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MODULAR INVARIANT PARTITION FUNCTIONS
IN TWO DIMENSIONS
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We present a systematic study of modular invariance of partition functions, relevant both for
two-dimensional minimal conformal invariant theories and for string propagation on a SU(2)
group manifold. We conjecture that all solutions are labelled by simply laced Lie algebras,

1. Introduction
The minimal two-dimensional conformal invariant field theories [1] carry a set of

representations of two Virasoro algebras of common central charge

6(p-p')’
e (1.1)

c=1

with (p, p’) a pair of coprime positive integers. Belavin, Polyakov and Zamo-
lodchikov have shown that it is consistent to retain only a finite number of primary
fields ¢, ;. of conformal dimensions & and h chosen among the Kac values [2]

(rp—sp’) = (p-p')
h, = , =h,
4pp

(1.2a)

—r p—s?

with
Isrgp' =1, 1<s<p—1. (1.2b)

An important subset of these minimal theories consists of the unitary ¢ <1
conformal theories, for which p and p’ must be consecutive integers: |p — p’| = 1
13}

Cardy [4] has shown that putting such a conformal theory in a finite box with
periodic boundary conditions, i.e. on a torus, gives stringent constraints on its
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operator content. These constraints arise from .the requirement of modular invari-
ance of the partition function which has the general form:

NNM&\;X‘_AlNH.TV, (1.3)

The conformal characters x,(r) (including a prefactor e~27ir/24) gpe explicil
functions of 7, the modular ratio of the torus; A, =4, are non-negative
integers, arising from the decomposition of the representation of the Virasoro
algebras carried by the space of states into irreducible representations. Some
modular invariant partition functions have been constructed so far [5-7). We
analyse this problem more systematically. We present some results and conjectures
lowards a complete classification of minimal ¢ < 1 conformal theories, summarized
in table 3.

Amazingly, this problem is mathematically related to a different physical situa-
tion. Studying the propagation of a string on a group manifold, Gepner and Witten
(8] have been led to study modular invariants sesquilinear in characters of an affine
Lie algebra:

DI (1.4)

with again non-negative integers A4,.. In the case of A= mmﬁwv, Gepner [7] has put
forward the relation between the two problems by constructing conformal modular
invariants from the A{) ones. The connection belween the two problems also
underlies our analysis, based on arithmetical properties of the even integer N = 2 pp’
in the conformal case, N = 2(k +2) in the case of A" representations of level k.

Sect. 2 introduces the notations and clarifies the group theoretical setting. As the
characters transform under a unitary projective representation of the finite group
PSL(2,Z/2NZ), our problem is related to the decomposition of this representation
into irreducible ones. Sect. 3 contains the discussion of the modular invariance of
(1.3) and (1.4), when the positivity and integrality conditions on the A4"'s are
relaxed. A large class of solutions js oblained, associated with each factorization of
N or of its divisors of the form N/2a? into a product of two coprimes: see eq.
(3.14) for a precise statement. We conjecture that this describes all modular in-
variants of either problem, and we shall present the clements of proof we have
obtained so far, The applications are discussed in sect. 4, Our conjecture justifies
and completes Gepner’s procedure, in so far as it establishes that al/ conformal
invariants are obtained from the A" ones. The integrality and positivity conditions
on the coefficients 4" are then shown to reduce drastically the acceptable solutions.
We have found only three classes of solutions for the A{" case. The first which exists
for any value of IN =k +2 corresponds 1o the trivial diagonal invariant lx,|?
while the second appears only for even k > 4. In addition, there are three excep-
tional cases for k+2 = 12, 18 and 30, which are the Coxeter numbers of the
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exceptional Lie algebras E, E;, and E,. These two infinite series and three
exceptional solutions are indeed in correspondence with the simply laced Lie
algebras A, , |, D, 1.7 and Eg, E; and E,.

Correspondingly, the “positive” conformal modular invariants are labelled by a
pair of such algebras, relative to the values P’ —2and p—2of level k. As p and P
must be coprimes, hence not simultaneously even, one of the two algebras at least
must be an A algebra. For the unitary conformal theories ( p’ =p—1=m), we find
two solutions for any value of m (m > 5 for the second): they are the principal and
complementary series discussed in ref. [5] and completed in refs. [6,7]. In addition,
there are six exceptional theories for m or m + 1 = 12, 18 and 30. The principal
series may be denoted (An_1,A,,), the complementary one (m=35) (A, D,,.a)if
m=4p + 1, AU#L.>€LU if m=4dp+2, (Agpi2.Dypyy) if m=4dp + 3,
(Dypi3Ay, . 4)if m=4dp+4, and the exceptional ones (A g, E¢) (m = 11), (Ee, A \,)
(m=12), (A, E;) (m=17), (Eq,Apg) (m=18), (A4, Ey) (m=29) and (Eg, A )
(m=30). That this list exhausts all possible modular invariant ¢ <1 unitary
theories is our second conjecture. This conjecture is partially supported by a parallel
work of Pasquier [9].

