest for translations, rotations 
(a  = 0) and dilatations (o = cost); special conformal transformations are composed 
of one translation and two inversions x '" = - x " / x  2, then it is sufficient to check 
these last ones ( o = - l o g x  2) in R 4 \ ( 0 } .  In the same way, the schwartzian 

derivative, eq. (4.18), vanishes for projective transformations of the complex plane. 
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Let us return to the determination of the Casimir effect on the cylinder R × S 3. 

We use eq. (4.23) by assuming again that boundary terms do not affect (T. . ) .  By 
taking g . .  = 8~, (~]'u.) = 0 in N 4 and gu. on the cylinder, eqs. (4.1) and (4.23) give 

x(~-/3) 
( T u g )  - -  ~ 4  (g/L~, -- 46U,1~,,1), ( 4 . 2 5 )  

By eq. (4.9), it yields the relation between the trace anomaly and the Casimir effect 
on the manifold N × S 3 

~4  /3 - v 
E0 = ~ ,  c 4 -  480 (4.26) 

For  scalar fields this agrees with the result in sect. 3, eq. (3.12). By inserting the/3 
and 3' values of ref. [36] this gives 

~4 ~ 1"7 
480 ' 

c4 11 
120 ' 

Dirac ferrnion, 

pure QED.  (4.27) 

Let us conclude this section with some comments. In three dimensions and other 
odd dimensions there is no gravitational trace anomaly, the effective potential is 
conformal  invariant, F[g, ~] = 0; then (T,~) and E 0 vanish on the manifolds 
R × S 2k as well as in N 2k+1. This agrees with the scalar field calculation of sect. 3, 

eqs. (3.10) and (3.11). Let us observe some simple consequences of this phe- 
nomenon.  

(i) By numerical simulations of the hamiltonian of a statistical model on S 2, 

E 0 = 0 + o ( 1 / ~ )  is a non-trivial check for conformal invariance (1.1) of the corre- 
sponding field theory at the critical point. It  is also a necessary condition for the 
analysis of the finite-size effects we mentioned at the beginning of this section, eqs. 
(4.2) and (4.3) [18, 39]. 

(ii) An anisotropic correction to the correlator ( f f (x )~(0) )  in finite geometries 
was computed [13], which is due to the insertion of T,g and therefore of order 
O(Eolx{d/Na). This correction has the unpleasant feature of being non-analytic in 
odd dimensions, but actually it vanishes on the manifold R × S 2k, leaving only 

analytic terms in eq. (4.2). On the contrary, the torus geometry does show this 
correction because (Tu,) 4:0 in any dimension. Moreover the effective potential 
cannot  be simply obtained by integration of the trace anomaly, it depends on the 

details of the theory and general results like eq. (4.26) cannot be stated on finite-size 
corrections. 

We are very grateful to C. Itzykson for his constant interest in our work. We also 
enjoyed fruitful discussions with J.B. Bost, E. Br6zin, J. Cardy, F. David, D. 

Friedan, O. Napoly and J.B. Zuber. A CappeHi thanks the Angelo Della Riccia 
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foundation for partial support, A. Coste thanks CERN Th. 
Saclay for kind hospitality. 

Division and SPhT 

Note added in proof 

The term ~,D2R in the four-dimensional trace anomaly eq. (4.19) comes from a 
term 7f!/gR 2 in the effective potential eq. (4.22) which is local in the metric g, ,  and 
covariant. Then the value of 3' can be changed by adding a local counterterm in the 
action, while keeping the stress tensor conserved. The choice , / =  0 corresponds to 
the customary renormalization scheme, in which the anomaly takes a minimal form. 

Other choices of scheme are presently allowed, because the trace anomaly does not 
spoil the consistency of the theory of matter on a curved manifold and additional 
constraints were not found; eventually V could be determined experimentally. 

Therefore in this paper we considered the general case 7 ~ 0. The relation in eq. 
(4.26) between the trace anomaly and the Casimir energy E 0 on the manifold N × S 3 
clearly holds when both quantities are computed in the same scheme of renormaliza- 
tion. Here we checked eqs. (4.26) and (4.27) in the zeta-function regularization by 
the computat ions in sect. 3 and the literature. We thank A. Schwimmer and J.L. 
Cardy for discussions on this subject. 

We also thank P. Pasti for informing us that the consistency conditions on the 
trace anomaly were discussed in ref. [40] as the cohomology of the BRST operator. 

Appendix A 

We detail here the analytic continuation and evaluation at the point s = - ~ of 
the conformal  zeta function on the sphere (eq. (3.9) in the text), and we display the 
covariant formula of the partition function on the torus T d. 

A.1.  M A N I F O L D  S 1 × S d 1, d ODD ) 3 

I f  we set d =  2n + 3, the degeneracy of the eigenvalue A t in eq. (3.6) can be 
rewritten as 

( 2 ( l + n )  + 1) ~ 1 

a ( l ) =  (2n+ 1) ' .  i = o I ~ ( l + n + l + i ) ( l + n - i )  

( 2 ( l +  n) + 1) 

(2n + 1)! 

