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The classical dynamics of N point sources in three-dimensional gravity is considered.
An explicit solution is found in the first-order formalism, where the dreibein and the
spin connection correspond to a Chern—-Simons gauge field on the Poincaré group. If we
are not interested in a smooth metric, as in the gauge theory, such a solution exists for
arbitrary trajectories and conventional scattering is not defined. Only particle exchanges
are meaningful, and are described by the braid group acting on the holonomies of the gauge
field. On the other hand, the metric in the Einstein theory must be smooth and invertible,
outside the particle trajectories, and fulfil proper asymptotic conditions. We argue that
these requirements constrain the asymptotic motion of the particles, so that the two-body
scattering problem is well defined. We determine the scattering angle in some special limits
| and we argue its exact form in the massless case.

1. Introduction

Gravitational theories in 2+ 1 dimensions have received much attention in
the past few years, in the hope of finding a consistent approach to quantum
gravity. There are several motivations for such a hope.

On the one hand, the classical Einstein theory in 2+ 1 dimensions is com-
pletely flat outside the sources. Based on this simplifying feature, Deser et al.
made considerable progress towards a solution of the classical dynamics [1,2],
and of the one-body and perhaps two-body quantum mechanics [3-5].

On the other hand, as suggested by Witten [6] and developed by other
authors [7-12], gravity in 24 | dimensions is connected to the Chern-Simons
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theory on the Poincaré group. This observation confirms the lack mw local
degrees of freedom in D = 3 apart from the sources and constitutes also a basis
for an alternative quantization method. However, it needs a deep discussion,
because the Chern—Simons theory is purely topological, while gravity, requiring
a physical metric, is perhaps not. ‘

Finally, string theory itself [13], compactified to D physical dimensions,
has a quantum gravity limit which has been studied at planckian energies
[14] and especially for D = 4 [15]. This high-energy behaviour could as well
be studied for D = 3, and compared with the two-body massless scattering
results of the previous approaches.

In this paper we reconsider the classical dynamics of point sources from
both the Einstein and the Chern-Simons points of view, and in particular the
two-body scattering problem. Gravitational theories are thought to be different
from gauge theories in this respect. In fact, as emphasized in the pioneering
work of Einstein et al. [16], the equations of motion for the sources follow
from the Bianchi identities for the field equations, i.e. from reparametrization
invariance itself. In practice, however, the formidable non-linearity of this
problem in D = 4 has not allowed much progress beyond perturbation theory
[17], and, eventually, the geodesic approximation in an effective many particle
field. Nor it is known in general to what extent the asymptotic trajectories are
determined, independently of local reparametrizations at finite times.

In three dimensions the non-linearity is softened by the flatness property
and also the ambiguities connected with radiation are avoided, because of the
absence of physical gravitons. However, the infrared problem is more severe,
and 1t is still not easy to set in a precise way the asymptotic scattering problem.

We approach this problem in two steps. First, by using a first-order formal-
ism, we exhibit a class of explicit N-particle solutions for the dreibein and
the spin connection and therefore for the related Chern-Simons gauge field
(sects. 2 and 3). The metrics corresponding to them in the Einstein theory
contain generally delta-function singularities. If we are not interested in a
smooth metric, such solutions exist for arbitrary trajectories, which therefore
turn out to be gauge degrees of freedom of the Chern-Simons theory.

Secondly, we look at the metric obtained for such solutions in the Ein-
stein theory by setting for it smoothness (sect. 5) and asymptotic conditions
(sect. 6 ) on physical grounds. We then find that the asymptotic trajectories
are restricted in the Einstein theory and we set a method for finding, up to
finite-time reparametrizations, a unique metric. The Einstein solution appears,
in this respect, as a gauge fixing of the Chern-Simons ones.

In the first step our expressions for the dreibein and the spin connection
yield an explicit realization, for any number of particles and any speed, of
the matching conditions of ref. [1], which are here related to the Poincaré
holonomies of the Chern-Simons theory, studied in sect. 4. They are also
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connected with recent particular solutions [18] of the Einstein equations in
the.radial gauge [19] and of the Chern=Simons theory [20-22].

At this level of analysis, the observables are just topological, and given by the
loop variables mentioned before. These are global quantities, invariant under
smooth deformations of the metric. Since the time evolution of the metric is
one kind of smooth deformation, the holonomies are constants of motion of
the particle plus field dynamics in the — yet unknown - Einstein space-time
[8]. At this stage, the time evolution produces particle exchange, rather than
scattering in a real sense. The holonomies induce a representation of the braid
group which in turn satisfies the Yang-Baxter equation, as shown in sect. 4.
An important feature is that these holonomies are non-abelian, except in the
static limit.

In the second step ow the analysis, where the Einstein space-time and particle
trajectories are aﬁﬂEEma by smoothness and asymptotic conditions, other
observables are to be found, like the classical “scattering matrix” relating
outgoing dreibeins and momenta to the incoming ones.

In sect. 5 we give the transformation from singular to smooth coordinates
for one particle, so as to yield an isotropic metric in its rest frame. We recover
in this way the known conical space-times [1,2,5,23] and their geodesics [24].
The “scattering matrix” is, in this case, the parallel-transport along the infinite
geodesic.

The two-body problem is considered in sect. 6. The explicit form of the
mapping from singular to Einstein space-time is not easy to obtain, because
the Poincaré holonomies of the two particles do not commute. We are able
to determine it perturbatively in GnE, for massive particles, and we argue its
exact form in the massless, or high-energy, limit.

Next, we determine the scattering angle versus energy relation. We agree with
previous work [1,3,7] to first-order in GNE, and we give a new exact formula
in the massless case. This analysis involves a choice of “centre-of-mass” frame,
which turns out to be different from previous expectations [3,7].

Our results are discussed and compared with previous work in the conclu-
sive section 7, where we also give some suggestions for the related quantum
problem.

2. First-order form of Einstein equations and Chern-Simons theory

We start by recalling the problem of motion for pointlike matter sources,
with the peculiar simplifications due to working in 2+ 1 dimensions. In general,
in D space-time dimensions one has to solve the field equations

Guw = Ryw — Wﬁ%nv = u..tv 8GNy = 1) {2.1)
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with an energy-momentum tensor satisfying the covariant oobmoi\mroz con-
straint

DT, =0. (2.2)

For pointlike sources, T, takes the form

- %Aﬁ: = mﬁlﬁ.ﬁvv
M....\ = ,\,En VN LL dr
; ) e V&
- Mh%l@hl«MAUI:Aklﬁﬁlﬁmvvmw ﬁmwv
el V& de” 3

In the first line of this equation, we have introduced the trajectory three-vector
w: = (£,§(,), and in the second line we have integrated the parameter T as
a function of t. The momenta of the various particles are

de# : u
{zh — £ M = PEr)
dr S?vﬁhlu v Sin—u Awnc

M
Py = )

and the non-covariant velocity v# will be useful in the following. In principle,
one has to solve eq. (2.1) for the field as a functional of the trajectories
n‘w: (7), and then restrict the latter by the conservation constraint (2.2), which
plays the role of the equations of motion. This gives rise to a formidable non-
linear problem, which, so far, has been tackled only in various perturbative
approaches [17], following the ideas of Einstein et al. [16].

2.1. FIRST-ORDER FORM OF THE EQUATIONS

In three dimensions most of the non-linearity of the gravitational problem
can be avoided by switching to a first-order formalism involving the dreibein
(e?,) and spin connection Aem@v. The reason for this simplification lies in the
relation between the Riemann and the Einstein tensors, and in the absence of
a physical on-shell graviton. More precisely, in D = 3, the kinematical relation

mmtﬁn:q = —8€uwi €upy QQ (2.5)

( where /g€, is the covariant completely antisymmetric tensor ) implies,
by eq. (2.1), that the full Riemann tensor is determined by the sources

(R )%

Ol + U, 1]
— 8 €u€%5, TH . (2.6)
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This equation has the important consequence that the space is flat outside the
sources. Let us introduce the spin connection e, and the dreibein e, by the
decomposition

()% =I5 = (67 (0 + wp)e) s = (e (3 + wp)e)y, (2.7)

guv = Nmtdnwm‘wq ’ (2.8)
and let us anm:.n the Lorentz momenta P(, by the relation
e*ul by = Phy - (2.9)

By introducing mn_m. AM 8) m:a (2.9) into (2.6) and (2.3), we obtain the
equations for the mmﬁ connection

H..._.n .