2. Notations and group-theoretic considerations

For the following discussion of conformal characters, it is convenient 1o trade the
two indices (r, s) of eq. (1.2) for a single variable A

A=pr—p’s (2.1)

and to consider A as defined modulo N=2pp’. All the ensuing expressions will
indeed be periodic functions of A of period N; the reason why the intervals (1.2b)
(with =0 and s =0 added) only represent hall a period will soon become clear.
Since p and p’ are coprimes, two integers r, and s, exist such that

P —Sep’' =1. (2:2)

We introduce the number woEZ/NI

wo=rgp+5,p°  mod N, (2.3)

It satisfies
wi=1 mod2 N, (2.4a)
WA =pr+p’s mod N . (2.4b)

(Beware of the mod condition on wg!) Hence, multiplication by w, leaves un-
changed the multiples of p, and changes sign of those of p". Conversely, given A
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and wyA mod N, one oblains a pair (r.5) modulo a two-dimensional lattice
generated by (p, p’) and (p, —p'). The appearance of wy satisfying (2.4a) associ-
ated with the factorization into two coprimes of 1N = pp’ is a typical feature of this
problem and will be encountered again in the following. In general, we introduce
the abelian group G, for n an arbitrary even integer:

G,={w,wel/nl. =1 mod2n ).

n

We now turn to the conformal characters. For r the modular ratio of the torus
defined such that Imr > 0, we need the Dedekind 7 function

27 x
n(7) =exp IN:AIL Mq_: —exp(2imnt)) (2.5)

and define the set of functions of T

' pY0 ..anﬁfﬂl:\c.rywu\g. o~

>\>Al

Obviously K is even in A and periodic of period N:
x..,HK;H\/\T.,.. (2.7)

Hence eq. (2.6) defines a set of 1N+ independent functions. The conformal
characters are then [10]

Xmol luky?vlke_;ﬁl. (2.8)

(Recall that the factor exp(—{27i/24)¢7) has been included into X asineq. (1.3).)

confl

xa" vanishes on all multiples of p and p’. satisfies

X X R 00, (2.9)
and assumes 1(p - 1)} p’ = 1) distinet, linearly independent values, which may be
labelled by the values of A, or (r,s) in a fundamental domain:

b e A l<sgp-1, spi<rp. (2.10)

We also consider the Kac-Peterson characters of the affine Lie algebra AN [11]
for integrable representations (integer or half-integer spin /¢ tk) in their basic
specialization multiplied by the factor nxvﬁlﬁi\ménu:lnanlAmﬂ.\m:»\
k + 2)7) (in short, affine characters). For level k and spin /, we use intentionally the
same notation x, by setting N = 2(k + 2)and A=2/+1

X3 (7}~

4Aqv:Msﬁsz+y::;§1:z+ym\z% (2.11)
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It is an odd, periodic function of A
X =l y=—n (2.12)

and therefore it assumes iN — 1 distinct and linearly independent values labelled by
A in a fundamental domain

B lgdein-1. (2.13)

Note already the similarity of the properties (2.9)-(2.10), (2.12)-(2.13),

The modular group I'=PSL(2,Z) is the set of 2x 2 matrices A with integral
entries and unit determinant. with + A identified. Tt acts on r in the upper
half-plane through

ar+h ai b
-l = ; 14
Gl et +d 4 Aﬁ. a_v 24
This action is then carried to functions of 7. In particular
ar+ b 1
n =¢iler +d}niln), {Z2.15)
cr+d

where ¢, is a 24th root of unity. Using the freedom of sign of A, one can always
choose c>0and d=1if c=0. and 0 <arg(er+d)'? < la. With this convention,

€, is a well-defined T-independent phase. The modular group is generated by S
and T

1
Sir— ~—,
._.

Titor41. (2.16)

Using (2.15) as well as Poisson formula, one finds for the conformal characters:

‘rm
T: Ky(r+1)=exp|2in Nliﬂl# Ky(r), (2.17a)
i el AN
St K(-rY)= mﬂw,mwmxu M:ﬂqq. Ky(1). (2.17b)
Since
A= () )? mod 2N,
AX = (wpA )(w,X') mod N, (2.18)

€q. (2.17) still holds with x$™' substituted for K.
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For the affine characters, one finds similar formulae:

>~
T: xi"(r+1) =exp|2in ik ¥ [xa(7), (2.19a)
A i W_ 2 A (r) (2.19b)
¢ opsl o S exp|2im — . : -
, =i i 0

All these transformations are of course compatible with the mod N periodicity in A
and the parity properties under A — —\_ The symmetries of x, enable us (o rewrite
(2.17b) and (2.19b) with A, X in the fundamental domain B (cf. egs. (2.10), (2.13))

20 = 2 e 3%».1‘.\ wp’'ss’
Mipter edyles B (et AP e (7).