1 n - -1  

4---; I - I  [ ( 2 ( / + n ) +  1 ) 2 - ( 2 i +  1) 2 ] 
i = 0  

_ 1 1 k~__ 0 l)l+2(n_k) ( 2 n + 1 ) !  4 n = (--1)kak(n--1)(2(l+n)+ (A.1) 
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with 

a k ( N )  = E (2it  + 1) 2 - - - (2 ik  + 1) 2 , 
0 : # i 1 <  . . .  <ik<N 

ao (N)  = 1. (A.2) 

Therefore, eq. (3.9) reads 

~S . . . .  ( S )  = 
1 1 ° 

(2n + 1)! 4"-~ k~=0 ( - 1 ) k a k ( n -  1) ( 2 ( l + n ) + 1 ) 1 + 2 ( " - k  "~ 
/ = 0  

1 

(2n + 1)! 4 "-~ ( - -1)kak(n -- 1) 

× ( 1 _ 2 2 ( ,  k s ) 1 ) ~ R ( l _ 2 ( n _ k _ s )  ) 

} E ( -  ~ 1) a k ( n  - 1)(2 /+  1) l+2("-k-s) (A.3) 
/ = 0  k = 0  

This formula allows us to deduce the analytic continuation of ~s2.+2 from that of the 
- -  o o  - - s  1 Riemann zeta function ~R(S)--E,=ln . For s = - 5  one obtains the values 

~R(-  2(n - k + 1)), 0 < k < n, which are zero [31], as well as 

n - 1  

}-". ~ ( - -1)kak(n- -  1) (2 /+  1) 2+2("-k) 
/ = 0  k = 0  

Therefore 

n - 1  n - - 1  

E (2l+ 1)21--I [(2/+ 1)2-(2 i+ 1) 2 ] =0. 
l = 0  i = 0  

~s2.+2(- ~) = 0, d = 2 n + 3 > 3 .  (A.4) 

A.2. d E W N > 4  

We set d = 2n + 2. The degeneracy at level l is 

2 ( / +  n) 2 . -1  
8( l )= (2n)! i~=1 [(l+n)2-i2] 

2 n - - 1  

(2n)[ '~ (-1)kfl~(n - 1)(/+ n) 2("-k), 
k=O 

(A.5) 
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(for d = 4 i.e. n = 1, the value 1 is given to the product FI~__-i t) with 

r i k ( N )  = Y'~ i? . . .  i 2 , r i o ( N )  = 1. 
1 < i 1 <  . . .  <ik~N 

(A.6) 

Therefore 

2 n--1 ~ )2(n-k-s) 
~'s2"+~(s) - (2n)! y'~ ( - 1 ) k f l ~ ( n  - 1) ( l +  n 

k = 0  l = 0  

2 n-1 [ n 1 ] 
(2n)! E ( - - 1 ) * i l k ( n - - I )  ~ R ( - - 2 ( n - - k - - s ) ) - -  E 12(" -k - ' )  . (1.7) 

k = O  l = 1  

Again one notices the simplification 

n - 1  n - - 1  n 1 n 1 

E ( - 1 ) * f l k ( n - 1 )  E 12(,,-k-,)= E 120-s)I-I (12 - i2 )  = 0 -  
k = O  l = 1  / = 1  i = 1  

For s = - ~, the values of the Riemann zeta function appearing in eq. (A.7) are 

l ~ m + l  - 
- -  ] / ~ m + l  

~'R(--1 -- 2m) = 2(m + 1) ' (A.8) 

with B,,, the Bernoulli numbers, given by 

x _ _  = 1  lx_t_ (__1)  m + l o m x v m  

e x -  1 m=l (2m)! ' 

B1 = !6, B2 = ~ , B 3 = ~ . (A.9) 

Therefore 

1 ~ n + l ~  ~'s2-+, ( -1)=(  - , I"1/,+ 1 , d 2 n + 2 > ~ 4 ;  (A.10) 

the positive constant which appears in eq. (3.10) is 

1 ~ - 1  f l k ( n  - 1 )B .+I_  * 

W"+a-  (2n)! Z n + { ~ k -  
k = 0  

(A.11) 

The coefficients r i k ( N )  satisfy remarkable properties. By separating the cases 
i k = N + 1 and i k < N one gets the functional equation 

i l k (N+  1 ) f l k ( N ) + ( N  + 2 = 1) f l k _ l ( N ) .  (A.12) 



A. Cappelli, A. Coste / Stress tensor 

From eq. (A.12) one easily derives by induction that, for fixed 
polynomial of degree 3k in N, whose highest term is 

737 

k, /3k(N) is a 

One also has the value 

N 3k 

/3k( N )  • (A.13) 
N ~  3kk! 
k fixed 

i l k ( k )  = [k!] 2. (A.14) 