Il

a
—€uwi€ b

S v PP (x =& (@), (2.10)

(Opuwu) + [wy, nct:nu
,x.n

Il

where the V& factor has disappeared, while the dreibein is subject to the
constraint

Dye,) = Oppey) + 0ppen =0, (2.11)

due to the absence of torsion ( mw = @H_v in our spinless case. Egs. (2.10)
and (2.11) have been derived under the assumption that g = _mﬁM # 0 (non-

singular dreibein) and do not contain any /g factor. Similarly, by introducing
(2.8) and (2.9) in the covariant conservation (2.2), we obtain

bthtm M%AS (x - N? ﬁmvv m.:. -+ @.Snctwuu A 0. (2.12)
(r)

It can be shown that eq. (2.12) is nothing other than the geodesic equation
in the first-order formalism,

d
5in + v @i, Py =0, (2.13)

but notice that w,, is itself a functional of all the trajectories.

In the following we shall attempt to solve the (18+46) equations (2.9)-
(2.12) in place of the (64 3) non-linear equations (2.1 )=(2.2). Our equations
are at most quadratic in e“ EEE: but are still functionals of the trajectories
EE(7) and of the Lorentz frame momenta P?(7).
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2.2. RELATION TO THE CHERN-SIMONS THEORY

It is instructive to compare the previous problem of particles interacting
gravitationally with the one of particles interacting with a gauge field with
Chern-Simons action, the so-called anyons. Following the work of Witten [6],
we consider the gauge field 4, taking values in the Poincaré group ISO(2,1),

Ay =e*Po+ @, Ta, (2.14)
where @ = twmn@nncwﬂ and the generators satisfy
TH? ,HL = mn?;\n, _”r\\nu HUWL = maua.ﬁmu :u_: ﬁi =0 ANHMV

The Chern-Simons action is

S = \,? ?\H 4 w%vv

1 3 b
= -3 \a X €4P€gpe®p (O1,w0) + ©1wyy) " (2.16)
and the source term is

S = INM.\% Tn (Pae®y + .?S.anv_

(r)

. 247
(r) ( v

In the first line of eq. (2.16), the gauge indices are contracted by using the
invariant metric of ISO(2,1),

(JasPo) = Maps (PP} =0, (JaTp) = 0. (2.18)

The source action has been generalized to particles with w@wu J4(t) producing
non-vanishing torsion in eq. (2.1L).
The comparison with the first-order Einstein formalism is more transparent
in the 4 x 4 representation of the generators J,, P, [10], which yields
ED a
Aol (2.19)
0 0

where the index 4 = a for A = 0, 1,2, and is omitted if it takes the value 3.
The variation of Scg + 5’ with respect to the gauge field gives

a
as = (Budv) + Apdi)) b

HMUQ;&;?Rn:HAS::. G.Me
(r) N
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In the matrix representation one easily sees that this equation reproduces the
Einstein equations for (e, w) (2.10),(2.11), with source matrix
—€%c M: mu
T = (2.21)
(rb 0 0

in the spinless case J¢ = 0. In these formulae, it is natural to allow a spin
source J¢, J?P, = mo for particles with spin, but only spinless particles
can be described in the Einstein metric theory. Therefore, in sect. 3 we shall
present a solution to these equations in the spinless case *.

In the Einstein theory, the equation of motion for the particles eq. (2.13)
comes from the requirement that they should produce a reparametrization-
invariant field, since eq. (2.2) follows from reparametrization invariance of
the field mnpuﬁonmﬁ The same property holds in the Chern-Simons gauge
theory, once the particle action is correctly chosen [10]. Gauge invariance of
the field equations (2.20) is expressed by the Bianchi identity

€*PDpFy, =0, D=8, + [4; 1. (2.22)
By expanding it in components, it follows that
» : a pb
Nuw: + mﬂueh&ﬁ: =0,
dJg,
dr

These same equations were obtained in ref. [10], by varying a suitable
action for the particle in the external Chern-Simons gauge field. The first one
is the geodesic equation (2.13), the second one is not empty even in the case
J% = 0, in which it implies

4 & (028 + €5cPlyes) = 0. (223)

7
PGy o< Gyl -

The source of the gauge field in eq: (2.20) is indeed related to the motion
of the particles, but the constant of proportionality m ), i.e. the scale of the
energy in the Einstein theory, eq. (2.9) must be fixed from outside the Chern—
Simons theory (see later also). Note that the particle equations conserve the
values of the two Casimirs of ISO(2,1), P> = m? and P%J, = mg, which
specify the representation carried by the particle.

Finally, Witten [6] has shown that the symmetries of the Einstein theory in
the first-order formalism, reparametrization and local Lorentz invariance, are
reproduced on-shell by the gauge transformations of the Poincaré group,

dd, =Dy, w=127+ pP,. (2.24)

*Spinning particles are discussed in ref. [31].
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These relations led to the conclusion that this Chern-Simons theory is a
better formulation of three-dimensional gravity, in the familiar context of
gauge theories. More precisely, equivalence with the Einstein theory would be
reached when the dreibein is invertible, while the gauge formulation makes
sense also for configurations e?, ~ 0, which should be included as quantum
fluctuations for renormalizability of the theory. Actually, Witten was able to
show that the Chern-Simons quantum theory is renormalizable (and finite)
without particles, when we expand around the classical field ¢ ~ 0, w ~ 0,
corresponding to a “short-distance limit” of gravity.

However, there is an important difference between the two approaches,
which shows up clearly in the study of particle dynamics. The Chern-Simons
theory possesses an additional topological invariance, absent in the Einstein
theory. Note that the action (2.16) and the equations of motion (2.20) are
expressed in terms of differential forms, defined on a manifold of coordinates
x* without any need of a metric. Thus the Chern-Simons theory is Eéam::
under smooth deformations of the metric. On the other hand, e;, @}, in the
Einstein theory satisfy the same equations, but it is implicit that they _:6 on the
space-time manifold with the specific metric given by the “soldering condition”

Suy = matsnwmbv . - AMva

This equation is outside the Chern-Simons framework, it is a sort of gauge
fixing for it. Actually, it is only under this condition that Scs = —% [ /&R .
This definition of the metric gives, by eq. (2.9), the relation between the “in-
ternal” momentum P? and the space-time momentum p#, thus it determines,
together with the covariant conservation (2.12) the equations of motion for the
trajectories mE 7) on the Einstein space-time. Moreover, a metric comes nat-
urally with its inverse, then the soldering condition implicitly requires that the
dreibein is invertible, outside trajectories. Our understanding of particle mo-
tion requires a well-specified metric! This is selected by physical requirements
external to the Chern—-Simons problem, like the behaviour at infinity fixing
the inertial frame, and isotropy in the rest frame. They will come about when
describing the asymptotic motion and the scattering process in sects. 5 and 6.

3. General form of NV-particle solutions

We now describe a class of solutions to egs. (2.9)—(2.13), which are the same
in Einstein and Chern-Simons theories. Most of our discussion (subsect. 3.1)
will not require the metric (according to eq. (2.25), because we do not need to
raise or lower indices. Thus it applies directly to the Chern-Simons case, and
indeed constitutes a general solution for it. However, from the Einstein point

of view, the corresponding metrics (2.25) are generally singular, as explained
in subsect. 3.2.
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Fig. 1. A nomm&_m S: configuration in X-coordinates for the N-particle solution with parallel
velocities.

3.1. FORM OF w AND ¢

In n.mm .mooaoz the .wo_cmoam 8 eqs. (2.9)-(2.13) will be characterized

by constant internal - SoEmEm, = Mo Uf,, = constant, and the (non-
covariant) velocities u = QS\ Q (i = 1,2) will also be parallel to each
other ( r = 1,..., N, mo_. the N umniom involved). The generalization to

zos-nmnmma_ ones and non-constant P? will be discussed in sect. 4.
We start by parametrizing the trajectories I mSQv i = 1,2} by En

equations

N‘N mmﬁl ‘Wﬁl = const.,
XI(E) = VipXOEL),

where X%(x*) (a = 0,1,2) are, for the time being, arbitrary functions of
the coordinates x*. For the trajectories &(,) to be well defined, we also require

(3.1)

Frr e ) XY st
Ay = mﬁm_ﬁxuv >0. (3.2)
; (r)

the positive sign being a matter of oonﬁwns@u Eqgs. (3.1) represent in the
“coordinates” X9 straight lines parallel to the X I axis (fig. 1).

We can now state the general form of the solutions to egs. (2.9)-(2.13).
The spin connection and the dreibein are given by

Wy = MEVS. ﬁw.mv
(r)
%, = a iy (o) e B, (3.4)

(r)
where, for each particle (r),
ASMQQ B = et B h@i&mv §(X* = B())O) >
8y = O X! =V X%), or B(VHX'-X'). (3.9
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We first note that the spin connection has support along branch cuts, or
“tails”, located to the right (the left) of each particle according to the o:mmom
in eq. (3.5). The tail location can be freely rotated around the branch point
by a gauge transformation, provided another tail is not met. Notice that !’