L ’ N_..\.u;
PP ierap P P sl
Igs' gp-1
._,;.v‘A.w,E
(2.17¢)
2 AN
W=t =y —— ¥ x3(r). (2.19)

Kt ey k+2

Notice the presence of the factor —; in (2.19b). in contrast with (2.17b), which
Buarantees that the square of § acling on characters is the identity. Indeed, the
Fourier operator

1 AN

Aﬂv.;.n Hﬂlmﬁu NQI.ZJ (2.20)

has its fourth power equal to the identity, but its square
(F =6, _,. (2:91)

Therefore %2 acting on even functions of A or (—igF)2 acting on odd ones are
both equivalent to the identity. The presence of the phases exp(— Lix), exp(— Limr)
in the T transformations ((2.17a) and (2.19a)) are also crucial 1o ensure the modular
consistency (see Appendix A).

For n an arbitrary integer, the kernel of the surjective map [12] PSL(2,Z) —
PSL(2,Z /nZ) is called the modular group of level n and denoted TI:

1=T, - PSL(2,Z) - PSL(2,2/n2) > 1.
‘ .

is therefore the invariant subgroup I of matrices

1 +an Bn

A=1 tn 1+ 8n

. (222)
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One may prove that under any transformation of I3,, the functions K, and x§onf
are only multiplied by a A- and 7-independent 24th root of unity

A
:
T, AET;,.,

K»?QMM\.\A»?? e (2.23)
A similar result holds for x3" with an 8th root of unity. To establish this result, it is
not in general sufficient 10 verify that T2 a¢s through a pure phase: indeed for
n26, I, is not generated by elements conjugate to T only [13). The calculation js
presented in appendix B. We conclude that the set of characters Xa with X in a
fundamental domain B carries » unitary projective (i.e. up (o a phase) representation
of the finite group

Z
]

PSL(2.2/2NZ) = /1, -

1 N-1
AEM,,, 134, Xalrl)=% Uiy (5} (2.24)
N=0
U(A)U(A") = evavt( 447)

U(A)Ut(4) =1 )

To check that an hermitian form

Zy= Mﬁxu;,_.:;.\ﬁaxil (2.26)

is invariant under modular transformations, it is therefore necessary and sufficient
to check invariance under M,,:

HU(A)=U(4)H,  seM,,. (2.27)

This could be done with the help of Schur's lemma, decomposing the representation

(2.24)-(2.25) into irreducible parts and laking A4 ¢ 1 in each of them. As no

general result on (hese decompositions is known 1o us, our forthcoming analysis

may be regarded as 3 study of the commutant of this representation of M, .
Alternatively, for any arbitrary hermitian .#,

1
e

t 2.28
TYm ;Mz.__,.c (A)#U(A) (2.28)

salisfies (2.27) and conversely any solution of (2.27) is of (his form. Unfortunately,
the order IM, .| of M,y grows fast [12]

1

_Z..__ = w:u : 1 — .\wﬂ R AMNOV
..__.“..mz—.“__.q__c.m:

and the use of this remark requires some ingenuity [7].
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3. The commutant
Let us first examine which linear transformations C of the x's may commute with
T. From egs. (2.172)—(2.19a) we learn that Cyx # 0 only if
A=X  mod2N, (3.1)

We shall prove that this implies the following proposition:

(1) A and X" have a common divisor a > 1, such that a? divides N, with
N’=N/a? even, g

(2) There exists p defined modulo N’ such that p2>=1 mod 2N and

X A
i I._...M. 30&2 5 mdmmv
or equivalently
: N
>Htw+mﬂll mod N, te?/al . (3.2b)

Conversely any such N satisfies (3.1).