In order to identify the polynomial i l k ( N )  it is sufficient to check properties (A.12) 
and (A.14) which determine all its integer values. One, thus, gets the following 
explicit expressions for the first few 

r i o ( N )  = 1 ,  

/31 (N)  = 
( N  + 1 ) N ( 2 N +  1) 

/32 ( N )  = 
( N +  1 ) N ( N -  1)(2N + 1 ) ( 2 N -  1) (5N + 6) 

8 x 9  5 

( N + 1 ) N ( N - 1 ) ( N - 2 ) ( 2 N + 1 ) ( 2 N - 1 ) ( 2 N - 3 )  (35N 2 + 9 1 N + 6 0 )  
/33 ( N )  = 24 34 35 

(N+ 1)N(N- 1)(N- 2)(N-  3)(2N+ 1)(2N- 1)(2N- 3)(2N- 5) 
/ 3 4 ( N )  = 2735 

(175N 3 + 735N 2 + 1046N + 504) 
X 175 (A.15) 

It seems plausible that all integers and half integers between - 1 and k - 1 are zeros 
of the polynomial i l k (N) .  

A.3. T O R U S  T d 

The partition function in d dimensions, eqs. (3.13) (3.21) is in vector notation, 

1 " "(V') a V , 
l o g Z ( %  . . . . .  t%) = 5 log  V---gsi-_l + ~aa E In2to2 + "'" +nd~%l -a  

n2 , . . . ,  nd~-Z 

-- ~-"' l o g ( l -  e x p ( -  27rT [%2 ...... ~t+iqn2 . . . . . .  d])}' 
n2,...,nd~Z 

(A.16) 
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where o~, . . . ,  ~d are the moduli vectors, in the notation of sect. 3. They form the 
matrix o~gj = (O)i)j; V = Idet t01; the dual v e c t o r s  K i are rewritten as 

( ~ i ) j =  ( -  )J+ldetij(w) = ( - ) i + I v (  K i ) j  ' 

where det~j(w) is the determinant of the minor (0") of o0. Then 

where 
volume. In three dimensions the wedge product is used for 

~'~1 = ~2 A O.13, ~'~2 = 031 A 0~3, 

G=o~A~a ,  V=I~1"(~2A~3) l, 

and eq. (3.24) is obtained from eq. (A.16). 

(A.17a) 

Tf-n 2 . . . . . .  a :  a l A  ( -n2~'~2-~-F13a3q- " '"  q - ( - ) d + l n d a d )  / (  V , )2 ,  

Tq . . . . . . . .  ~= [ ( - , 2a :  +,~a~ + - . .  +(-)~+~n,a~).  a~l/(v,) 2, (A.17b) 

la A bl 2= (a)2(b) 2 -  (a .  b) 2 in d dimensions and V '=  Iflll is the spatial 

(A.18) 

Appendix B 

We list some useful formulas for the computations of sect. 4. The e~pansion of 
the Ricci tensor R ~  for the metric g~ = e 2 ° ~  in terms of a and R ~  for ~ is 

R~=R~,~-~,~,~(SxX+(d-2)fxSx)-(d-2)(8~-8~,8~), (B.1) 

where ~ =  [)~o, 8 ~= ~u~¢, ~ , =  [)~[).o, and E)~ is the derivative covariant with 
respect to ~,~. Moreover, the derivative covariant with respect to g,~ is 

D,A~= b,A~-  ( ~A,  + ~,A,-  ~,~fixA x ) . (B.2) 

The useful variational formulae, in addition to eq. (2.3), are (see ref. [23]) 

8R~,~= -½(g~oD, D~,+gl,oD~D -g~g~oD2-g,oD~D~,)Sg TM, (B.3) 

(3D~)A~ = - (SFL)A° = ~(A,g~oD, + A,g,oD,-g,,g,oAXDx) 3g TM. (B.4) 

In four dimensions the Bianchi identity and C~,~o o = 0 imply the identity 

1 1 DrR~# - DBR-v = gg~B DvR - 6g~v D#R, (B.5) 
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which is useful for deriving (C. .oo = O) 

p~,~.ao__ f d4xv/~(R~o_~R2)o 
j, fl6 8gaO fixed 

739 

(B.6) 

where P~¢ - 1 ~&,¢g - ~8~ ~ ,  w h i c h  is u s e d  to  de r ive  eq. (4.23).  F i n a l l y ,  

t h e  f o l l o w i n g  e q u a t i o n  

e 4 , ,  n2  1 R 2 ) o  ( t,v 13 *~2) ° q- _ 1^ ^/,^u t/~/,v - = /~2 - -  4(/}.~ ~g.~)o o 

+ 28xSx(382 + 28~8 ~) + total derivatives (B.7) 

is used for passing from eq. (4.21) to eq. (4.22). 
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