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Minimal conformal theories perturbed by the least relevant field are an interesting and
computable framework for studying the Zamolodchikov currents of higher spin, which suggest
the integrability of the off-critical theory . After clarifying the perturbative technique, a general
ization of the c-theorem for currents of any spin is given and applied in this context . Mixing of
descendant fields in the infrared limit of the renormalization-group flow is shown . The Ward
identity for conservation of the spin-four current is given, and shown to encode a dynamical
symmetry of the theory away from criticality.

1 . Introduction

The study of massive two-dimensional field theories has been pursued in the
recent literature [1-10] . This is a natural step in the program of investigating the
space of two-dimensional field theories, once conformal field theories (CFTs) are
fairly understood [11] . One motivation is the search of exact results in field theory
corresponding to integrable lattice models of statistical mechanics [12] . Moreover,
understanding the renormalization group (RG) flow between two CFTs is a
sine-qua-non condition to carry on the string program .
Zamolodchikov has opened three new avenues in the study of off-critical

phenomena:
(i) He proves the so-called c-theorem [1], an exact result which follows from

conservation of the stress tensor . Whenever two unitary CFTs are connected by a
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RG trajectory, this theorem implies the qualitative condition on the ultraviolet and
infrared central charges CUV >~ CIR . This can be interpreted as a measure of the
irreversibility of the RG in two dimensions . The theorem also implies a quantita-
tive constraint, a sum rule for the correlation of the trace of the stress tensor,
derived by Cardy [131 .

(ü) He adapted the RG and the e-expansion [14] to studying the scaling region
around a CFT* [3] . This perturbation expansion around non-gaussian (yet, com-
putable) theories will be called conformal perturbation theory .

(iii) Finally, he showed examples of minimal CFTs perturbed by relevant opera-
tors which possess additional conserved currents of higher spin [15], due to the
existence of null vectors [5] . This observation enabled Zamolodchikov to conjec-
ture the exact S-matrix [16] for the Ising model in a magnetic field [17] . This
conjecture passed the numerical tests [18], and has been generalized [19-21] .
Our work mostly elaborates on Zamolodchikov's ideas . In sect . 2, we present a

self-contained description of CFT perturbed by a slightly relevant field . The
canonical case is the minimal model with central charge c(m) = 1 - 6/[m(m + 1)]
for m >> 1, perturbed by the least relevant field 0,,3 . The infrared CFT has
c(m - 1), i .e . it is at small distance in coupling space, therefore the whole region
can be described by the perturbative RG technique . This subject has been
discussed in the literature [1,3,4,81, but for later purposes we need to be more
specific and self-consistent on the renormalization conditions and clarify some
general properties of the perturbative series . Actually this off-critical theory
possesses higher-spin conserved currents, and sect . 2 gives us the basis for their
study in sect . 4 .

In sect . 3 we show how additional c-theorems follow from the conservation of
higher-spin currents, and derive the corresponding sum rules . An easy example is
given by the Ising model above the critical temperature, because it is equivalent to
the free Majorana fermion, a trivial integrable theory .

In sect . 4 we describe the application to the interacting theory of sect . 2. We give
renormalized expressions for the composite operators building the conserved
current of spin four . We prove that the current does not renormalize, i.e . it does
not develop an anomalous dimension, and therefore the extended c-theorem can
be applied . This requires the understanding of the RG flow of renormalized
descendant fields, like L-201,31 which build the current, and how they fit in the
Verma moduli of the IR CFT. Actually, at the end of the RG flow, descendant
fields are finite mixtures of the corresponding fields in the IR CFT and derivatives
of fields of lower dimensions, i .e . descendants reshuffle in the IR Verma module .
We have a glance to how this conformal structure breaks and recover along the
RG flow . Although mixing of primary fields of close dimension is well known, this

*These methods were also developed in ref . [4] .



finite mixing of descendants has some peculiarities, which we analyse in detail . We
show that it ensures the correct flow to the IR CFT of the null-vector equation of
(P,, 3 , and of the Ward identities associated to conservation of the currents off
criticality .

In sect . 5 these Ward identities are discussed and some commutators of the
spin-three conserved charge are derived . Conservation of the stress tensor implies
off criticality the translation and rotation invariances . In the same way, conserva-
tion of the spin-four current leads to a differential equation for correlators which
encodes a "dynamical" symmetry of the off-critical theory, yet unclear in physical
terms .

Further comments are reported in the conclusions and details of the perturba-
tive calculations are given in appendix A.

2 .1 . RENORMALIZED (cD0)
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2 . Conformal perturbation theory

In this section we shall discuss the renormalization of a two-dimensional
Conformal field theory, with action So� perturbed with a slightly relevant scalar
field 0 0 ,

S=SO-AOf d 2x<po~(x) .

Bare expressions, i .e . in the CFT, are characterized by a zero subindex . The scaling
dimension of (P � is 4 = 2h = 2 -y, 0 < y << l, and dim(A0 ) = y .
For the sake of definiteness, we shall consider the example of minimal confor-

mal models c(m) = 1 - 6/m(m + 1), perturbed with 0 1 .3 , h,, 3 = 1 - 2/(m + 1) .
The theory has a mass scale - Aó'', i .e . it is no more scale invariant, and has both
massive and massless excitations . It was shown in refs . [3, 4], that it interpolates
between the two CFTs c(m) and c(m - 1), corresponding to its ultraviolet (UV)
and infrared (IR) asymptotic limits respectively . Moreover, for large m the IR CFT
is reachable for small coupling A � - O(y), within the domain of validity of the
perturbative expansion . This setting is analogous to Wilson's E-expansion
[14, 22, 23], but the perturbation is now done around a non-gaussian fixed point .

Renormalization is carried out in three steps, namely (i) regularization, (ii)
renormalization and (iii) renormalization group improvement, which are easily
illustrated by the example of the (00) correlator . Generalization of eq . (2.1) to
more than one coupling will be discussed later . The first term in the perturbative
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expansion is

( ~Po(x) ~Po(0) exp(An f'Vo) o
~Po(x) ~1, o(0)i =

exp(A0J <Po)
0)

= ( (Po(x)Oo(0)io+Aof dZx1 (~o(x)~o(0) 0o(xi)~o+0(Aó)

(Ix1Z)2h

(1+A0,4yb Jx JYA+0(Aó))

where b = C,,,, is the structure constant and connected correlators will be always
implied . The integral to be computed is UV and IR convergent for 0 < Re y < 1
yielding

r(1-y)r(1 +y/2)
2

A

	

r(1-y/2)Zr(1 +y)
=1 + O(y 3) .

	

(2 .3)

Therefore no regularization is needed as long as 0 < y << 1 .
Renormalization in this context amounts to removing the would-be singularities

as y --~ 0, i .e . when the perturbation becomes marginal [22]. We introduce a
dimensionless renormalized coupling g = g(A� ) and a renormalized field O(x, y) -
(Po(x)/ Z(g) , satisfying the requirement that correlators of O(x, g) have a finite
limit as y - 0 and g fixed . One can think of this procedure as a change of
coordinates in the Wilson space of actions . There are many coordinates fulfilling
the previous requirement, and the renormalization conditions choose arbitrarily
one of these . This freedom introduces a principle of general covariance in the
space of actions [1, 3], as we shall see later .
We adopt here the wave-function renormalization

( ~p(x, g) 0(0, g)i I1xl=w-1 -
w4

.