: : . K
is proportional to the same matrix €%, Pf,, for all u, thus (1 + @) is an

: G ! r)
infinitesimal rotation around the constant vector P,. It follows that
(i) the w, term in the geodesic equation (2.13) drops out, thus pe is
constant, wmu assumed in our ansatz; -
(ii) [, ,w,;’'] = 0 because of different support (r £ s) or zero commu-
tator (¥ = s).
In naﬁ. to check that w, in (3.3) is indeed a solution of eq. (2.10), it is
sufficient to note that [w,, w,] = 0 and that

0@l = = €%5cPye 0u(X — Vin X)0, (X?)
(r)
x6(X' = V) X6 (X2 - BL)). (3.6)

The H.:.M. of this equation is just the energy-momentum tensor €,.t**. For
A = 0 this follows from (3.1) and the identity
§D(x — 2P (1)) = Agyd(X? - B) (X! - VXY, (3.7)

For Ew ﬂoBmEEm ﬁ.:smm of 2 = 1,2, eq. (3.6) is consistent with the usual
definition of v(,, derived from the implicit trajectory equations (3.1).
Subsequently, we check that (2.11) is satisfied. In fact, in a region sur-

rounding the rth branch cut { and no other cut ) the dreibein (3.4) takes the

form
ety = [0+ off

so that, in the same region,

{ a
Uﬁtmmg _Hmwk + nc.r_xvu %t .._l nc_m.q; &A\N |.W:A:_.¢ =4

o A
T Nmkidsmnwnwm,;k o W?Lu%ﬁ: x—&5)) =0, (3.9)

because (X —B,) is parallel to Py, itself. Similarly for the regions surrounding
the remaining branch cuts.
Finally, let us verify eq. (2.9). By the ansatz (3.4) we obtain simply

~

eulin = Xy (3.10)
) - Bt ; :
because the &) contribution vanishes for (X%, —B,) o P, Thus we obtain
from (2.9)

dx* i z ;
— EHpa () an
a |, = ¢feuly) = e = (3.11)

a by
:klmsu_ (at the rth branch cut ) - (3.8)
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Eq. (3.9) is consistent with eq. (2.9) by the trajectory equations 8.:_“‘
provided we set

dxg, dx P
0 (r) (e R AR )
By = Bk ax? = By =V - (3.12)

While the covariant conservation equation (2.2) ensures that ww: is constant,
as noted before, eq. (2.9) implies the normal velocity-momentum relations.
Therefore, this pair of equations plays the role of the usual Hamilton equations
for relativistic particles.

These remarks complete our proof that the ansatz (3.3)-(3.5) is a solution
of the field equations for any choice of X%(x*) consistent with eq. (3.2).
However, the corresponding metric tensor g = elne contains in general
S-function singularities due to the spin connection in (3.4), unless the latter
are cancelled in the dreibein by the 8,X* term. We shall see in the following
that such singular solutions correspond to cut portions of space-time and are

therefore not fully acceptable.
In sects. 5 and 6 we shall give a method for constructing regular solutions.

But, for the time being, let us analyze in more detail the singular ones.

3.2. MATCHING CONDITIONS

The simplest coordinate choice in eq. (3.1) is to set x* = 4 X9, so that the
particle trajectories are straight lines. The dreibein is given by

2, (X) = 6%, + 3 (@) 5 (X = Bn)? (3.13)
)

and the metric is therefore simply minkowskian outside the tails, with J-func-
tion singularities along them.

In order to understand the geometrical meaning of such a singular metric,
let us study a beam of geodesics crossing the rth tail. The geodesic equation
can handle d-function singularities in the first-order formalism and in an
integrated form. As in eq. (2.13), this equation acts on the geodesic curve
xk(1) as

£

3 (") + xto% (e?,x") = 0. (3.14)

By integrating once,

o a
edixtin) = hwomul\ 818& Pl (3.1:5)
To
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a) b)
Fig. 2. (a) Tail representation vs. (b) Minkowski space in singular X-coordinates.

where P is the path ordering along the geodesic, and U is a constant velocity.
In the region outside tails w, = 0, thus the geodesics are straight lines. Across
the tail, the tangent vector makes a jump. Near the rth tail (oriented to the left
of the particle) we can substitute eq. (3.8) for e?,, which contains implicitly
the trajectory, and integrate again eq. (3.15). If we evaluate it for a point just
above (X, ) and just below (X_) the tail, we obtain i

(AL = .vfmﬁ.;im = [exp(PE)Ja) 1% (X- — X (&»))°  (rth tail )
(3.16)

(we used the representation (7,)?; = €%; and (P, - J)V,, = 0).

According to this result, the loop operator corresponding to the Lorentz

transformation

Ly = exp(=Pyy-J) -~ o (NIERY

applied at the tail of particle (r), relates the values of the minkowskian
coordinate above and below the tail. For example, a static particle rotates the
geodesic of an angle d¢ = m. If we want to describe the space-time with a one-
valued coordinate, we have to cut out an angular sector and identify the edges
by a rotation or, in general, by the Lorentz transformation (3.17) (fig. 2).

This interpretation was suggested by Deser et al. [1] and discussed more
in general by ’t Hooft [3], as an economical way to present their results for
one-particle space-times. Solving the. Einstein equations in the form @k
they obtained for the static particle a conical space-time, represented by the
metric

ds? = di? - (dr? + r’d¢?), 0< ¢ < 27a (3.18)

a = 1-m/2n, i.e. by Minkowski space-time with an m:m_,.:m: limitation.
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Similarly, a static particle with spin & and vanishing mass produces a helical
space-time, with metric 2

2
e Ao —dr? —r2de?, - 3.19
ds 1?:?.9& dr—r2de?, -m<op<m (3.19)

(the case m # O being a superposition of these two). By introducing the
«“time” variable T = t + a¢/2x, this metric too takes a minkowskian form,
but a counterclockwise loop around the particle at fixed time —¢ brings down
to an earlier time

Tiei (3.20)

This is the matching condition produced by the spin of the particle. We
can also reproduce this result by an extension of our solution. For the sources
P = 0,J% = dfo located in the origin, and the tail along the negative X I_axis,
this reads

W, =0, €% =0-ad§sis(X)0(-X"). (3.21)

By integrating the geodesic equation with this solution, eq. (3.20) is recovered.
By Poincaré invariance, the previous authors concluded that the general one-
particle space-time is minkowskian with excised regions given by the matching

condition
Ao L -Jin S QA\N+v 399
h 1 v 7 m Q- L i 1 (3.22)
characterized by the invariants P? = .m(,) and P-J = (ma) (). They also

argued that an N-particle solution could be the Minkowski space-time with an
excised region for each particle.

We have just shown that our singular solution is an explicit realization of
the ideas of Deser, Jackiw and 't Hooft, and it reproduces their results for
one particle. In sect. 4 we shall discuss the N-particle case, by studying the
composition of matchings as a composition of holonomies of the Poincaré
group.

4. Poincaré holonomies and constants of motion

The observables of the ISO(2, 1) Chern-Simons theory are the loop integrals

S,Qvium.eﬁml\ae.%+m.ﬂu, (4.1)
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where I” is an oriented path from x to y. They can also be considered as a set
of non-local degrees of freedom of the theory, which lacks local ones [9]. We
shall now compute them by using our previous N-particle solution.

The path can be deformed as long as it does not hit any particle position
and the end-points are fixed, because the field is localized at the sources. This
Is a consequence of the Mandelstam formula §U/do" = F,, U, where do**
is a deformation of the path encircling a little surface. ,

The loops are also invariant under smooth deformations of the metric,
because they are given by the integral of a one-form. Their value, computed
by our singular solution, will be the same in any topologically equivalent
metric, including the smooth space-time solution of the Einstein theory. The
particle motion being a kind of topological deformation, it will not affect their
value. Thus the holonomies are constants of motion of the particle plus field
dynamics, as noticed in ref. [8] in the context of canonical quantization of
pure gravity.