Assume A# +X mod N since otherwise the proposition is obvious (a=1.
u = +£1). Condition (3.1) amounts to

(M =A)(N+x)= 4pp'l.
v\ + A and X |.> are both even, and all the divisors of N = pp’ must appear cither
in {(A+ A)orin 1(A" = X). Let IN =79, HA+N)=mp, LN =X)=n'0, (po=1).
Of course 7 or 7’ could be one. It then follows that ‘
A=mp—a%,
N=mp+n%, (3.3)

very much like the original relation between A and X = wyA, except for the fact that
m and 7’ need not be coprimes. Let « be their greatest common divisor:

a=(m,a’). (3.4)

Then a divides both A and X and a? divides 1N = pp’, proving the first point. We
set

T=aP, 7' =apP’, (P, P)=1,
N=alN', N'=2pPpP’, (3:5)

Repeating the procedure of sect. 2, we introduce R, and Sy such that R P - §, P
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=1, and define p= RyP + §yP' (mod N*). Given A/a=pP - gP’, it is easy 1o
check that X /e = p\/a mod N’, and that p>=1 mod2N’, ie. that p€ G,., the
group defined in sect. 2.

In the conformal case, the proposition implies that if p and p’ are distinct
primes, there are only four possibilities for A2=X? mod2N:

P=pp’, P'=1, N=-A mod N,
P=p, P'=p', N=uwA mod N,
P=p’, P'=p, N=-wA modN,
P=1, P'=pp’, N=)\ mod N, (3.6)

Likewise, in the affine case, if k+2 is a prime, A= +X mod N is the unique
solution. In any of these cases x, = + x,. This méans that the projective representa-
tion U of M,y is irreducible on the x,, and the invariants must be diagonal:
A'\x = €\8,x- Invariance under S, the second generator of the modular group then
implies that the coefficients ¢, are independent of A and equal, for A.in B. Then
A"=1 is the unique solution up a factor,

In general, the proposition suggests 1o consider the action of the group G, on the
x's through

EmQIlAbev;Hmr.iaﬁ_z. (3.7a)
QR =8,.. (3.7b)
These matrices are symmetric (w=w"! mod2N) and commute with T and §

1 1
BEL NN N
(28)=Y LNA ,\ﬁ?m N

I

mw..a..;y \}.4

Mlglnur.?,..\zmeznz F ZimwAN /N (3.8)

v W n

There is a subgroup H of such 2’s which acts trivially on characters X» AEB. His
generated by £, in the affine case, by 2, and 2,,, in the conformal one.
Therefore the commutant of the representation U contains at least the set of
symmetric matrices:

I
[

ﬁ.m.huwry.

e S (3.9)

w€Gy/H

w?

with ¢, arbitrary real numbers. There exists a correspondence between the group
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. . 0 o
mod 2 N. This correspondence is set :vmm_.o__oim”HEﬂHnaomz. %«8:52:

a’=1 mod2N, then (a+N) =1 mod 2N.) In any irreducible representation of

My, the elements of the center must be represented by multiples of the identity.
Indeed one finds that

G, and the center of the group M,,. ie. the set of matrices HT J. at=1

Q:,TAM mv mod2N, a?=1 aoﬂi -8y .1,
where ¢ is a A- and N-independent phase.

Whenever 1N is square-free, i.e. when the only « such that o? divides 1N is
« =1, we have proven that the only invariants with integral coefficients (AWEL)
are of the form (3.9) (with ¢, € Z). At the present stage our proof involves a study
of the equation (A S)aw = (8A47),x = 0 considered as a polynomial in the variable
z=e*"/N We refrain from presenting the proof here, however, as it seems difficult
to extend to the general case. We also believe that the assumption that the 4"’s are
integers is not crucial.

When {N has non-trivial square divisors a’, the proposition above suggests a
larger commutant. For p€ G N/at» iNtroduce the matrix

(22),

) Ox bt th/ar il a|A and a|X
§€2/az

1l

0 otherwise . (3.10)

Such a 2{*) commutes with T, as stated in the proposition. 1t also commules with S,
as one readily checks. The interpretation of these new matrices hence of new
invariants is provided by the following connection between the characters relative 1o
the values N and N/a?=N". Return to the definition (2.6) of K,(; N), making

explicit the dependence on N. Let us picka A in Z/(N/a)Z and compule the sum:

a-1 1

imr
M Nu»iz\n?“ .Zv
£=0

[

a-—] 20
2 Y r)2
dﬁ.ﬂv M: :n.M.uc»H.hmu zsﬁnu HH?Q +Q>+m92v
I oca—l oo inr
exp| — [(na + £)N* + A ]?
) WS.MB Pl 7 [(na+¢) ]

L]

L]

Ks(r; N7). (3.11)

The result depends only on A mod N°. This relation carries over (o the conformal
characters pertaining to N and N

a-1
L XS enpals N) = x82(rs N7), (3.12)
£=0
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provided that w, &€ Z/NZ projects out on a non-rivial wyin Z/N'Z, e wy# +1.
The triviality of wj occurs whenever p (or p’')is a square and p (or p’) divides a?.
In such a case, the sum (3.12) vanishes by eq. (2.9). If wy+ +1, any invariant at
level N’ gives rise 10 an invariant at level N by (3.12). In the affine case, we find
similarly

a-1

Y xeensalmi N) = axi(: NY). (3.13)
£=0

To summarize, it is conjectured that the most general form of modular invariants
is

R S L (3.14)

wE€G .0 felast

a.a
alh. ¥
We know for sure that this is true for 1N square free and we intend Lo present
details in a future publication.