0(x, g) --_ 27rß(g)O(x, g),

	

(2 .5)

dg(u)

	

x

	

bt dg
1.1

	

-P(g)
-f

	

dg = f _ ,ß- ,dg

	

K � -a>>~ �

	

u

(2 .2)

(2.4)

The renormalized coupling depends on the renormalization scale A, g(l-) =
A -YA(lc), and coincides with the bare coupling at the scale of a lattice cutoff a - ',
g(a - ') = aYA0 , where I.t, << a - ' . It is defined together with the /3-function as
follows

(2.6)
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where () = T," is the trace of the stress tensor . From eqs . (2.2)-(2.4) it follows

The bare expression of the trace of the stress tensor can be obtained as in
eq . (2.2) [8]

and from eq . (2.6) follows

O � = _2rryÀ o(P o . (2 .8)

Higher-order terms O(aó) in eq . (2.8) are not important here, actually there are
none in our example of minimal models, due to a dimensional argument [5] . The
Ward identity for translation invariance implies that the stress tensor has no
wave-function renormalization, Ott = O [24]* . Therefore, eqs . (2 .5), (2.7), and (2 .8)
give

0(g(Ao)) = -YAnA -` - 2 rrbA(A())u

	

)2
+ O( Aó~

	

(2 .9)

r
g = A O /_4 -'

	T b
I I +
Y

AA,A -' + O('1()+

	

(2 .l0)

The relation between bare and renormalized couplings must be inverted to the
accuracy of the perturbation expansion and substituted back in all expressions . For
eqs . (2.9) and (2.2) we find

ß(g) = -Yg - rrbg2A +O(g3),

	

(2.l1)

1
(O(x,g)0(0,g» =

	

x

	

2t, (1 +47rbg( ~ gx ly -

	

) +O(g2)) . (2 .12)
(I,u I 2 )-

Since these expressions have a finite limit y -~ 0, we have succeeded in renor-
malizing the theory to the first-order perturbation . Existence of this limit, i .e .
renormalizability, to higher order depends on more detailed properties of the
theory . The dimensions of fields, structure constants, etc . must conspire to have
exact cancellations of higher poles y - " in eqs . (2.11) and (2.12) . In our example,
the y - 0 theory is a c = 1 CFT perturbed by a marginal operator, which is
reasonably renormalizable but not obviously a known theory of an interacting
boson .
For y << 1 the first two terms of 13 are actually invariant under change of

coupling coordinates, i .e . of renormalization conditions, of the form g' =g(1 + ag),
where a is not O(1/y) . Therefore the renormalized ß(g) is also equal to the bare

*These two statements will be better explained later .
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one 13o(go) = -a dgO/da, which can be obtained by scaling of the free energy
[8,251 .

2 .2 . RG-IMPROVED (00)

The zeroes of the beta-function correspond to scale invariant theories, O = 0 . In
our case, eq . (2.11), these are the UV fixed point g = 0 we started with and
g* = -y/rrb the IR attractive one . If y « 1 the IR fixed point should be correctly
described by perturbation theory . However, (O(x, g *)O(0, g*)) in eq . (2.12) is not
yet sufficiently accurate for attaining the IR fixed point, because it does not show a
power-law behaviour . The solution to this puzzle is well known - scaling behaviour
is recovered by summing an infinite number of terms in the perturbative expan-
sion . This is nothing other than the RG improvement and is implemented by
solving the Callan-Symanzik equation . Its derivation and solution is standard, so
we shall be schematic [24] .

Let us consider the connected N-point correlator

GN(xi> g(l-L)>la) =

	

-NlZ~
0
o(xi) - . . 'tO(XN)i '

	

(2.13)

The Callan-Symanzik equation reads

~~

	

(x'-
+2h(g)l +ß~g)GN(xi,g(A),11)=0,

	

(2.14)

where the "anomalous" dimension y(g) is

2h(g) =2+y(g),

	

(2.15)

1 d log Z
Y(g) = 2 dlag ~, _ -y - 27rbg + O(g 2) + O(gy')

	

(2.l6)

The technical derivation follows from

d
,u
d~

(~o . . .O0)=0, where

* This formula is taken as a definition of 0 in ref. [3].

d d d
ju d~ =JUT +ßT, ,

then the explicit variation with respect to A, is traded for a scale transformation .
This recipe extends to other correlators, in particular by considering (0O) it
follows y =dß/dg, for the anomalous dimension of the perturbing field itself.
When applied to the action together with the renormalization conditions, this gives
the renormalized form* of eq . (2.1), S = So - f d2x fó O d g .



Physically, eq . (2.14) dictates covariance of the theory under scale transforma-
tions . At a scale invariant point g*, ß(g *) = 0, and the Ward identities for
dilatations in the CFT are recovered [11] . Scale invariance is lost off criticality but
there is still a one-parameter invariance involving change of both scale and
coupling . The solution of the Callan-Symanzik equation makes this fact apparent .
Let us consider the particular case of the two-point function . Eq. (2.14) reads
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i .e . k(t,) = g(lx I - '). Eq . (2.19) reads in this case

Eq . (2.12) gives boundary conditions for eq . (2 .20), x(0) =x and k(0) = g(l-) .
Moreover, let us consider eq . (2.19) for the value t, such that lx l e" _ /-t - ', i .e. we
bring IxI to the renormalization point scale . Then the corresponding coupling k(t,)
is given by

pK(r,) dg

	

1-t _ log

	

(2 .21)J
(u) ß(9)

	

N, ~x1

G2(IXI 1 900) =Gz(~-~,g(XI -1))'

	

(2 .22)

The r.h .s . of this equation makes explicit the one-parameter freedom of the
Callan-Symanzik equation by moving all the jxj-dependence into the running
coupling constant. The l .h .s . provides us with a definition of (O(x)O(0)) for
arbitrary values of IxI, such that it respects the scaling behaviour observed at
Ix I - 0(b,-1). By plugging the explicit values of y and ß it follows

(
4

O(x, g) 0(0, g)) =

	

~

	

1

(g
X , )410)

L1 _ Irbg((1t1x � - 1)/Y)]4

	

(2.23)

d d _
IXI +ß~)G2(x,g) =0, (2 .17)

t1x~

where

G;(x,g) = ( ~P (x,g),0(0,g))Iexp
( fg 2h(g)

dg)

z

.ß(g)
(2 .18)

The solution is

G,(x(t),g(t))=G2(x(0),g(0)), b't, (2 .19)

where x(t) and k(t) are solutions of the flow

dx dg
dt =x, dt =ß(g)- (2 .20)
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and the running coupling constant is

2 .3 . MORE COUPLINGS

g(Ixl _) = Iwxl v

	

g
l 1 -,rbg((I1-cxJY -1)/y) '

(2.24)

where g=g(A) is the coupling constant in our renormalization scheme .
The above expression (2.23) is the RG improvement of eq . (2.12), containing the

resummation of certain higher-order terms of the perturbative expansion . Now the
correlator shows a power-law behaviour in both fixed-point theories, the last one
with dimension 2h(g*) = 2 + y . In the minimal series, this means that (P(x, g)
interpolates between the conformal fields 01,3 at c = c(m) and 4p3,, at c = c(m - 1)
[3,41* . Moreover, the same power-law behaviours of (00) are obtained for g
fixed, in the asymptotic limits ~xl - 0 (UV) and Ixl - oc OR), respectively . This is
an explicit example of the statement that CFTs c(m) and c(m - 1) describe the
asymptotic limits of the massive theory (2.1) .

Let us briefly show how our renormalization conditions extend to the multi-
dimensional case and recover the results of refs . [1, 3, 4] . The UV theory S �
actually contains other relevant fields 0oi, i = 2, . . ., N, besides the field 0 0 we are
perturbing with (call it (P, ) ,) . Therefore we must prove that it is consistent to retain
only one coupling, i .e . the other couplings g', i =A 1 remain zero as we switch on g 1 .
In other words, in the space of couplings there is a RG trajectory connecting the
UV and IR CFTs lying straight along the g' axis . Within perturbation theory, we
shall only consider slightly relevant fields (Poi, which can yield a flow to a close
fixed point .
The action generalizes to S = S t, - En!