Gauge-invariant quantities can be obtained from closed loops, by looking
for quantities invariant under U — gUg~'. For Poincaré holonomies, there

- o ] P e

such guantities. They arc defined in general for any representation
[9], but the spin-one 4 x 4 representation has physical interest for the relation
with the Einstein theory, as discussed in sect. 2. By recalling the form of the

generators given there,

: —(ea)bc 0 G (d2)°
QQ A — - ﬂn 4 = nﬁ.N
(J2)"m i (Pa)*s e (4.2)
and by parametrizing
e L=e"Igq . :
Ur(x,x) = =g 1)y, - 4.2
0 1

we find the following two invariants:

Vw? & TrgyL = 1 + 2cos(Vw?), (4.4)
e Qaén\% (4.5)

(0 = g%, for w? = 0). The first invariant is the angle of the Lorentz
(pseudo)rotation V2, the second one is the projection of the translation g4
on the rotation axis [10].

We shall now compute some of these invariants and discuss what information
they can give on the particle motion.
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4.1. ELEMENTARY HOLONOMIES

Any particle (r) has associated an elementary .wo_omon&. Uin (x> X))
for a tiny loop surrounding it counterclockwise, with basepoint x, near the
particle, off the tail. Loops winding around many particles can be decomposed
in the building blocks U and the open loops U, going from (near)
particle (#) to particle (r'). The elementary closed loop Uy, can be ooB?.hoa
by using the non-abelian Stokes theorem, an integrated form .om Em previous
Mandelstam formula [20]. For a small contour around a point-like sources,
this turns out to be the same as the usual abelian one, and it gives, up to a
similarity transformation which depends on the choice of basepoint,

S;?é:_,uni-%ﬁ:lé?:?:
iess 2y

H
Ly =0, |\c A B Ty L s (4:6)

where we used the field equations (2.20). By using the invariance of (4.5)
under rotations of axis w ~ P, we see that the invariants (4.4)and (4.5) are

a9 ; 9 5 ; o
just the Casimirs of the particle w? = P{,) = m{,, and 0 = (P Jim) ) =

(), independent of time as announced. ) e

For holonomies associated to open contours, an explicit solution 18 mnwama.
We integrate our singular solution (3.3) and (3.5), with the simplest owowo.m of
minkowskian coordinates X¢ = J;x*. From eq. (4.1) we obtain the equations

UdU~" = d,dxt, U~' = U™ (x,x0) = (L(x),q(x),1)  (47)
which can be integrated as a function of the endpoint x. In components,
ElaE = wydx? - Loldg =e dx. (4.8)

Around the rth tail, we can substitute the solution (3.8) and integrate .mm in
the case of the geodesic equation (3.15). If the path from xp to x encircles

counterclockwise the (r)-particle, we get

Q«?;.HTKOU =] thﬁA\\»

U is a multivalued function of x, so we should specify the aoEmE.Bq
definition. Fig. 3 shows a two-particle configuration, with a particular choice
of tails and domains of definition (dashed lines). We can arrange them to

X
Q‘:.&vv 2, Oy S T _.u , Xp= WT‘V. Am_.@v

0
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Fig. 3. Regions of definition for the open holonomies Uiy, Ugrpry, v = 1,2,and the contour for
the O-loop.

have a trivial form of the holonomy in the region III between the particles, at
any time :

Un(x,Bwy) = (Lyy, By —x, 1) 1
Uanle.Byy) = (L, Baysy—x. 1) T =~
Upy(x,B2y) = (Ly, Biyy —x, 1) 11

Uiy (x,Bay) = (I, Bgy—x, 1) II

(4.10)

For Em n_.Omom loop around one particle, we recover the previous result. Notice
that in ﬂ:m @98. of solution, the basepoint can be carried arbitrarily close to
the particle in region III by composing trivial holonomies.

4.2. COMPOSITE HOLONOMIES

Let mm consider now two particles. The loop encircling them once counter-
clockwise, called the O-loop in the following, is given by the ingredients in €q.
(4.10), as follows:

Uo(B@),Bay) = U (B Bay) Uny(Bay, Buy)
xU1,2) (B(1), Bay) Ugzy (Bi2), Bay)
= (LiyL@), (Lay =1 (Bay—Bmy), 1), (4.11)

The .ms<mam5m (4.4),(4.5) are computed as follows. The products of Lorentz
matrices are computed with Pauli matrices; for the Poincaré translation g% we
use the formula in the § = I representation

ey wrw § <
)" = (i ioom,\SNuS'mw lm5<éwmn&n,\,sjm + cos Vw3249, .
W (4.12)
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The Poincaré invariant ¢ and the Lorentz invariant vw? are called in this
case S and M respectively. They read

; b pc
.M PP, ABp
.m.mmﬂw = M.w:vmnmvmnunfw:v Imﬁmvvnzela.,lsp 4 S = ——,
(172 1—p2/4
M Py - P M P’
o S e = 1, 4.13
Lo EmCR) = SIS 3 5 (4.13)
where ¢() = cos(m;)/2), s = sin(m;)/2). We also showed them in the

massless limit Py 2y — (p,£p,0).

These two formulas agree with the result of Deser, Jackiw and *t Hoof
obtained by the composition of matching conditions for each particle. It was
partly explained in terms of holonomies in ref. [7], which gave the Lorentz
part of eq. (4.2)."Let us pause to explain this relation better. In terms of
invariants, we have found two of the infinite conservation laws of the Chern—
Simons theory for the two-particle system. By comparison with the one-particle
loop, we can interpret M as the total invariant mass and S as the total angular
momentum. Actually, for small momenta they reduce to the usual formulas of
special relativity, and for large momenta they are dressed by the gravitational
field. On the other hand, Deser, Jackiw and 't Hooft made a parallel statement
in the non-invariant language of minkowskian metrics with excised regions.
The matching condition of the one-particle metric was associated to mass and
spin, which are the invariants of the one-particle holonomy. By analogy, the
O-loop suggests that there is a choice of coordinates, which at large space-like
distances |x| > |B| is minkowskian with a single excised region and jump in
time determined by M and S in eq. (4.2). Therefore the rule they used for the
composition of matching conditions is justified, because it is a composition
of holonomies, interpreted within a specific coordinate system. Note however,
that the choice of this coordinate frame is not unique, depending on the base
point (e.g. B(jy or Bz)), and on the tail location. Moreover, for a smooth
metric a different frame will be introduced in sect. 6.

Let us show other examples of two-particle holonomies. The whole set is
generated by Uq, and Uy = Una)UayUe), ie U parallel-transported
near (1). This non-abelian group characterizes the topological class of the —
yet unknown— two-particle smooth space-time, a kind of non-abelian orbifold.

The previous O-loop probed the two-particle space-time at large space-like
distances. On the other hand, the loop winding around them at large time-like
distances can be deformed into an 8-loop at constant time, i.e. encircling the

s
—

11
A4

k]
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particles with opposite orientations. Its invariants are

oo%m = C1)C2) +M:EE$
— oOwwm =14 ,.u|N,
Foinh— = —250181Cm By — B vnE
5 = (1)2(2)Cabe VL (1) (2) myma)
B et L —cos mm_mﬁ. (4.14)

V14 p?/4 2

It is natural to guess that a probe of large time-like distances should somehow
measure the scattering of particles, but this point is unclear without a smooth
metric. We only remark, in the massless limit of the X invariant in eq. (4.14),
the occurrence of the scattering angle € to be found in eq. (6.30).

The next example is the fcommutator” loop 4 = 1 Uz Uay U, which
measures the non-abelian nature of the holonomies. Static particles do not
interact gravitationally, and have abelian holonomies. Thus it is tempting to

relate 4 to a measure of interaction between particles. Its invariants are

) : Py - Pay\? A p?
LT T e i o S oAE £
oo_w:N + 2(s(1)S¢2)) h:\::ﬁﬁvv lnomrw 1+ 3
b [+
il o 2Py - Py PiyPG)
I'sinh= = —8(s(1)s2))  ———¢€apc (B1) — B2y )4 ——— 4.15)
7 S5, o, Cabe By ) R ( .

After these examples, we can ask how much these invariants describe the

classical amsmbo,m. Actually the latter is expressed in terms of trajectories,
which are determined once a physical metric is chosen, as will be described
in sects.5 and 6. Classical dynamics is seen as a gauge fixing of the Chern—
Simons theory, and it has also associated non-invariant quantities, like ‘open
loops going to +co for the scattering angle. Thus, the previous invariants
cannot give a complete description.

Nevertheless, to pursue the topological-invariant Chern-Simons descrip-
tion is interesting for the quantum theory. As shown by Witten [6], exact
reparametrization invariance is preserved in the pure gravity case, and it is
an open problem whether this breaks (asymptotically) after the inclusion of
particles. In the broken casc the classical picture, described in the following
sections, will go through to the quantum theory. In the unbroken case, the
invariants issued from holonomies are the only observables, and particle dy-
namics is very limited. For example, the invariant description of two particles
obtained so far is as follows: :
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(1)
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(a) (b}

Fig. 4. (a) Possible Ew crossing configuration for the solution with non-parallel velocities and
e {b) the exchange operation a3

(i) elementary holonomies Ui, define the mass and spin of each particle;

(ii) the holonomy of the O-loop define their total mass and angular mo-
mentum, the latter in particular distinguishes between colliding and parallel
moving particles. .