4. Partition functions

The results of the previous sections will be now used to classily and study the
various invariants
Zp= Y XAl7) A exn (1), (4.1)
A Nen
with A, given in (3.14).

As for the affine modular invariants, eq. (3.14) gives immediately the general form
of the invariant. There are as many independent terms in eq. (3.14) as there are
choices of a and p with the exception already encountered al the end of sect. 3. If
N is a square, laking a = Y 4N produces a vanishing contribution when contracted
with a character. If }N =TI, p/ is the decomposition of YN into prime factors,
the number of relevant lactorizations of YN and of its divisors N/2a? into two
coprimes is:

EEl::IT% :.s
=1

with 8 =1 iff {N is a square. We conclude that the number of independent affine

modular invariants is (k + 2). The function ¥ (m) is displayed in table 1 and a

generating function is given by

L BT T

]
m=1 M

from which it is seen that on the average y(m) grows as Lin m,

-
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TasLe 1
m PSR e T TR T R 1 T ] [ L T T
Vi(m) (U RS LT O s S R b L R
vimpmiteliantsnlismilsnlan sy maar s et sy e S s ey
m 1T 181 19 20 21 990 93 94 95 ‘o4 39 af 59 _an 332
y(m) e LR B R et (R TR L st B RS TR

Wl kil RS R SR S A e S e i

To see better the structure of the invariants in the conformal case, we first undo
what has been done in sect. 2 and reexpress the content of (3.14) in terms of the
original pair of indices r, 5. Let us show that 4}, =4}, ... factorizes as a tensor
product of similar expressions pertaining to the indices r, r* and s.s":

Howar B N e B

o E€Gyp GEL/mT  ay py€Gy, 0 §€L/0,L

a|r.r’ agls. s’
aflp’ edlp
(ay,a;)
X q.._.k,: : mx.tluu.m_\n_m...fh+~_._m\.:
— {ay.ay) (R) (5
=L Ly (4.3)
SR @y

Consider a pair (A, A’) such that « divides both A and X', and

N A 2pp’
SO (4.4)
o o 14

with p € Gy, . /0. Let A=pr—p’s and N =pr’ - p’s’. As p and p’ are coprimes,
a = aya, with af a divisor of p’, a? a divisor of p- Then a, divides also r and r’, a,
divides 5 and s’, and if p)=p mod(2p’/a}) and p,=p mod(2p/al) condition
(4.4) reads:

ro—pr R LETIN 2pp’
L 2 O A N Msf (4.5)
R 0 a o ooy
Taking this condition mod 2, mod( p’/a}) and mod( p/a?) leads to
h r’—=q,r ; 2p’
i oL uﬂh|~ mod .un :
@ a o
5= p,s 2p
e nzhu mod —, (4.6)
ay a; as

where ¢ and u may take the values 0 or 1 but satisfy

tay —ua, =0 mod2. g (4.7)
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Finally, eq. (4.6) may be recast as
ﬁ‘ N ’
r=pr+i— +m_|ﬁ.|.
a a,

2
=g a4, (48)

2 )
where 1, u=0,1 satisfy (4.7). {, € Z /o, 2, ¢, €2/a,2.

Conversely, given (r, 5, r’. 5*) satisfying eq. (4.7)-(4.8) we may reconstruct A = pr
=p's, N=pr'—p’s’ and p=ropp, —s,p’n, where ro and s, are the Bezout
multipliers of p and p’ (cl. eq. (2.2)). One verifies that p belongs to G, ,» and A
and X satisfy (4.4). Finally. r and 1 may be set equal to zero; the other choices do
not give new invariants, thanks to the periodicity and symmetry properties of the
characters.

The form (4.3) is convenient to count and tabulate the independent invariants, as
they are just obtained by tensor products of the p’ and p contributions. Moreover
this justifies the procedure followed by Gepner to generate conformal invariants
from A" invariants. Namely, this proves (assuming the correctness of the conjec-
ture of sect. 3) that all conformal invariants for the ( p’, p) theory may.be obtained
by tensor products of affine invariants pertaining to the levels k=p —2 and
k'=p’—2 Itimplies that the number of independent invariants is Y(p)¥(p’). The
values of Y (m)y(m + 1) relevant for the unitary series are displayed in table 1.