,A', f (Poi d2x, where 0 < yi = dim(A � i ) << 1
and of the same order . The renormalization conditions become

0oi = (Z(g)''2)i'oj(g) ,

	

( oi(x, g) pj (0' g))

	

= 94Gij(g) ,

	

(2.25)

O(x, g) = 2 "rrß ' (g)Oi(x, g),

	

g dg'(li)/dg =ß`(g) ,	(2 .26)

where g = {g'] and Gi;(g) is the Zamolodchikov metric [1] . Conditions (2.25) still
respect reparametrization invariance in the space of actions, g` -g' + e'(g), under
which ß' transforms as a vector, Oi as a one-form and Gij as a metric tensor .
Therefore they must be supplemented with a choice of coordinate system to allow
actual computations. Physical quantities must be invariant quantities . For the
one-dimensional case we chose G � = 1 without loss of generality . In multidimen-
sional space, Gij can have in general curvature and therefore be nontrivial in any

* Note that at the conformal points the dependence on A, can be cancelled by a scale transformation .
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coordinate system. Whether this is actually the case is an interesting open prob-
lem* . We can choose normal coordinates at the point g = 0, Gij = Sij + O(g2),
such that the space is flat to first order in perturbation theory . This leaves a
rotational invariance to be fixed as more convenient . In normal coordinates we can
repeat our previous treatment of the beta-function and obtain

ß`(g) - -Yig r - 17
-Ci

jkg
ig k

+ . . . ,

j, k

where Cijk - Cijk + O(y3) are the structure constants, and no summation is implied
on the index i . Moreover the anomalous dimensions, eq . (2.16), form the matrix
yi j = di p , . Its eigenvalues are actually invariant quantities and give the anomalous
dimensions of the fields at the IR CFT [27] . Let us consider eq . (2.27) for only one
coupling g' ~ 0; if C� j = 0 for all j il- 1, then 0'(g') = 0, i 0 1 and the one-
coupling RG flow is consistent . This is the case for minimal theories, C(, .3).U,3),j = 0
for hj =,'= h(,,3) and

	

< 1 .

2 .4 . DIVERGENCES IN THE PERTURBATION EXPANSION

(2 .27)

The first perturbative correction was shown to be an analytic function of y for
0 < Re y < 1, the lower and upper bounds being dictated by UV and IR conver-
gence of the integral respectively . Let us estimate the corresponding bounds for
finiteness of the higher-order term,

An
0In

	

ni I d2x, . . .d2xn( po (0)eo(xi) . . .Oo(x")~o(x)~o-

	

(2.28)

UV convergence . We can study the integral for 0 < 1xi I < Ix I and by relabelling
integration variables, the region 0 < Ix, I -< ßx 2 -< . . . < Ix I is sufficient . The opera-
tor product expansion (OPE) can be used to estimate the behaviour as x ;
approaches x i _, or xi+ ,, i = L . . . ' n, with x � = 0 and xn+ , =x. The OPE is of the
form q5o(x)(p �(0) = ~xj -4h + ~xj -2hq5o(0) + irrelevant fields, where the contribu-
tion of the identity operator must be discarded because the correlator is con-
nected . The leading UV singularity is given by the field of lower dimension in the
OPE, 0 � itself in our case . For any pair of approaching points, one integration
factorizes as jó d2(x i - xi_ t)jxi -xi_,1-2h - O(1/y) . The leading singularity as
y - 0 is therefore O(y - n), because n is the maximum number of approaches . This
leading contribution (A0A)n was effectively resummed by the RG in the previous
sections . In summary, we found

y>0, bin

	

(UV convergence) .

	

(2.29)

* Metrics of symmetric spaces have been obtained in the case of marginal perturbations [26] .
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IR convergence . The problem can be presented in a toy example . Consider the
hypergeometric function in the Euler integral representation,

F(a,b ;c ;z)=
F( c )

I1th-1(1-t)`-h- ' (1-tz) -"dt, (2.30)
l'(b)F(c-b) o

where a, b > 0, b - a a rational number n, - 1 < b - a < n, n, an integer . Sup-
pose the full integral is not given, but rather its series expansion in z -", those
coefficients are the beta-functions fó tI,-`-"-n(1 -t)` -h- ' d t . The correct z x

behaviour, schematically

z"F(a, b ; c ; z) - 1 +z - ' + . . . +z - ", + l + ( -z)-ch -")(1 +z -, + . . . ),

(arg(-z) <7r)

	

(2 .31)

cannot be recovered from this series expansion . For all orders z -" ,-k which are
dominated by the rational power (-z) -(" -"), the coefficient of the series is "IR"
singular at t - 0 (the space-time variable would be x = t- ` - 1) . The lesson is that
IR singularities at and above the order z - " , signal the presence of non-analytic
rational powers in the series . The power (b - a) can be recovered by putting a
cutoff (see later), but the finite coefficient in front can only be recovered by
analytic continuation of the whole serie .
The same mechanism could happen for the series (2.28) . The leading IR

singularity is given by the region of integration fix ; I - oc, all at the same speed .
Since jx j << Ix ; l , we can use the OPE (p �(x)O"(0) _ ~x j -`1,0u(0) and estimate the
multiple integral by power counting [7] . To first order it follows 1, -
A � IxI -2"f,' d2x, IX

,I
-ztt, convergent for y < 1 . To higher-order one finds

y <

	

,

	

(IR convergence) .

	

(2 .32)
il + 1

Therefore the IR bound shrinks the convergence region to zero, and eventually
hits any given value of y at order n, In our case of slightly relevant perturbation
y = 4/(m + 1), the IR singularity first appears at high order n, = [m/2], and the
lower orders are well defined without any regularization . For strongly relevant
perturbations y > 1, IR divergences are already present at the lowest order, and a
regularization procedure is crucially needed . Dotsenko introduced a method of
analytic continuation, which amounts to compute (2.28) in the CFT with shifted
c - c - c, and obtained correct results in case of logarithmic singularities occurring
for y = 1 [7] . The extension of this method to rational powers is done in ref . [28] .
The value of the rational power possibly occurring in the series can be inferred

by cutting the integral to the correlation length R,(A � ) - A, '/'', as in refs . [7, 29] .
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This argument extends to our case, eq . (2.28), and yields

o

	

z+-i ct r ,+o
<<- znR,(Äo)

Ixl

Ä(u i>/2Ro_t ( in-1)/2lA
c n

	

og o,
Äm /2

	

~ /2

	

(

	

1)12
~, Rc

In summary, this argument suggests that IR singularities yield non-analytic terms
in the perturbation series . Their actual presence is unclear at the moment .
Therefore in this paper we shall limit ourselves to the properties of the IR-UV
safe terms of the perturbation expansion 0 < n < ti c . We shall exhibit the basic
properties of the off-critical theory, mainly of the higher-spin conserved currents
occurring within the perturbative approach . This approximation is self-consistent
for large-m minimal models, and the handling of IR divergences hopefully will not
modify our results too much .

2 .5 . RENORMALIZATION IS NECESSARY FOR THE IR LIMIT

m odd,
(2 .33)

m even .

Since we are taking into account the IR-UV finite terms of the perturbation
series, we could say that there is no actual need to perform the renormalization
procedure of the previous sections . In a recent paper [27] the bare couplings were
considered an admissible choice of coordinates in the space of actions . The
principle of general covariance in the space of actions was emphasised and a
covariant form was given for some RG-invariant quantities, like y;'(g*), which
allows their computation in any coordinate system, including the bare theory .
However, the bare theory is not convenient because the bare fields have a

singular IR limit . This is particularly important for us because we shall study in the
next sections the IR behaviour of the Zamolodchikov higher-spin conserved
currents . On the contrary, renormalized fields have both UV and IR smooth limits,
eq . (2.23), i .e . the Zamolodchikov metric is well defined everywhere . Bare coordi-
nates correspond to a metric with an unphysical singularity at the IR CFT point .

In order to show this, let us look for the IR point in the bare coupling
g� =a-''A-'; . The expression () _ -27rya � (1) � may vanish at A ; = ±x if
O(A � ') . Indeed, the IR fixed point corresponds to A� _ -oo (the sign given by the
beta-function) . In order to attain this limit we need a resummed expression for
( 0 o0n) . Eq . (2.23) suggests

1
~~o(a)d'o(Il)~ _ IX lat,(1

	

7b/y) (k1a) 3

	

a

	

(2.34)

Eq . (2.34) can be checked against the two-loop calculation of ref. [27], and indeed,
it shows a power-law behaviour at gc, = -x with correct scaling dimensions h + y .
The field is (1' � - O(gu 2 ) confirming the vanishing of () .
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In these coordinates, we have a trivial 0-function 60(go) = -ygo and a nontriv-
ial Zamolodchikov metric

1
GO(go) = a4h~ 00(a)0o( 0)) =

	

(2 .35)
(1 -go "trb/y)4 .