The next invariant concept in Chern-Simons theory is that of particle
exchanges, replacing the ill-defined one of scattering. This is the subject of

subsect. 4.3.

4.3, PARTICLE EXCHANGES AND THE YANG-BAXTER EQUATION

In the solutions of sect. 3, crossings of tails were not allowed. However, for
three or more particles with non-parallel velocities, they necessarily cross, thus
we shall extend the solution to this case.

Without loss of generality, consider the case of particle (2) crossing the tail
of particle (1) (fig. 4).

) is no longer constant, and it evolves mnooawumﬁoanamﬁmamﬁ.

(2.13)

\4+

.HUG;.K+V = Pexp I\ w TS;HIVu (4.16)

X

where x* (x~) correspond to ¢ > 0 (£ < 0), the collision being mﬁ.m — o If we
ignore the feedback of (2) on (1) (test-particle limit), this equation gives the
matching condition of the geodesic equation (3.16)

muﬁ;k..fv Hh:v&vﬁvcniu. Ahﬁ:

Py (x*) = Py (x7),

However, for two interacting particles, we have to care m_uoﬁ. the feedback
and we have to test this hypothesis back in the equation of motion for (e, ).
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Since the source is discontinuous, an integrated form of these equations is
needed, and is provided by the non-abelian Stokes theorem. This is described
in detail in ref. [20], thus we shall give here a sketchy derivation of the result.

Let us reconsider the elementary holonomy " around a particle, egs. (4.1)
and (4.6), but parallel-transport it to a fixed basepoint xo. The surface integral
of F,, is carried on a disk D with 8D = I'. Since this can be deformed to
cut the trajectory at different times, we conclude that the holonomy around a
trajectory is independent of time, when transported back to a fixed basepoint

Ur(xg,%0) = U™ (x(6), x0) Ur (x (¢),x (1)U (x(2),x0) .  (4.18)

This is the integrated form of the equation of motion. Let us apply it
to the previous crossing in fig. 4a. The holonomy around particle (1) can
be computed at any time without winding around (2), thus it is trivially
parallel-transported to the basepoint By at ¢ = 07,

Uy (B Bay) =/ U™ Uy (Buy + Vi, Bay + Vi) U
, = Uy (Buy + Vit Buy + Vant) s (4.12)

where U = U(B(1y + Vi1yt, B(1y) is the trivial translation of region III in this
case. Therefore, eq. (4.19) implies that P(;, is constant, and the first line of
eq. (4.17) is checked. For particle (2), eq. (4.18) is applied with basepoint
B@), againat t = 07,

Uy (Biy, Bay) = U Mx2) (1), Bay) Uay(x2) (8), X2 (1)) Ulx)(2), Bay) -

(420)

Transporting the holonomy to the trajectory x(y)(¢) for ¢ > 0 requires the '

contour to pierce at ¢ = 0 the surface spanned by the tail (1), i.e. winding
(1) first counterclockwise then clockwise. Using the two particle holonomies
in eq. (4.10), we get

U(x@2)(1),B@) = (Lay, Lay(Bay —Bwy) + Buy —x@(2), 1),
! (4.21)

where x2,(¢) and Py (t), (1 > 0) are unknown variables. By plugging this
form of U in eq. (4.20), it follows that

x5y —Buy = Luy(Bey —Bwy),

Ly = Laylg Lo (4.22)
This is nothing other than the usual matching condition for the test particle

(2) crossing cut (1), computed at the end of sect. 3 and in eq. (4.17). We
conclude that the full equations of motion imply the absence of feedback, as
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assumed before. Therefore, the solutions for (e,w) in which tails are crossed
can be built at any time on the basis of egs. (4.1 7)-(4.22), which are boundary
conditions for the local solution of sect. 3.

Since the momenta P, change in the crossing of tails, one could think that
this is a picture for scattering in the Chern—Simons theory [3,7]. However,
it has nothing to do with classical scattering, which is the relation between
outgoing asymptotic trajectories and incoming ones, €.g.

Pl (1 = o) = R%, ()0l (1 = =o0),

where R is a rotation of scattering angle ¢ (see sect. 6). The similarity was
only due to our choice of gauge X¢ = §;x* and tail orientations, which mmom
the matching condition (4.17). It is possible to put the tail crossing operation
in an E,\mlma_mo..ﬂ? such that it holds for arbitrary X®(x"), as the solutions
of sect. 3. Thus it involves only the topology of the trajectories and manifestly
gives no conditions on the nﬂ;. Therefore, a correct name for the process of
tail crossing during time evolution is particle exchange.

More precisely, let us define a nmaomo.awnsm:mm operator o), (fig. 4b), acting
on the tensor space V() ® V(o) of Poincaré holonomies of the two particles.
They are generated by the elementary holonomies Uy, Uy = Un Uy Uz
with a common basepoint, say B(i), as seen before,

By = @aptl), Uoy= (Lo (Ldy—~ 1By = Bey), 1) 14.23)
The effect of particle (2) crossing the tail of (1) is given by the action

e Ly — Ly » By = By , (4.24)
12:Y Ly = LiyLy L) » By = Bavy + Ly (B — By)

where L,y = exp(—P(-J), and wS are the positions of the particles just
before the collision time. Notice that this can be written in the form

Dy = Uy

912:1 Uy — UnyUn UG, L
which is manifestly topological invariant. Gauge transformations at the base-
point change it by an overall conjugation. Moreover, a different tail orientation,
ie. a different choice of basepoint, would have given the operator oz, thus
exchanging the (asymmetric) role of the two particles. The full monodromy of
the particle (2) around (1) is obtained by braiding twice, i.e. by the product
01203, which is independent of tail orientations. The action of g1y in eq.
(4.25) was given for the Lorentz part in ref. [7], and also discussed in the
context of non-abelian anyons in ref. [23].
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Fig. 5. Sequence of exchanges for the Yang-Baxter equation,

ZmiN the exchanges of N particles follow by composition of the operators
Gii+1, L = 1,..., N — 1, which generate the braid group By. They act on tensor
spaces V() of particle holonomies, all with the same basepoint. It is well
known that &@ generators ;. should satisfy the Yang-Baxter equation

CijO0ikTjk = 0k TijTij for k= J+1l=i+2,
Oiip10jj41 =0;;+100;41 for |i—j| = 2,

(4.26)
(4.27)

where the first equation acts on V() @ V(;; ® V() and the second one on
Viy®@ Vg1 ® Vi) ® V. 1y. This equation expresses associativity of particle
exchanges, as required by the deformability of trajectories (fig. 5).

.rmﬂ us now verify the Yang-Baxter equation in our case, eq. (4.25), for a
triple of particles (1,2, 3). The two sides of eq. (4.26) read .

Uy U
03013012 | Uz | =omoi3 | U LU
Qu Qw =
Ui U,
= | GLUT! | = U U,U! ;
U,U;U! (U, Uy} Us (U, Up) !
U Ui U,
g12013023 | Uz | =012 Uz = 00,0 ;
Us U0 U3 (U, Uy) ™!

\ (U1 U>) U5 (U, U7) !
_ (4.28)

Fﬂmmmu the Yang-Baxter equation should be identically satisfied at the
classical level. We cannot expect conditions on the momenta, which would

y

#
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mean a classical motion only for some initial condition. On the other hand |
eq. (4.28) shows that this equation is not completely trivial in this non-abelian
case, and it gives a consistency check of our previous analysis on crossings.

The YB equation is expected to be a powerful condition at the quantum
level, and to constrain the scattering amplitudes, as in the case of purely
elastic scattering of two-dimensional integrable models [26]. For non-abelian
anyons, this has been recently discussed in refs. [27,28]. It is hoped that the
loop algebra studied here will be useful in this respect.

5. Smooth one-particle metric and its geodesics

We take, from now on, the point of view of looking at the gravitational
problem, for which the behaviour of the metric tensor g = elxe is important.
We want to avoid the d-function singularities present in the general solution
(3.3)=(3.5), which lead to the cuts in Minkowski space discussed in sect. 4.