Knowing that all conformal modular invariants are obtained from the Al ones,
let us concentrate on the latter. We write their explicit form in the physically
relevant cases, namely ./, non-negative integers, and A4, = 1. (unicity of the
vacuum state). To the best of our knowledge, the following list is exhaustive.

For any value of 1N =k +2

W =8y (4.9)

is always a solution, corresponding to the trivial factorization k + 2 = (k+2)-1.
Suppose now that k is of the form k =4p. The number p associated with the
factorization k+2=2-(2p+1)is p=dp+ 1=k +1 so that the relation N = A
mod N splits into two sectors

Aland X)odd: N =k +2~\,

[l

A (and X') even: X = =),

As the affine characters are odd functions of A, this means:

=0y if A even

W
L DRI R
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Adding the trivial solution A= 1 gives

s ((TOURE  RRR) i A and X are odd
=0 otherwise

I k is of the form k = 4p ~ 2 one may take a =2 and the number y associated with
the trivial factorization (k + d/a’=p-1is p=2p—1= Lk. One discards the

possibility p = 1, k =2 which corresponds to the forbidden case o = vk + 2. Then
for p > 1:

k=0mod4: 4, . (4.10)

.\v\»»‘umr.kiawlmx; iff A, X are even
=0 otherwise .
Adding again the trivial solution yields:
B if A, X odd
k =2mod4: Ay = .wy..»...wn» if A, X even . (4.11)
0 otherwise

The corresponding modular invariants are the SO(3)-invariants of ref, [7]. They also
lead to the complementary series of conformal modular invariants of refs, [5, 6] (see
below),

To these two infinite series of invariants, we add three more exceptional ones,
constructed by using eq. (3.14)
k+2=12

N aw = (8y, +8,,)(8,, + 8x1)
+(Bpg + 834 )(8y0 + Sug) + ()5 + S )(8ys + 8y1,). (4.12)
k+2=18
Ayx = th.+ 8a2)(8yy + 8yp,) + (8ys+ Br13) (85 + 8y15)

+(8,, + 8o )(8yq + 8xnn) +8,9(8yg + 8y + Byis) + ()5 + 8x1s) 8y

(4.13)
k+2=130

A= (8 +6,,, + Bris+ 8y59)(8y, + Sxin + 8yig + Bygg)

+(8),+ Szt 8y, + 8r23)(8ys + 8,5 + Spir+8y3). (4.14)

The first two had already been discovered [15,6,7].

After inspection of all invariants generated by eq. (3.14) up to k +2 = 100, we
conjecture that the previous list ((4.9)—(4.14) and table 2) exhausts the set of positive
integral invariants, satisfying A4, = 1. This conjecture is supported and embellished
by the observation that there is a connection between these invariants and the
simply-laced simple Lie algebras A,, D,, E,. E, and Eg. Indeed the values of
the labels A = ) taken by the diagonal terms in €qs. (4.9)-(4.14) coincide with the
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TaBLE 2
is nown parlition functions in terms o characters
List of ki partition funct 1 rAY'' ch

K+1

k21 M_Xy_“ Ap oy
A=
4p+ | 2p -1

k=4p. p31 M L Ty (XaXZo2.n *+ce) D,

2y Jp+2
Aodd=| A odd = |
Aw2p+1]

p-1
o

= X3+ Xapoz a7+ 2xa, 00

Aoudd= |
Sp=1 55
k=dp-2p32 X el s P T Gt st i
Aadd =1 Acven a2
k+2=12 ;_+xg._u+_§..+xx__+_x.,+x:_.. E,
A+2=18 HH_+x:_“+C?+x:_~+_xi+x:_u+_xi.. E,
+:x.+vax¢q +r,.r.._
k+2=30 %x_+H:+x_c+x~¢_~+_xu+x_.+x_‘.l xul’ Eg

exponents (or Betti numbers) of these algebras, including their multiplicities. Recall
that these exponents give the degrees (minus 1) of a system of independent
generators of the ring of invariant polynomials in these algebras [14]. In eq. (4.9). A
takes all values 1 g A<k + 1, corresponding to the exponents of Ay, In(4.10). for
k =4dp the diagonal terms have A = A\’ = 1L3,....4p+1, exponents of D,, ;. with
the middle value A = A’ = 2p + 1 appearing twice as it should, whereas for & + 2 = 4p
the values of A =X run over the exponents 1,3,....4p — | and 2p of D,,, . Finally
the values X=X =14,57811, A=)= L5.7,9.11.13,17 and A=)\ =