Since GO(gó) = 0, this is a singular coordinate system around the IR fixed point* .
One can check that the distance between the two fixed points is invariant,
f ds = f o_-Go dg,) =y/-rrb, and actually small in value . The renormalized coordi-
nate is obtained by the change of variable g = go/(1 - (Trb/y)go), which brings the
metric to one, eq . (2.4) . The /3-function transforms as a covariant vector, and
becomes non-trivial, eq . (2.11) .

In summary, for y = 0 the renormalized coordinates are necessary for a mean-
ingful description of the scaling region around UV CFT, while for y > 0 they are
necessary for a correct mapping around the IR CFT.

3 .1 . DERIVATION

3 . Generalized c-theorems and sum rules

Massive field theories interpolating between two conformal field theories are
subject to certain qualitative as well as quantitative constraints which follow from
the conservation of the stress tensor,

dfT2 + dzO0 = 0,

	

(3 .1)

where TZZ = T2 and TZZ = 00 = 4 T,," . Zamolodchikov's c-theorem [1] implies the
qualitative property that the central charges c Uv and CIR of the corresponding
CFTs must obey

CUV i CIR'

From this theorem, Cardy derived the quantitative sum rule [13],

(3 .2)

dc = cUv - cIR = (12/7r) f d2xx 2( mo(x)00( 0)% 1

	

(3 .3)

namely, the net change of c is equal to the dimensionless moment of a two-point
correlator computed in the off-critical theory . Eq . (3.3) is particularly appealing
since the Lh.s . contains data from the CFT and the r.h .s . is computed in the
massive theory, for any value of g =# 0, g* . The sum rule is actually an identity in

* What we call here go is not the running coupling constant evaluated at scale a - ' in subsect . 2.1 .,
since that coupling corresponds to a flat metric too.
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the dependence on the coupling constant, thus derivatives with respect to it
generate more sum rules for multi-point correlators, as investigated in ref . [30] .

Actually, the previous conditions have natural generalizations when the non-
critical theory possesses additional conserved currents,

leading to a conserved charge P� -, of spin n - l,

c-theorem [1] . Consider the off-critical correlators

satisfies

/

	

_

	

\ _ F(zzl )~
(T,(Z , Z)TWn 0)l

	

Z 2n

	

'

'Jn +On-2 =0,

	

(3 .4)

,~

P,-1 =

	

1

	

U)(dzT, + dz On - 2 )

	

(3 .5)
27rTi

and its conjugate

	

The proof parallels Zamolodchikov's derivation of the

')

	

_ G( Izzl )
en

_
( Tn

(IZo-2(o,o)i

	

Z2n-1Z

l
O

/

	

_
O

_ H(lzzl
)

	

(3 .6)\n-2lZ~Z)n-2(o,o)i

	

Z 2n-2Z.2 '

The conservation law (3 .4) implies that the dimensionless amplitude

Qg,lxlg)=2(F-(2n-2)G-(2n - l)H), (3 .7)

lx l den/d lx l = -4(2n - 2) (2n -1)H, 0 .

	

(3 .8)

In euclidean space, reflection positivity implies that the r.h .s . of eq . (3 .8) is
negative . The next step uses the Callan-Symanzik equation for Cn ,

(lx l d/dlxl +ßalag)C,=0 .

Notice that no anomalous dimensions show up for Cn, because the conserved
current eq . (3.4) is not renormalized, and neither is T,, � . This will be clarified in the
next section . Finally, the quantity

lx ll-o i , x l =,,- (3 .9)

is decreasing along the RG flow, i .e . when the couplings are varied along a
renormalized trajectory

-Mdcn/ag = -4(2n - 2) (2n -1)H( g, lx lh) I 1 x~ =,,- , , 0 .

	

(3.10)
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Moreover, c � is stationary at the CFT (On --- 0), and its numerical value is given by
the correlator (Tn1n) . This completes the generalization of the c-theorem . Clearly
c2 is the Virasoro central charge and eq. (3.2) is recovered .
The associated sum rule follows by integrating both sides of eq . (3.10),

(2n - 2)(2n - 1) j
den = 2

	

J d2ZZ2n-3z( On-2(Z, z)On-z(0, 0)í *

	

(3 .11)
7r

This equation is a quantitative condition for the massive theory issued from CFT
data . There are several interesting RG flows which could be tested . When one
continuous symmetry is preserved along the flow, eq . (3.11) applies to the corre-
sponding conserved current . For example, the fermionic partner of the stress
tensor is conserved in the flow within supersymmetric minimal models [31] . In this
case, one can check that eq . (3.11) is equal to eq . (3.3) by a rigid supersymmetric
transformation off criticality .
More interesting are the cases of "hidden" or "dynamical" symmetries, like in

the minimal models of W-algebras, and the integrable perturbations of c G 1
minimal models recently discovered by Zamolodchikov . We are mainly interested
in the latter case, where eq . (3.11) can check proposals for the integrable field
theory associated to a given RG flow .
We refer to integrable quantum field theories as those possessing an infinite set

of conserved currents with spins f s il [32] . If they have only massive particles (i .e .
c,a = 0), their one-shell dynamics is described by a factorized S-matrix [16] .
Zamolodchikov considered certain perturbations of minimal models, which flow
into purely massive phases, like the Ising model in a magnetic field . He argued that
higher-spin currents are conserved due to null-vector equations of the CFT [5] .
The lowest values of the spins fsi l were inferred by counting dimensions of Verma
modules, and came out in a beautiful pattern : they are equal to the exponents of
simple Lie algebras modulo the Coxeter number . Existence of an infinite set was
conjectured and, consistently, an exact S-matrix was obtained [17] . This is a
solution to the bootstrap equations with a minimal content of particles and
consistent with an infinite set f s i l of higher-spin conserved currents [16] .
Toda field theories built on affine extensions of the Lie algebras have exactly

this set of classically conserved currents and are the most promising candidates for
describing these perturbed CFTs [20,21,32] . Present investigations have consid-
ered the simply-laced algebras An, Dn, E6 , E7 , EH possessing a unique S-matrix
compatible with the set of conserved currents . In these cases, the qualitative
information of eq . (3.4) was sufficient . Quantitative conditions will be useful for
future studies . In the case of non-simply laced algebras, the S-matrix bootstrap has
multiple solutions and the relation with Toda field theories is problematic [21] .
Moreover, two field theories may have the same S-matrix, which encodes the
on-shell properties only .
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The application of the generalized sum rules eq . (3 .11) to these integrable
theories is limited by the poor knowledge of correlators off criticality. However
there are recent developments in their computation [331, which let us hope to
present results in this direction in a future work .

In the following we illustrate the use of sum rules with the example of free
massive fermions* . A free theory is a rather trivial case of integrable theory . It has
the advantage that both sides of eq . (3.11) can be checked explicitly . Actually, the
result takes a suggestive form of complete reconstruction of the off-critical (00)
correlator from CFT data . In the next section, we shall study the conserved
currents by perturbation theory in the large-in minimal models, which provide a
non-trivial computable theory . In order to apply the sum rule we have to under-
stand the RG flow of the currents (T� ,()� ,) .

3 .2. EXAMPLE . MASSIVE MAJORANA FERMION

The lagrangian of the theory is

S= f(tGd,df+~dj+im~0)d2Z,

	

(3.12)

where [G, 0 are one-component spinors . The linear equations of motion for this
theory generate infinite series of higher-spin conserved currents . One set of even
spin currents is [51

T2n = - vr :d_" -'t/fd" t~ :

	

(n = 1,2 . . . . ) ,

z T, � ,

	

(n

	

1) .