Let us recall [1] the well-known case of one static particle. For a given time
the space is a cone, with vertex on the particle, which can be described in
singular (X )-coordinates as the Minkowski space with an angular limitation,
ie.

ds? = dX,? — (dR? + R*d¢?), 4| € ma, (5.1)

where o = 1 — m/2n is the deficit angle, in units 876Ny = 1.
It can also be described by embedding the conical space in R, which
corresponds to rescaling the angular variable in eq. (5.1), as follows:

ds? = d? — (dr? + rla?de?), |p| <7
= df - (@) + (1)) (o - TEh)dxdx, (5.2)
where x! = (x!,x2) = (x,y). This time there is no cut, but the space is

not minkowskian, and the metric tensor is only singular at the particle loca-
tion, and smooth and single-valued elsewhere. The explicit angular deficit has
disappeared, even if the circumference-to-radius ratio is still 2na < 27.

5.1. THE A-TRANSFORMATION FOR THE DREIBEIN AND THE METRIC

We want to apply systematically to our solutions of sect. 3, the singular
coordinate change which transforms (5.1) into (5.2). In the case of a static
particle, the general solution with tail on the left reads

o, = mefgd (X2) (3, X0 (-X"), €% = [(B + 0)X ()]". (5.3)
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If we set x = X, the metric becomes (5.1). The angular rescaling from (5.1)
to (5.2) can be interpreted in (5.3) as the transformation

K== awumu_.ﬂe@vhov x=4d(x)x, (5.4)

where Jp is the generator of rotations. The /-rotation varies from —m/2 to
m /2 when ¢ varies from —=z to z and thus generates a solution to the matching
condition for the X-variable,

Xy = exp (mJp) X (3:3)

as in eq. (3.16). As a consequence, x is continuous, as it should be. In the
continuous coordinate x, the dreibein reads

6%, = ({8, + @p)dx]®= A% [(8, + Q,.)x]°
" m
Mw H.\HI_Q_:\HVHnm = wmtﬁﬁhovnu
Ho (u=0)

L5 m:. m% (u=17)

s (5.6)

where we notice that the discontinuous behaviour of A at ¢ = £ has cancelled
the §-function singularity present in w,. Thus in more detail we have

= A% (82 33 x "ny). my = (0,65%) (5.7}

and the metric tensor becomes the one in (5.2), as expected.

This method is trivially extended to the case of one particle with any
speed ¥, say in the x-direction. By applying a Lorentz boost B; (V') to the.
transformation (3. ﬁ we obtain

. 0
X mxmew.%uxunlix

tang’ = e P4 = m(y,Vy,0), (5.8)

where ﬁo is the azimuthal angle in the particle rest frame, and y = 1/v1 - V2,
By repeating the steps in (5.6) we obtain of course the dreibein

e'u = (4p)% (8F +5=n (PInu(P)) ,

2% PR
(o229
m m

=12
=y Uy, =%+ VD) [P (x = V1) 4 7] (59)

né(P)
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and the nietric tensor
, S = M+ U — o) n,(P)n,(P). (5.10)

| A particularly interesting limit is the massless case, with fixed energy E,
obtained from (5.8) by setting

m—0 (y—o0), with my=E. (5.11)

From the explicit expression of n, in (5.9) we obtain

ds? = 2dudv — (dy)? + V2ES (u)ly|(du)?, (5.12)

s&ﬁm we rmé cmma Em Enaomoimco:

éww 27— Ad ) (5.13)
and the light-cone variables
s allﬂx
T V2

m.p (5.12) is nothing but the Aichelburg-Sex] ‘metric [23]-for a massless,

particle in D = 3.
In the same limit we also have the expression for the dreibein

ey = (L0, (s Dplowalsy)
L(P) = exp(~P-J), €(y)=sign(y)., (5.14)

where we have introduced the loop matrix hQJ of sect.’4. The pattern of the

A-transformation in the massless limit i8 Loréntz contracted mwlmwwiu in m_mmm

and in particular the /- transformation takes the value L(P) CE(P) =)

above (below) the branch cut. In oooHEmmSm fu,v, E P? = \2ES% and
L(P)Y? reads : SR

1
Lip) = | E*4
-E/V2

i OO
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Fig. 6. Lorentz contracted configuration of the -mapping in the massless limit. The full line
indicates the metric’s wavefront.

5.2. TEST PARTICLE SCATTERING

The A-mapping is particularly useful to describe the motion of a test particle
in the one-particle metric described before. In fact we already know that, in
X-coordinates, the geodesics are straight lines,

X(1) = Ut + B% = A% (p°(1))xb(2) (5.16)

whenever they do not cross the tail (subsect. 3.2). Eq. G.HS can be inverted
for x, by noting that eq. (5.4) is equivalent to the angular rescaling

_ ()

{82

9% (1) (5.17)
where ¢° denotes the azimuthal X-coordinate in the rest frame. We thus obtain
the trajectory -

0 4 : ;
ﬁuv b (Ut + BY). (5.18)

x(t) = A7 m
If the X-geodesic meets the tail, ¢°(r) will reach the value @Q = na for
some 71-value. In such a case X jumps by L(P), but the x-coordinate stays
continuous because of the transformation 4 (¥na/a) = L*'/2(P). Therefore
the geodesic in x-space is obtained by continuing (5.18) on the Riemann sheet
of the X-coordinate, i.e. by displacing the tail.
It is thus easy to discuss the asymptotic motion and scattering of the test
particle. The asymptotic three-velocity becomes by eq. (5.18)

Uz (00) = A7 @mzw?o& = L(P)*"**uy (—o0), (5.19)

where the + (—) sign holds according to whether the geodesic runs above
(below) the incident particle (fig. 7). ,
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L
A

. ﬂm. 7. Upper (lower) geodesics in the space-time of one particle with momentum P

WSE eq. (5.19) we obtain the following results: _
. Eg,Hwo geodesic scattering angle off a particle of mass /1 at rest 18 [4,5]

m om my !
S Tlu ] (5.20)
b= ﬁ 21 :

(ii) For a particle of mass m and momentum P, the geodesic velocity
undergoes the Lorentz transformation (5.19). For a geodesic moving in the
same direction but opposite to P, this corresponds to the scattering angle

0 6o E.+ P, , :

|| | ;.,w. ..M.MH
ﬁmumlﬁmsM - v Ll ﬁ u

(iii) In particular, for a massless particle, the ,,mno,aaﬁo scattering angle
becomes e e R

tan = = (5:22)

0 _E
D e

as is known for the case of an Aichelburg-Sexl metric [24]. .

The above results show that the gravitational problem for test nman_nw 1s
characterized by quantities which are not purely topological, and in our case
are given in terms of the Christoffel connection: by

Rear hl \a QSV_ =[P *1, (5.23)

=+

where the path runs along the geodesic above (below) the point source of
momentum P. it

One may wonder to what extent this Rm.wmﬁ is gauge dependent. .

In principle, one may choose to owmnmo“mrw\__-ﬁmumwonamaoz in the wwnﬁm
rest frame, by some reparametrization of the azimuthal variable eﬁ.v. HEP
however, will make the scattering angle in general dependent on the direction
of the probe in an arbitrary way. Since this violates the physical notion of
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isotropy of space for a spinless particle, we shall explicitly exclude it in the
following. :

In other words, we require on physical grounds the A-transformation to be
given (at large distance, i.e. for r — o0) by eq. (5.4) or (5.8), which define
the isotropic single-particle metric in our framework. Then the result (5.23),
due to the properties of parallel-transport, will be invariant under any local
reparametrization which is asymptotically consistent with our choice.’

This remark shows that, due to the non-compact nature of space-time, the
monodromy requirement for the metric is far-reaching and may indeed define
the scattering problem in an unambiguous way.

To summarize, in the singular X-coordinates ( in which particles go simply
on straight lines outside the branch cuts ) the geodesic scattering is ambiguous,
because of the possibility that a branch cut is crossed. On the other hand, in
the smooth x-coordinate, the geodesic scattering angle is uniquely determined
in the rest-frame ( with the isotropic choice ) and therefore also in any other
frame, giving rise to the more general “S-matrix” in eq. (5.23).

6. The scattering problem

We concentrate now on the problem of two (interacting) particles in the
Einstein theory. In order to define the scattering problem, we look for a
metric tensor given in terms of our solutions of sect. 2, g = eTne, which
satisfies some physical smoothness and asymptotic conditions that we discuss
below. The latter give rise to a gauge fixing X = X° (x*) in our general
parametrization of sect. 2.