1,7,11,13,17,19,23,29 appearing in eqs. (4.12)—(4.14) are respectively the expo-
nents of E¢, E; and Eg*. This relation between the modular invariant sesquilinear
forms in the characters of the A" Kac-Moody algebra and the simply laced Lie
algebras seems ai present rather mysterious, In particular, one would like to
understand the group theoretical meaning of the off-diagonal terms,

In order to produce the positive invariants in the conformal case, we simply need
to combine the previous results. For a minimal theory with central charge ¢=
c(p. p’) (cl. eq. (1.1)) we need a pair of affine invariants of levels 4 =p—2 and
k*=p’—2. Since p and P’ must be coprimes, they cannot be both even, and this
forces at least one of 4% or 4" in €q. (4.3) to be A= 1. (algebra A). This leads
to a classification in two infinite series and three pairs of exceptional invariants,
which we call respectively the principal (or A-A), the complementary (A-D) and
the exceptional (A-E) series (see table 3). In the unitary series, we have p’ = m — 1,
p=m or p'=m_ p=m-1, m>3, and the exceptional values are m =

* This observation has been first made in the & +2 =12 theory by Kac (15),
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) TasLi 3
List of known partition functions in terms of conformal characters
Al gl
L 2
v.u_ ..Vm_ 1Xeul Gopiiih i
. =i dp+1 =i
Fi=Hpes s oy
rx1 b M M %] +m_x~ul;_.+ M Hx‘..xan‘.?w.u (D,, »A, )
=1 | rodd=1 rodd=1
redp+|
: -1 [ dp-1 25-2
pradp P s
P22 DR TR L (XX ., + ) ey
v=b L rodd=| reven =1
rel
4 |
pi=12 iy {Ix1:+ x3,12 + [Xas + xn,1% + [Xs: + x11,17 ) (Ee.A, )
=1
p-l
s I 2 2
po=18 : M ?k:.fx:._ *Ixss + x|t + 1X7 + xp, 1 + Ixo.1"
a=1
(x5, + x5, ) %3, +eel) (EjA, )
P
Er 1 b
P=130 e ﬁ_x_a+x_“a+x_....+xucq_~+ _xq._+x_w“+x:.+x“.,.‘_; (Ex.A, )

s=1

The unitary series corresponds 10 p’ = m + |, PO p =l p i et ded, :

11,12,17,18,29,30. In the expressions of table 3. the summation over s may bhe
rewritten as

p-1
L= T
e
using x, = Xp'-r.p-s and the symmetry under r—=p’—rofall the summands.
In the non-unitary theories, i.e. for 1P = p'| > 1, the 1able of conformal weights
C.wv w.?mwm contains at least one negative value, namely h,..., With r, and 0
satisfying (1.2b) and (2.2) [5,16). It turns out that all the ﬁm::&ﬂ "wcnn:o:m of table

3 contain the scalar operator of dimensions 4 =} =h, . This is obvious in (he

values of r coprime to P’ appear in the diagonal terms, IX,. |* shows up. We
conclude that the presence of negative dimension onnﬁm_oaa is an unavoidable
feature of minimal non-unitary theorjes.

One is left with the question of finding concrete realizations and interpretations
for all these invariants, In the affine case, this has already been discussed in refs.
[8,7]. In the conformal case, the unitary models corresponding to the (A, A) series
are the Ising model and its RSOS generalizations [17], whereas Q_.:.Dt and
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(D4, A ) describe the 3-state critical and tricritical Potts models. (Is there a role of
the A, and A, Lie algebras in the Ising case?) In the unitary case, the other theories
have not yet been totally identified, although there is some current work of Pasquier
(9] who constructs integrable models based upon simply laced Lie algebras. Accord-
ing to Pasquier, one expects the discrete symmetry of these theories to be at most
the symmetry group of their Dynkin diagram. We have verified that the conformal
theories m = 11 and m = 12 associated with the E; algebra do have a Z, symmetry.
According to [18, 19, 6], this amounts to showing the existence of partition functions
with Z , twisted boundary conditions. These frustrated partition functions read, for
example for m = 11, with the notations of refs. [18,6]:

9

Zing= X :XL +XLXX&+NLL,. +ec+|x,q +x;_J,
rodd =]

Zy = M_x; t Xl s + X112 = X e Rl

On the latter expression, one reads [19] that the operators with 5,§=1.7,511 are
even under the Z, transformation while those with s = § = 4,8 are odd.

Our final comment concerns the compatibility of these new A{" and conformal
theories with the “fusion rules” of conformal algebra [1,8). For the two infinite
series and the first two exceptional theories, this has been checked by Gepner. The
same holds for the k = 28 or m = 29 or 30 theories,

It may be appropriate as a conclusion to quote Arnold [20]. “The relations
between all the A,D,E classifications are used for the simultaneous study of all
simple objects regardless of the fact that many of them [...] remain an unexplained
manifestation of the mysterious unity of the Universe”.