	

(3.13)

For (Tz , O n ) one recovers the stress tensor in the standard CFT notation .
From (Tz �T, � ) at m = 0 one computes

czn -

	

1'(2n) 1-(2n - 1) .

	

(3.14)

Decreasing of the c �-charge is not particularly interesting here because the IR
fixed point is trivial .

Let us now discuss the sum
rule, for any n >_ 1, produces
Notice that the currents (3.13) form a chain
momentum space to express all (0� ,(9� z) in terms of the lowest correlator

* Some attempts in this direction were also made in ref . [341 .

rules associated to these cz � numbers . Each sum
one condition for each correlator

of relations which can be used in
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namely

(4n -
dc2n = -2

where

_
2)(4n - 1)

	

4n-3

	

m2
Pl2n-2

4zn-1(ap)

	

ap1
4

pJ

	

~00(P)eo(-P))]p=o,

(Oo(P) oo(-P)) - I d2zexp [ - zi(Pz+pi) ]~ 0o(z,z)Oo(0,O)i-

	

(3 .16)

A more physical form of the previous equation is obtained by expressing (0()0 () )
in terms of its spectral representation [35],

4
( 0o(P)oo(-P)) = 3foxdÄP(A2,m2)Pz+AZ

.

The generalized sum rules, eq . (3.11), give the moments of the spectral density
P(A2 , mz ),

z , zr(4n) 4n-4 x

	

P(A m )
dczn =

	

6

	

m

	

ƒ()

	

dA

	

A4n-4

	

1

	

n = 1, 2, . . . .

4 . The current of spin-four in the renormalized theory off criticality

Zamolodchikov analysed the conservation law for the spin-four current [5],

(3 .15)

(3 .17)

(3 .18)

Therefore, we have shown that the constraints coming from the infinite conserva-
tion laws conspire to reconstruct an off-critical correlator from CFT data .

Clearly, in a massive free theory the spectral density can also be computed by
the imaginary part of a one-loop Feynman diagram . From eqs . (3 .12) and (3 .13),
one finds

AZ - 4m2
p(Ä, m) = 6m 2

	

A4

	

e(A - 2m),

	

(3 .19)

where B(x) is the step function . This equation gives an explicit check of eqs . (3 .14)
and (3 .18) .

a_T

	

Z

	

T4(z)

	

L?2 I(Z) = 1.~d17 T(~1)T(z) ,

	

4.1z 4( ) - . . . ,

	

27ri z

	

77 -Z



A higher-order term can appear for odd m but it is a derivative too . Therefore he
proved that the current remains conserved off criticality in the form

where the constants are

xo=[(h+2)(h+1)L-3-2(h+l)L 1 L-2 +L3 1 ]0() .

	

(4 .2)

4 .1 . NULL-VECTOR WARD IDENTITY
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in the minimal model c(m) perturbed by the least relevant field of sect . 2. He
assumed that the r.h .s . of eq . (4.1) has an expansion in integer powers of A te times
UV conformal fields of appropriate dimension . Then he showed that the O(ao)
term can be written as a derivative field by using the null-vector equation [11] of
lowest level satisfied by the field O,,3

d2 T4(Z) +dz02(Z) =o,

A77'y
O 2(Z) _ -

	

2

	

(a, L

	

z+a2L? 1),Po(z) +a3 ató +1>~2T(Z)

	

(4 .3)

a,= 2(2-y)/(6 - y),

	

a2 =y(2 +y)(8 -y)/12(4 -y)(6 -y),

and a3 = 0 for even m, with y = 2-2h,,3=4/(m + 1) .
As discussed in subsect . 2.4, the simple perturbative expansion for OZ could be

violated by IR singularities at high order n > n c = [m/2]. On the other hand, the
exact S-matrices conjectured on the basis of conservation of higher-spin currents
were verified numerically [18], say in the case of the Ising model in a magnetic
field . This suggests that the IR problem can be cured, at least when the off-critical
theory is purely massive (c1R = 0) . We cannot address this interesting problem
here .
We shall rather discuss the properties of the current (4.3) to lower orders

0 < n < n, where the perturbative hypothesis holds* . We shall derive its expres-
sion in terms of renormalized fields and study the RG flow of the related
descendant fields . Then we shall apply the generalized sum rule of sect . 3 .

Let us consider the perturbative expansion of a correlator involving the null
vector (4.2),

~Xo(Z)_) = ~Xo(Z) . . .)o+Aof d2x1~Xo(z) . . .(Po(xl)io + . . . .

	

(4 .4)

It vanishes to any order in perturbation theory . Eq . (4.4) can be interpreted as a
dynamical Ward identity of the off-critical theory . Any perturbed minimal CFT

*Therefore we shall drop the term O(a((,"+ 1)1=) in the current (4 .3) .
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possesses an infinity of them . Let us put it in another form :

(h +2)(h + 1)( L_,~P,(z) ~Po(x1) . . .0o(XN))

-2(h+1)c7Z(L Z0o(z)~o(xi) . . 0o(xN)) - - O~(0o(z)<"o(X))- . .~0(XN))

(4 .5)

Notice that contact terms are impossible on dimensional grounds . This equation
certainly makes sense in the bare off-critical theory up to O(A'(')c), because both
sides are finite meromorphic functions of y . It implies that: (i) OZ does not develop
an anomalous dimension ; (ii) L-30 , L- 20 and 0 mix in the IR CFT.

In sect . 2 we saw that -P is multiplicatively renormalized, i.e . the poles y-k are
cancelled by the Z-factor independently of the other fields in the correlators. Let
us assume that L-2q) () and L- 30, are also multiplicatively renormalized . Then
their Z-factors are both equal to Z of 0, because eq . (4.5) holds and there are two
linear independent fields among (1) (,, L- 2 0 0) and L-30o,

L_. 20(X, g) =L-2<'00(X)/V2 ,

	

L-3 0 (X1 9) = L-300(X)l v u *

	

(4 .6)

Therefore the renormalized form of the component O, of the current (4.3) is

oz(z) = z~ß(g)(U~L z~(z,g) +a2a2,^Z>g))+o(g[`" 1z ] -))>

	

(4 .7)

that is OZ does not develop an anomalous dimension, and neither does O.
Actually, this property was assumed in the proof of the extended c-theorem in
sect . 3 .

Let us now discuss the IR limit of the renormalized null-vector equation
0 = (X(g) . . . ) = (X, . . . )/ JZ, eqs . (4.2) and (4.5) . Let us simplify the notation by
denoting fields of the IR CFT c(m - 1) with prime indices . Since the renormalized
field 4P(g) flows into q7)(g* ) = (1)(3"; - '~ _ V and the null-vector equation holds all
along the flow, it should end up in the corresponding equation of the IR CFT,
0 = ( X3"1 - ') . . . ) --- (X' . . . ) . However, X' has different coefficients than X in eq .
(4.2), because h;'3) --> h~",- ') = h' . Therefore L- 2(P and L- 3fi cannot flow in the
corresponding descendants of the 1 R CFT, rather to finite linear combinations of
them which adjust the coefficients of the null-vector equation . We shall call this
phenomenon "IR mixing" .
Let us show some sample computations . The simplest one is

( L-z(Po(z)(Po(0)) _ ( L-,(Po(z)(Po(0))0

+Aof d2X,(L-,(Po(z)(Po(0) ~Po(X,)),) + . . .

=

	

h

	

t ~3 + A�
4 7rb (3 - y +

O(Y 2 )) + O(Aû) I

	

(4 .8)
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Let us compare it with ((P,,O (,) in eq . (2.2) . The O(1/y) term is cancelled by the
same Z-factor eq . (2.7), as expected, while the finite part is different . The
renormalized correlator is defined according to eq . (4 .6), and satisfies the same
Callan-Symanzik equation (2.17) as (00) . Therefore this correlator is completely
determined by its value at the scale jxj =A - ', see eqs . (2.17)-(2 .23) :

Z 2(L-z fi(Z, g)O(0, g» Iixj =gl=

~t4(3h(g) - ,rbg + O(Yg) + O(g 2 )) .