6.1. SMOOTHNESS CONDITIONS

We want our metric to be singular only at the particle sites x#* = Mh: (1),
(r = 1,2) and thus regular and single valued otherwise. We will look at a
gauge fixing X4 = ¥, (4 = 0, 1,2,3) of the form

X = (T(x)) x5, (6.1)
where
T(x) = A(x)T (x) (6.2)

is a Poincaré transformation chosen in such a way as to build a solution of

the matching conditions around each particle. In other words, we require that,
for x* close to mw: (2,

N\“ﬁ.&?«.vrm‘:u ARVW Hkumwlﬁde.. A@.WU
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£ .l.m_.‘. —
Ty = 80P Ay Aﬁwlvm ULy

Ay = exp —PFyn-J (6.4)
w:rm F.Bn erly translated) single particle transformation discussed in sect. 5,

5 18 i int.
and S, is instead regular at that poin
" From the definition (6.4) it follows that, close to &), T performs the change

of variables

= ; (S spees ) 6.5)
. ¢ I,ms = exp /|Nﬁlm.3 F ,V..S\e WS\_ ’ { J

,,y&ﬂ.o ﬁ_ ) 1s Em.sm.mmiﬁrm_ variable in the c.m. frame, so as to build a solution
i i i inuity of the

of the matching conditions at em: = +x. In this Em%.%n Bmoosn:ﬂw y of 4

variable X¢ is factorized in the A(,(x) transformation and the x* varia

turns out to be continuous.
: P L Sl
_Ii is clear at this point that the particl

(6.5) must satisfy the

@
=+
=
&
(¢}
(¢
o+
o
=
=
9]
w
-
j]

En(n) = S &) By + —1), (6.6)
where P,y are the constant momenta of sect. 2. Note &mﬁ the limit x* — ﬂ_n:
in (6.6) is well defined because the singular transformation A, (x), belonging
to the little group of Py, acts trivially on wS.. T ;
Eq. (6.6) vields the trajectories only in an implicit iﬁr _umom.cmo Ew def-
inition of S, (and 7;,) is itself dependent on the singularity point at
o= EE (7).
% A wmmwmcwmlq simple application of this “gauge fixing” is the case of two or
more static particles. Concentrating on the hoﬁu.ﬁ nmn.\:i of eq. (6.2), 1t
is clear that a solution to all the conditions (6.3) is provided by the composed

" transformation

A(x) = [[40n (), Ay = exp| 5=mnTo @

because the A(,y’s, which are just H,oﬁmaomm, SEBEm among themselves. mpw
(6.7) gives rise to a multi-conical space-time simply related to the conforma
metric description of ref. [1]. . s
In the case of interest for scattering, in which the particles move, it wm
not immediately clear how to find a solution to eq. (6.3) Umnmmw.n the \rc 5
do not commute. Furthermore we need to impose further oom&:o.:mu which
correspond to the definition of asymptotic states, as we shall now discuss.
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6.2. ASYMPTOTIC CONDITIONS ? ;

Although A, and A, do not commute in general, their commutator
becomes vanishingly small when the particles are far apart. Thus we can
impose the initial condition

T(x) = T ()T () =Ty () Ty ()T - -0 - (6.8)

for fixed spatial coordinates and large negative times. This ensures that the
class of metrics we are interested in is asymptotically consistent with the gauge
fixing for a single particle given in sect. 5.

Furthermore, the momenta of the incident particles turn out to be the
constants Pyy), P2y of our solution. This follows from the expression of the
dreibein in eq. (5.9)

= my m 2 B
(A 'e)* g W iy pAd) x|
u A r Nn Wy De T 5, SENEV 1+ O:i 7] 7))

nty = 0By / (6.9)

which i1s m&\EEozomE\ mam:Em By setting P;, and P,y along the x-axis,
the n(y’s in eq. (5.9) point asymptotically along the y-axis -

nlyy = ) = 0§ - (6.10)
and thus we obtain
T My + My :
ey 8%, e (6.11)
Therefore,
»QNRCA.I.OOV ”%h (1) » vﬁ OOV |%.& Amvu § Ammwv

as stated. For finite values oH, |x|, the asymptotic metric is not completely
minkowskian for m # 0,

may + M)
2n
but one can check that the parallel-transport from (1) and (2) to the central

region |x| <« T is instead trivial. Thus in this region we can define the.total
momentum in the naive way

Buv = Muy + (1-0a?)8%62, a=1- (6.13)

Pt = :u w::, Py = gy (—00)P* = 1, P” (6.14)

and an invariant mass squared

s = (Puy + Py)? = n,, PPV, (6.15)
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Finally, we also define a “centre-of-mass” frame in the usual way by mmaum_,.

Puy = (Eqy,p,0) = myni (1, V1),0), (6.16)
Foy = (Egy-—0,0) = mipypa(l, V@ 0)- (6.17)

‘There is an additional asymptotic condition that we need, at fixed time
and large |x|, in order to avoid rotating frames at infinity. This is obtained
by requiring that the Christoffel connection I, be as small as dimensionally
allowed, e.g.,

_
_.. :__quEv ﬂ_u_iopu.mva&. a.::

In contrast, in m_..Hon‘.ﬁ,wnm frame I}, would be of order (Q%|x|).

6.3. PERTURBATIVE SOLUTION

A simple, but non-trivial, solution of the gauge-fixing conditions for scatter-
ing is‘obtained in perturbation theory, i.e. for GE (1 < 1 and for any speed
Vi3 This is msm_omocm to the “fast”, weak coupling, meoEBﬂE: :mam in
four dimensions [17]. i
In fact, to first non-trivial order, the 4-mapping can wm rmnmnwma in Eo
form : b

Y ¢
Ax) = 1+ S2puy- T~ 5200 7,
I y—b2 5 15 Fby2
Fanipds e =———"1" (6.19)
?1 P X — Vot ?(2) 2% + Vayt )

where the particle trajectories are taken at zeroth order (straight lines), and
b~ m: — Byyy is the relative impact parameter.

It is easily seen that eq. (6.19) satisfies all oosm::onw in m:cmnﬂm m _ mma
6.2. First, the A-transformation is approximately of product type

A= AAg) = Ay el 8 MS

because the commutator terms are of second order in the Qmi 5. HEw ﬁmwnm
care of both the polydromy and initial state 85&505 to this order.. mEmE\
there are no rotations at infinity, because the angles eS are body-fixed with
the straight-moving particles, so that [, = O(1/|x|) as it should..

The simple A (x) transformation in eq. (6.19) still yields m&BESEmE a
non-trivial scattering. In fact from eq. (6.6) we obtain in this case

Piry(00) = A7 N o0)p(m (—o0) (r =12} : (6.21)
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with .

= 1

A ;oovRHIMA,E:+P~:.hu%ﬁ%v (6.22)
.@Q.umcmm.em_;oov = rsms (co) ~ m. Thus, the first-order c.m. scattering angle
1s just given by
5 z
g = z\WIAHnTOAQEC‘:v (870N = 1K, (6.23)

as expected from previous results [3,15], to this order.

6.4, EXACT SOLUTION FOR THE MASSLESS CASE

Hsm zero mass, or high-energy limit m,) < /5, has some simplifying features
which allow an exact solution. In fact the A-transformation shows in this case
a Lorentz contracted mozd_,.,om a shock wave, as discussed in sect. 5. Therefore
the initial state in the c.m. frame has the simple form of fig. 8a, with EM
following features: i :

(1) The mapping from X-to x-coordinates is trivial for [x| < Jtl, t < 0, so
that x# = 84 X? in this region, where the metric is purely minkowskian, mmuo.

ﬁv The mapping is non-trivial, but piecewise constant in the remaining
regions, with the form .

L0 =b2),  Fsbjr,.  mew
hwﬁ?l_@\mf Y <b/2, XaT .
(T <0)

i RN ) e T Rl (6.24)
hmﬁ@ B2y, Y<—b/2, XS5 T

Il

(X —b/2)

¥

(X +8/2)
where the L’s are the loop variables, given by I, = L(Pyy), with L(Pyyy) lie
asin eq. (5.16) and L;! = LT, and o

Nu:_.imv = E(1,£1,0), /\Wn(JN.m., @R.WACIWGW. - (6.25)

{3) dx.“ X variable is continuous by construction across the tails (unlike
the \4 variable}, but is discontinuous across the wavefronts x — +t, where the
metric takes the Aichelburg-Sexl form #

ds? = 2dudv — dy? + V2E ? - b/210 (w)du? + |y + SNE@E& (t<0).