It is a pleasure to thank Vincent Pasquier for explaining us his work and for
making us realize the importance of Dynkin diagrams in that construction. [t is in
the course of these discussions and in collaboration with him that our second
conjecture was born. We are also indebted 1o V. Kac for communicating to us his
results on the m =11 modular invariants prior to publication. One of us (A.C)
acknowledges the Angelo Della Riccia foundation for partial support.

Appendix A

The functions x° and x*" have modular transformations under S and T of the
form:
>u
Txa(r) = xa(r+1)= e'¥rexp m..vs.g xa(7),

xlr) =x, (=77 fi?_ > Tl (7) (A.1)
- = = =g'®s e i L S .
X7 0, 6, it N s Xp{ 1w N X
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with @, and ¢, well defined phases in each case (compare egs. (2.17), (2.19)). Let us
examine in general what are the consistency conditions on these phases so that (A.1)
defines an action of the modular group on these functions. The transformations §
and T acting on 7 satisfy

S?=(sT) =1, (A.2)
" hence the same condition must be satisfied by their action on the x's. It is easy to
| calculate:
£ 1 A(A+X7)
xalr) = akq.,:\m»_m,‘mxv 2im— 0 Til
ety A7), (A3)
(sT)? Jilpe+ o) 1 2im 2 2
Xyﬁs_.vﬂﬂ 'y T \Cu\uy y.Man__u NI_L)MHN>>H+>—+N>_>M+>N
1-42,
20N+ X)) | x (1)
1 2im
=elostor exp| —A (A=N
N >_M>. P N o )

2w

1 2
X7 o 2 A+ h 00 (o)

- Geieterly. (1) (A.4)

G stands for the Gauss sum

inul Y o W_..H.yu = : Y exp mmanm
.\mymﬁcﬁ 2N V2V2N NeZ,INZ 2N
=10+ i) = exp(bim),
_‘, which holds for even N. Egs. (A.2), (A.3) and (A.4) imply
_ ®¢s=0o0r7  oneven functions,
Ps= tim on odd functions,

Pr=#58i-)m-gp,, j=0.10r2
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The phases relative 10 x™" " are thus (wo realizations oul of these (welve

" possibilities:

GHHI_I_ua Hg.ﬂov,
X @e = =i Pr= —um (/=2).
Appendix B

We want to study the action on the K-function of modular transformations
belonging to the subgroup I, of level 2 N:

1+ 2aN 28N

e 2e 1 EN ) (B.1)
The theta function:
en= Y mxlfaﬁ,_w;:+._L.A+A:+Wv:r.:: (B.2)
[; Boalient ot

enjoys the following two properties:

i

Vu rerz: O(f+ut+wr) AIS__..:.nxtﬁimh.a:t&+tw:®:ﬂ 1), (B.3a)

c+d’ ct+d

2
1 1,2 ¢ w.
e (et + d exp| fme -
l ) E of + d

VYAETl: B

J E+J 8(5i1).  (B.3b)

where €, is the same phase that occurred in (2.15) [21). Defining
{=Nr,
2

il

1+1(2A = N), (B.4)
we have the relation for K, introduced in (2.6)

(1) Ky(1) =exp mﬁ; - N)}e(s:r). (B.5)

We apply formula (B.3b) for a particular element A & " of the form

Jo[1+2aN  2pN? . (B.6)
2y 1426N

acting on r as

5 (1+2aN)r+28N2
e il U (8.7
2y0+ (1 + 28N)
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Using the relation 1= Nr, (his means that on 7 acts A of eq. (B.]). according 1o

y 2+Mn>~v4+wb\<

7' = ! B.8§
e 2Nt + (1 + 26N) )

From (B.4), the corresponding ¢ reads:
' =1+7(h=1N). (B.9)

The unimodularity of the matrix A ensures that (wo integers i and » may be found
such that
§

T:ﬁl:i?ﬁ e it

One may then compute K,(r’) using (2.15) and (B.3) and one obtains after some
calculation

(1+2aN)r+28N &%

=— ] 2)K A B.1
S\ armraraany | = menlim/ Ky () (B.11)

Modular transformations of I3y change K, and X5 by 2 A- and T-independent
phase which is a 24th root of unity. A similar calculation for the affine characters
yields an analogous result with a 8th root of unity:

(L+2aN)r+28N g\’
e |4 imy/2)x (7). B.12
X 2Nr 5 (17 26W) . exp(imy/2) x3"(r) (B.12)
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