	

(4 .9)

Moreover the IR limit is simply obtained by letting gig* . Eq . (4.9) shows the
mixing phenomenon, because the correlator (L1Z"-"(P3"',-'1 V,`1- '~) -- (L - 20'(P')
- 3h'. There are two fields with the same dimension in the 1R Verma module,
therefore we expect

L-z (P(x, g*) = (1 +P(g*))L

	

,V(x) +P ( g*) a 4)'(x) .

	

(4 .10)

In order to compute the mixing coefficients we need another correlator . By
proceeding as before we get

z4( L-20(z)L- 2(1) (0))1 1v ,

	

M

	

, = 1a4 (9h 2(g) +22h(g) + ~'X(g) - 227rbg+ . . . ) .

(4 .11)

Eqs . (4.9)-(4.11) yield

L- 2 '(x, g*) = (1 -

	

-rrbg*)L_Z~'(x) +

	

-rrbg*r3? 0'(x) + O(Yg, g Z ) .

	

(4.12)

Let us also check the flow of the null-vector equation (4.5), in the case of
(X(z)(P(0)) . We need another correlator, computed as in eq . (4 .8),

z~(L-~~(z)~(0))li~i=~ '_i,- ( -4h(g)+2rrbg + . . .) .

	

(4 .13)

Putting all correlators together, we verify the following equation to the accuracy
O(g, Y)

0 = ~ X(IU - "g)(P(0, g))

_ (li +2)(h + 1)( L-30(, L - 1, 9)o0 ,4 -2(h + 1)a,(L_Z (1)0) +a3(0 q- )

=li'[ (h(g) +2)(h(g) + 1)(-4h (g» -2(h(g) + 1)(-3h(g)(2h(g) +2))

+( -2h(g))(2h(g) + 1)(2h( g ) +2)] . (4 .14)
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At the UV CFT, (X(A-t)0(0)) is a function of h which vanishes identically .
Away from criticality, mixing ensures that the dependence on g combines with
those of h to have the same vanishing function of h(g) .
One could ask whether there is a more natural definition of L 20(g), L_30(g)

off criticality such that they do not mix . We shall argue for the negative answer,
and try to show the difference between our problem and the usual mixing of
primary fields of close dimensions . In the RG literature [36], (primary) fields mix
when the anomalous dimensions matrix y,' is non-diagonal, see eq . (2.25) . Its
eigenvalues and eigenvectors are the new scaling dimensions and fields respec-
tively . The field corresponding to a zero eigenvalue is called RG invariant
combination . In our case, this would be OZ in eq . (4.7) . However, any choice of
constant coefficients a � a2 would enjoy this property, because both L- 20 and
are RG eigenstates and have the same anomalous dimension . This makes the
difference with the standard literature . We miss a characterization of descendant
fields in the RG .
At CFTs it is clear that scale invariance alone cannot characterise descendant

fields, Virasoro representations are needed to range them . Here we have an
analogous situation away from criticality, and we must go beyond scale covariance
for finding a criterion . We can think of a dynamical symmetry, which is encoded in
the Ward identity for conservation of the spin-four current . Some steps in this
direction are presented in sect . 5 . Within the two-dimensional vector space
(L_ 2 0, L? 10) at level two, there is a linear combination of fields with coefficients
depending on h which flow into its IR analogous . It is somehow "covariant", and
should have a particular meaning . In sect . 5, we show that it is the commutator
[P3 , (p], such that the mixing ensures the correct flow of this expression in the
IR CFT*.

Let us finally note that we could define a field flowing to itself by a g-dependent
linear combination . By eqs . (4.10) and (4.12) this field is for g < g*

(L-2<~p )c2>(x,g)=(1-v(g))[L-20(x,g)-p(g)dZ~(x,g)] (4 .15)

However this satisfies a matricial Callan-Symanzik equation, because Bdldg acts
on the coefficients of the linear combination, i.e . it is not a RG eigenstate .

4 .2 . NORMAL-ORDERING AWAY FROM CRITICALITY

The calculation of the correlator (T(zWW)O(u)) illustrates that the previous
results on mixing follow by normal ordering the renormalized fields away from
criticality . The (non-commutative) normal ordering is defined by

:

	

~:(z, g) = Jim ( ,V(w, g) .~(z, g) - singular terms) .

	

(4.16)
W_Z

* Note that this is not the quasi-primary field at level two .
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This limit exists only if the composite operator :,2/6d : does not have extra
anomalous dimension . As a counterexample consider the renormalized fields 02,2
and 03 , 3 , which interpolates between the corresponding UV and IR primary fields .
In the Landau-Ginzburg description of the UV CFT [37], 02,2 is co, the elemen-
tary field, and 03,3 is the composite field

:cp 2 : = lim[(p(w)cp(z)jw -z12(2t'z,Z-t,3, ;) - singular terms .

The composite field develops an extra anomalous dimension off criticality, because
one finds that 2h2,2(g) - h3.3(g) * 2h2,2(o) - há .3 (0) . Therefore the normal order-
ing is made finite by putting the additional factor

(11Iw -z, ) 2r z.= - y ; '_1+const.xglogu1w-z 1 + . . . .

After this remark, let us present the perturbative calculation . The UV correla-
tors are

The first-order correction involves an integral over x ) of (T(0)(P(z)O(w)(P(x))) .
This correlator possesses holomorphic poles and double poles which are harmless .
A regularization is introduced which respects rotational invariance, and can be
removed after angular integration* . The result is

( T(o)q)(z)e(w)) =z~ T(o)~P � (z)W,)(w))

* See appendix A for details .

A3h

	

1

	

1

	

2

	

47r bg
- 1+
zw y(hIz-wl)° ,~,

l(z~ +ZZ -

	

((l-~Iz - WW -1 )

+(- 1/zw)(-2rrbg)(wiz-wl)'+1(z,w)+o(g2)~,

(4 .19)

1 1 2 h
~ T(O) O0(z)O0(w))0 = (Z2 + -yZ2 z (

1z-wl , ) 2 h (4.17)

L-200(z)OPa(o))() = ( :TO() :(z)O0(0))()=3h/z2(IZI2)2h . (4.18)
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where I(z, w) is a non-polynomial function*

Izl-IWI~o(t - '~ 1 1
I( z w)

	

~ z
2 +

WZ )(

- rrbg)(giz-w1)"(1 +O(y)),

	

(4.20)
W-0
- (1/zz)(-2-rrbg)(g1zl)l(1+O(y)) .

Observe that eq . (4 .19) has a finite y ---> 0 limit, confirming that T does not require
renormalization . Using the first limit in eq . (4.20) we can compute

(T(0)(P(z)O(w))1Z
+ 1, - 2

	

h(g)

	

(1 +O(ß(g)))' ( z

	

w-

	

zw ) (z - w
IZ)zh(K )

(4 .21)

For fields at finite distance, this off-critical correlator has the naive form . The
Callan-Symanzik equation of sect . 2 tells us that this expression has IR limit by
letting g - g* . Therefore the fields at finite distance do not experience any mixing .

Let us consider now the limit w - 0 in eq . (4.19) . The second limit in eq . (4.20)
is finite, therefore the normal order of TO according to eq . (4.16) is finite, i .e .
:T(P : does not develop an anomalous dimension besides the one of 0. We obtain

( :T~ :(z)(P(o))=~z
Z(I )~

4
3h( UZ

l =

-

) zt,

r

hc

bg

.s ) (1+0(a(g)))

	

(4 .22)

Eq . (4.22) is identical to eq . (4 .9), and suggests that the field :T(P : normal-ordered
off criticality equals L,0 defined previously in eqs . (4 .6) and (4.8) .

In summary, this example suggests the following interpretation of IR mixing of
descendants . Away from criticality, correlators of T and (P are highly non-poly-
nomial, therefore the normal ordering procedure yields a result depending on the
coupling constant which does not commute with the RG flow,

lim :T(P:(z,g) 0 :( lim T(w,g)O(z,g)) : .