(6.26) ==

In the following, we shall refer to the x-variables, measured in the reference
frame between the particles as “internal” variables, and to those measured in
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Fig. 8. A& H.i.:& state'and (b) ¢ = 0~ pattern of the A-mapping for the scattering of two massless
: R particles.

the remaining regions as “external” ones. The internal variables coincide with
' the X-variables for t <0. .~ i

The above picture holds up to ¢ = 0. Here the picture changes according to
the coordinate system. In the singular X-coordinates nothing peculiar happens,
the particles keep going straight, so that X|;) and X|;) are continuous, and
Py and P remain constant. On the other hand, in the x-coordinates, the
shock waves collide at ¢ = 0, by exposing the region of external coordinates
in which the shock wave 1 (2) is seen by the transformation hw\ A th J (see
fig. 8b). wo

In order to avoid rotating frames at infinity, one would like the shock wave
ocation, in such external coordinates, to stay continuous at large distances
_during evolution to positive times. Thus we shall look for a 4-mapping at
¢t > 0 which matches that condition.~The internal coordinates instead, which
are trapped between the shock waves, will presumably acquire a discontinuity.
_Since the P,)’s are constant, and therefore the discontinuities across the
wavefronts and tails are fixed, the ¢ > 0 mapping is still piecewise constant in
the regions bounded by wavefronts and tails, and uniquely determined by the
d@&dBw requirements of subsect. 6.1 up to a Lorentz transformation that

we define as follows:

I=+¢
R ! =lim Pexp Al\ H:%nrv
t

ml.O =

(6.27)

=0

HHscm. R~! parametrizes the non-trivial evolution of the internal x-coordinates,
which lie between the wavefronts. :
~~ The solution for the ¢ > 0 4-mapping is shown in fig. 9a. The corresponding
_dreibein satisfies (by construction) the non-abelian Stokes theorem for the .
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Fig. 9. (a) ¢ > 0 solution for the A-mapping and (b) final configuration after switching of tails.

Christoffel connection. The main difference with the ¢ < O situation is that A
is non-trivial' in the internal region where the wavefronts have crossed each
other. In particular, we have

,. AL |X|Pe T, ¥ b2
A=1{ LR .
TR A>T N S G 0 (6.28)
Ui Rl I i
where the relevant regions are parametrized in X-coordinates,
On eqgs. (6.24-6.24) and (6.28), we still have to impose the = 0 Bﬂ%im

conditions of absence of rotation at infinity in the external x-coordinates.
There aré two such conditions, one for the wavefront of particle (1) seen

externally to mwaao (2) 9\ > T) and vice-versa, ooqmm@ou&um to the
matching of L, % with h;:M “1 and of h_h with hL\ R~!. Since in either
case the €m<n¢o§ in X -ooanmﬁnm points mmu\BEocomE\ in the Y-direction,
we obtain the equations

0
hwcmmw = NRB@ (ez2=10
1

, wavefront (1))

H\_I:Mmm = th\mmm

(wavefront (2 E ﬁ,m.mf

By using the representations (5.16) for h:N and h:w eqgs. (6.29) are solved .

by a pure rotation R (@), where the SE:OB angle 0 is given by

tand =L -

7 (6.30)

AmuﬂQZ H. :.
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Notice also that R(6) satisfies the relations

hm:uth_l:.m = B(x), a.m:

L*RL A =

where the boost B(y) leaves ¢; invariant, and the pseudo angle is ¥ =
_om: + E*/4).

The final configuration after scattering is better seen by switching the strings
outwards (fig. 9b), i.e. by performing the local Lorentz transformation

L, ¥ VW\N
L0x) =4 1 1] <bf2
L, ) r.\r|mu\N

(6.32)

m:nr @ ﬁmummonsmcom aomm not affect the metric, because it is constant across
the Emﬁ@dsﬁ and-yields the final form of the A-mapping *

X =Ry |X| < T
b = P b ) K BT (T 0] 46:33)
i X B2 =LTER L g brf2); X =T

where bg = R - b.

We see from eq. (6.33) that the final state differs from the initial state
just by the R~! transformation in between the particles, which defines the
“S-matrix” of the problem. Thus the final momenta are

- . .u: (0) = R¥, P, Imh (D) (—0) (r=12), (6.34)
and eq. (6.30) yields the c.m. scattering angle to all orders in Gny/5.
We notice that the final expression for 6 is the same as in eq. (5.23) for

the geodesic of particle (1) [(2)] in the field of particle (2) [(1)] given by
the Aichelburg-Sex!| metric. The complete result is, however, different. In fact
the geodesic S-matrices are given, according to eq. (5.24), by hL\ 2 or h|: 3
Such transformations do not conserve the energy [23,24], S&:Q the ooBEoH
solution shows just a rotation, which implies energy conservation.

7. Discussion

We have shown that our many-particle solutions to the Chern-Simons mmE
on the one hand give an explicit realization of Deser-Jackiw—"t Hooft mwmom-
times [1,3] in singular X-coordinates (sects.3 and 4). Moreover, they also give
rise to a well-defined scattering problem in smooth x-coordinates Gmﬁm 3 3

*We concentrate here on the Lorentz part of A.Th ecomplete solution [32] shows: m_mo a
|b|-dependent coordinate shift which does not affect the scattering angle. N
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The explicit form of the mapping from X- to x-coordinates given in par-
ticular cases (sect. 6) sheds some light on the problem of scattering in our
framework and points towards its natural resolution.

First, we have made it clear that the particle trajectories are arbitrary in the
Chern-Simons theory, where one should talk of particle exchange, which is
topologically meaningful, rather than scattering.

Secondly, we have pointed out that one should set proper smoothness
and asymptotic requirements on the metric, in order to define the scattering
problem for the Einstein theory. In particular we have required the metric to be
single valued, and to reduce asymptotically to a superposition of one-particle
metrics, each one isotropic in the respective rest frame.

Based on such requirements, we have found that in the two-body massless
case the c.m. scattering angle is given by tan(f/2) = 2nGny/s. This value
recalls the geodesic scattering angle in an Aichelburg-Sexl metric, but the
detailed description of scattering (subsect. 6.4) differs from the geodesic one.

The comparison of our scattering results with previous work on the two-
body problem [3,7] is not easy, because it seems to us that they were mostly
focused on the quantum problem, and did not clarify their results on classical
scattering and reference frames.

We only comment on a possible scattering interpretation of the O-loop
holonomy L, L;, which defines globally the invariant mass M of eq. (4.13),
and involves a rotation, up to a similarity transformation. One can interpret
such a rotation in singular X-coordinates with tails on the same side as the
explicit deficit angle of a cut Minkowski space, for distances much larger than
the particle separation. Is this “deficit angle” M directly related to a two-body
scattering angle of the Einstein theory? 2

Our approach to this question takes a different route, In fact, we have
looked for a smooth metric, where no tail appears, first for one-particle, and
then for two, with a proper asymptotic condition. This led us to a “c.m.
reference frame” different from the one above. In our frame, the one particle
metrics are isotropic in their rest-frame but the two-body metric is anisotropic
because of the relative speed, leading to shock-waves in the massless limit,
This explains why our scattering angle is not related to M in a simple way,
except to first-order in Gyy/5.

The above remarks lead to the more general question of whether, and how,
asymptotic states and scattering matrix can be defined in three-dimensional
quantum gravity. At the classical level explored so far it was clear that metric
requirements, and in particular the smoothness of &u = O(ny ) were essential
to define the scattering problem in the Einstein theory. In contrast, only
topological observables appeared in the Chern—Simons theory, which does not
need a metric, so that €%, was allowed to be singular and non-invertible.

A similar question arises at the quantum level. The cut Minkowski space-
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time 1s useful, because it allows a simple computation of particle amplitudes
[3,10,11,25]. Actually, the amplitude for N particles can probably be obtained,
at least in principle, by the relation between Chern-Simons theory N.EQ two-
dimensional conformal field theory [27-29]. However, in order to interpret
them as measurable scattering amplitudes, one needs to transform them into
physical smooth coordinates, fulfilling proper asymptotic conditions. .dgﬁ.m-
fore, we think the main problem is to understand how this smooth Einstein
metric emerges in the quantum theory.

Our classical analysis suggests that, if the Chern-Simons theory (coupled
to Bm:nl leads to a consistent quantization of gravity, then it should @m
broken at large distances so as to build a scale and a smooth Einstein 9.059
Ea.. to allow the definition of asymptotic states and the scattering matrix. In
the opposite: situation of unbroken gauge invariance it is probable .%.H no
scattering matrix exists, due to the topological nature of the Chern-Simons
theory, and the classical scattering features explored so far would appear to be
just an artificial gauge fixing. .

The answer to this alternative is not known so far and remains to be
investigated, perhaps along the lines of a recent four-dimensional model [30].
We only remark that also string theory calculations [15], if oﬁosaa@ to low
dimensions, could shed some light on the quantum version of gravity, and

check its classical limit.

It is a pleasure to thank Daniele Amati and Gabriele Veneziano for a
number of interesting discussions and suggestions and Pietro Menotti and
Adam Schwimmer for quite useful discussions.
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