	

(4 .23)
K--R *

The I .h .s . of this equation is a composite renormalized operator having L _zoo as
UV limit . The r.h .s . is L_ Z(p' of the IR CFT.

* The full expression of Az,w), given in the appendix, fulfills the Ward identity coming from

conservation of the stress tensor .
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Let us discuss the generalized c-theorems of sect . 3 in perturbation theory .
Their result, eq . (3.10), establishes that the variation of c � along the flow is given
by the (O,-2(9,,-2) correlator evaluated at scale A - ' .

In the case of Zamolodchikov's c-theorem (c 2 = c), the use of eqs . (2.4), (2.5)
and (2.11) into eq . (3.10) gives [1,3]

-pdc(g)ldg= -6172p2 .

For one-coupling flows, this equation can always be integrated as

(4 .24)

c(g) - c(0) = 67r 2f )p(g) dg= -37r ' yg2 - 2~r 3bg3 + O(g 4 , y3g3)

	

(4 .25)
0

and the net change of the central charge is

`
-

12
Jc =c(0) -c(g ") =

	

+ O( y,a) =
-;

+ O(ni-4) =c(m) - c(m - 1) + O(m- 4)

(4 .26)

in agreement with the values of (TT) at the UV and 1R CFTs.
Let us now discuss the current (T4 ,0 2 ) in eq . (4 .3), defining the charge c 4 . Its

value at the CFT is

The first condition of the extended c-theorem, (c 4 )uv > (c 4 ), K , is therefore a
trivial consequence* of cw > c� R . Inspection of the conserved current at level 6,
given in refs . [5, 10], also suggests that c2t: is a polynomial of order k in c with
large positive coefficients, such that this condition is always satisfied .
More interesting is the computation of the net flow of c 4 . The substitution of

eqs . (4.7), (4.9) and (4.11) into eq . (3.10) yields

-(3oc 4 10g= -4 X 6 X 7( OZ(1-c -1 )U2(11) ) A -8 _

=2z s(T4 (z)T4(0)~ =c 2 +80c .

	

(4.27)

-98 X 6-rr 2p2 (1 + O(g, y» .

(4.28)

* For non-unitary theories none of the two bounds holds . Nevertheless, the quantitative prediction of
the sum rule eq . (3 .11) is still valid .
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The integration gives*

Therefore we find that it does not match the expected value of eq . (4 .27) :

In order to explain this discrepancy, we suppose that the RG flow carries the
current :T2 : (z, g) into a mixture of IR conformal fields, as in the case of
descendants of 0 . There are two fields at level 4 in the IR Verma module of the
identity, therefore we expect

The coefficients p and .l are computed by applying the c-theorem to another
charge,

Eq . (3.10) reads in this case

-ß ac 4/ag = -6 x 7( OZ(p,- ') aZ O(0))A _8 = -280 x 67T2ß 2(1 + 0( g, y ))
,

(4.33)

and it yields

c4(0) - c4(9 * ) = 98'3C + 0(y4) .

	

(4 .29)

C4(M) -C4(m - 1) - (ac4/ac) dc - 81 JC .

	

(4.30)

:T2 :(z,g*)=(1+pdc) :T2 :,(z)+aaca,T' +O(y4 ) .

	

(4.31)

c4 =2zs(T4(z)dZT(0)~=7x36c

	

at CFT .

	

(4.32)

c4(0 ) - c4( g*) = 280 dc + 0(Y4)'

	

(4.34)

again different from the expected value (4 .32) . By computing the correlators of
:T 2:(z, g*) in the IR CFT according to eq . (4.31) and matching the flows of c 4 and
c4, it follows that

:T2 :(z,g*) =(1 +

	

Ac) :TZ :'(z) - 118 ,áeö,T'+O(y 4 ) .

	

(4.35)

This is the main result of this subsection . Notice that this c-theorem argument is
quite effective in computing a higher-order effect 0(g 2, g3), which would be rather
cumbersome by straightforward perturbative expansion of (T4 T4 ) .
Let us remark the difference between the cases CIR = 0 and CIR =?~ 0 . In the

former case of a purely massive theory, the extended c-theorems hold in their

*Due to non-renormalization of the current OZ , the same result can be obtained in the bare theory,

by integrating the sum rule, eq . (3 .11), and substituting at the end of the calculation the

renormalized coupling by eq . (2 .10) .
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naive form of subsect . 3 .2, and give constraints on the RG flow along integrable
directions . In the latter case, there is additional freedom in the parameters
specifying the flow of descendants . These arguments can still give constraints on
the RG flow if supplemented with additional informations . These can be obtained
from three-point functions or from the Ward identities for conservation of higher-
spin currents, to be discussed in the next section . Conversely, the extended
c-theorems can give the flow of currents once the nature of the IR CFT is known .

5. Ward identities for currents and their flow

Let us now discuss the Ward identities (WI) associated to conservation of the
stress tensor and of the spin-four current away from criticality . This subject is
interesting in itself, in particular the occurrence of invariance equations due to
conservation of the latter current (to be defined later in more clear terms) .
However, a complete analysis is beyond the scope of this work . Therefore we shall
limit ourselves to write the equations, study their RG flow and derive consistency
checks for the mixings of operators previously found ; in short how all fit in the
IR CFT.

5 .1 . THE WARD IDENTITY OF THE STRESS TENSOR

By performing a conformal transformation within the path integral, the follow-
ing fundamental relation can be derived [25]

dz( T(z)(P0(xl) . . . (P0(xn) ) + 4dz( O(z) (1)0(xl) . . .00(xn)I

n
=7rY_( 5(z - xi) dx; - dzb(z - xi)hi)( ~Po(xl) . . . ~Po(xn» .

	

(5.1)
=l

Renormalization replaces 0 � - 0 . Let us remind that this equation states covari-
ance of the theory under conformal transformations, therefore it exists whether
there is conformal invariance or not .
At the UV CFT, the 0-term drops out and this equation gives the analyticity of

the correlator (T(z)(P . . . ) in the z complex plane . Together with the behaviour at
infinity, this is enough to reconstruct the full function [I l]

n
hi

~T(z)(Po(xl) . . .(P,1(xn)~ - If,

	

(z-,r . )2

(5 .2)

Away from criticality, analyticity of T is lost and there is no analogue of eq . (5.2) .
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Nevertheless, both at and off criticality, we can integrate eq . (5.1), eliminate the
correlators involving T and O, and establish differential relations involving
(0(x,) . . .O(x � )) only . These encode the true symmetries of the theory, those
leaving the vacuum invariant, i .e . 8S = 0 .
At the conformal point, invariance transformations belong to the group SL(2, C) .

In the non-critical theory, only translations and rotations survive . For example,
consider the case of translations . Upon integration of eq . (5 .1) by j~ d2zl2i, where
.1 1 is the strip containing the point x, and bounded by the lines t = t, - e and
t = t, + e, it follows that

[P, 0 (x" g)] = d0(x,, g)ldxi .

	

(5 .3)

Clearly P = P, is the momentum, the charge associated to conservation of the
stress tensor, eqs . (3.4) and (3.5) .

Let us now integrate eq . (5 .1) over the whole space . On the l .h .s ., the contour
goes to infinity and vanishes because the correlator goes sufficiently fast to zero . In
operator notation this means that P10) = 0, the vacuum is translational invariant
[11] . The r.h .s . gives the differential equation of translation invariance

-( O(XI, g) . . . O(x� , g)) = 0 .

	

(5 .4)
t-i ax~

How is the WI (5.1) modified when we flow to the IR CFT? Notice that the
contact term depends explicitly on the UV conformal dimension . In order to
understand this point, let us study covariance under scale transformations and
recover the Callan-Symanzik equation (2.14) . Integration of eq . (5 .1) by J~,,-dZz
gives

n a
J zd2Z~ 0(Z)O(x,) =7r (xi3+h;)~(P(x,) . . .(P(x� ))

f = I

	

f

(5 .5)

Let us now add the conjugate equation, and replace j0 = 27rOJ(P _ -27rß aSlag.
It is not difficult to prove by the definitions of sect . 2 that

ßaO(x,g)lag=2(h(0) - h(g))O(x,g) .

	

(5 .6)

The Callan-Symanzik equation (2.14) is indeed recovered by combining eqs . (5.5)
and (5.6) . While this equation has a smooth IR limit into the WI for scale
invariance of the IR CFT, the original WI (5.1) does not . By inspection of all the
terms, one convinces himself that the trace of the stress tensor vanishes as an
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operator of the IR CFT, but it leaves contact terms

o2(z) MXI) « . . 'l) (x �)) 1IRCFT

=47rY_(hi(g *)- hi(O»s(z-xi)( ~P(xj . . . ~p(x � )), (5 .7)
i=1

which replace h --> h' in the r.h .s . of eq . (5.1) .

5 .2 . THE WARD IDENTITY OF THE SPIN-FOUR CURRENT

We proceed by analogy with the case of the stress tensor . The following OPE at
CFTs can be derived by the methods of ref . [11] for the generic field fi t, of
dimension h :

2
:TZ :(,7) l~o(Z) -

(71 -z)
(L- ' L- Z + (h - 1)L-3)4~o(z)

+

	

1

	

2 (2hL -, +L? i)0o(z) +

	

I

	

3 (2h + l)L-,~o(z)
(n - z)

	

(7l -z) .

h(h + 2)
+

	

46� ( z) + regular terms .

	

(5 .8)
(7l - z)

The WI for the spin-four current off criticality will contain a correlation function
with insertion of the conservation law, and the contact terms reproducing eq . (5 .8) .
In fact, contact terms are not modified off criticality until we hit the IR point, as in
the previous discussion of the stress tensor . Therefore we have

a z( :T' :(z) <~(x 1 ) . . .MXJ) +M(( )2(z) ~)(xi) . . .o(XI)

n l

-1 J5(z-xi)2[dAL-,(xi)+(hi - I)L-3(xi)]
i='

2h i + 1
-d-5(z -x;)[ 2hiL_z(xi) +dd 2 1 +d~8 (z - xt)

	

2

	

d'i

«XI)
-asd-'8(z-xt)

h
i
(h

i
+ 2)

~( . . .ca(x,J) (5 .9)

This equation establishes covariance of the theory under transformations gener-
ated by this current, which are, roughly speaking, squares of conformal transforma-
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tions . A subset of them leave the off-critical vacuum invariant, i .e . they are
symmetry transformations . We can derive the equations establishing the invariance
of the theory, as we did in the case of translations, even if this symmetry is not
clear to us in physical terms .
Upon integration of eq . (5.9) on a strip containing x,, we get the commutation

relation

[P3(g),~(x1,g)1 = 2(dx,L-20(x 1 ,g)+(h-1)L-30(xi,g»* (5 .10)

For the perturbing field 0, we can use the null-vector equation (4.2) and find

[P3(g), <'> (Z,g)1 =h+2az(3hL_20(Z,9)-h+la20(Z,g)I . (5 .11)

When eq. (5.9) is integrated over the whole space, its l .h .s . vanishes, as in the
case of T . In fact the contour correlator goes to zero sufficiently fast, and gives
P3 10) = 0 . The r.h .s . yields the invariance equation

n

Y_ [ ax;L-2(xi) + (hi - 1)L-3(xr) ]( O(xi, g) . . .O(xn , g)i = 0 .

	

(5.12)
i=l

This is the analogue of the WI for translation invariance (5.4) and constraints
off-critical correlators involving 0, L-20 and L-30. Since the spin-four current is
not a Noether current, i .e . it cannot be derived by a variation of the action, it
should be considered as an equation of motion of the theory [5] . In the same way,
the equation P3 1 0) = 0 must be thought as a dynamical symmetry . Both of them
may not have a geometrical interpretation . Technically, these are remnants of the
conformal structure surviving off criticality . The main question is to translate eq .
(5.12) in the language of integrable quantum field theory [32] .
The argument leading from eq . (5 .1) to the WI for rotations can be generalized

similarly . The analogue of the Callan-Symanzik equation can also be obtained, see
eqs . (5 .5) and (5 .6), but the insertion of f02 in the correlator remains explicit .

5 .3 . IR LIMIT AND CHECKS OF MIXING COEFFICIENTS

Let us study the infrared limit of the previous commutators and their interplay
with IR mixing of descendant fields derived in sect . 4 . Let us first notice that the
canonical commutator [P, 0] = az(P not only ensures that T keeps the canonical
dimension, but also says that it has a smooth IR limit as 0 does . The substitution
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of the IR mixing of L_ 2 (P, eq . (4.12), into [P3,(P] gives*

=2a=[( 1 + v)L 2 <p'-,1ya2<p'](1+o(y2))_[p3,,p'l(1+o(y2)) .3 - _2

(5 .13)

Therefore, to the accuracy O(y) of our calculation, we have checked that the IR
mixing conspires to give to this commutator the correct expression in the IR CFT,
up to a possible harmless overall factor .
We can repeat the analysis for [ P3 , T]. We need the OPE at CFT

.T2 :(rl)T(z) = 77 1 z dz ~3 :T2 :(z) + C 6 l d?T(z)I + . . . .

This yields the commutator

[P3(g),T(z,g)] =dz(3 :T2 :(z,g) + 6'(c(m) - 1)aiT(z,g» .

	

(5.14)

Again, at the end of the RG flow, this commutator does not have the correct form
of the IR CFT. This is recovered by substitution of the IR mixing of :T 2:(g*), eq .
(4 .35), which was computed by the extended c-theorem,

[P3(g*),T(g *)] =dz [3(1+ .1c) :T2 :'+ 1(C(m) - dC-1)d2 T' 1

_ (1 + 2
27 Jc)[P� T']

where do = 12/m3 + O(m-4) .
In summary, the WI for the current of spin-four contains explicit data of the UV

CFT, but its flow to the IR CFT is correctly recovered when mixing of descendant
fields is taken into account. Notice that an overall constant is present, which
cancels in IR CFT equations.

Conversely, we can assume the correct IR limit of the charge in the general form
P3(g*) = KP3, and obtain exact mixing coefficients of various fields, up to the
overall undetermined constant rc . Cross-checks with the flow of other field equa-
tions may fix it . We hope to exploit the full structure of the field theory off
criticality in a future work .

* Recall h = 1 -y/2 and h' - 1 +y/2 .

_ (1 + 27 ac)d,[3 :T2 :' + ~(C(m - 1) - 1) a2T'~

(5 .15)
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Perturbation of CFT by a slightly relevant field was shown a computable
non-trivial playground for understanding not scale-invariant theories . The pres-
ence of higher-spin conserved currents manifests the fact that the CFT structure is
not completely destroyed . More work is needed to connect this to known struc-
tures of integrable field theories [10, 32, 38] . Nevertheless, we can address technical
questions on the RG flow of composite operators and on off-critical Ward
identities, and hopefully understand physical issues, like the dynamical symmetries
associated to higher-spin conservation laws .

In this respect, the case of the strongly relevant perturbations y > 1 seems more
difficult . Besides the exciting work on the construction of exact S-matrices
[16,17,19-21], analytical results are rather difficult to obtain [7,33] . The under-
standing of IR singularities is crucial and hopefully it will not imply the complete
breakdown of the CFT structure . In short, at the critical point minimal theories
are simpler for small m, off criticality they seem simpler for large m.

J . Cardy, P . Christe, V . Dotsenko, D. Friedan, M. Lässig, A . Ludwig,
G. Mussardo, F . Ravanini and P . Di Vecchia are acknowledged for interesting
discussions . We both thank the support of the Niels Bohr Institute, where this
work was done. A.C . would also like to thank the Aspen Center for Physics and
the Department of Physics, Rutgers University for hospitality .

INTEGRALS

6 . Conclusions

Appendix A

Correlators of descendant operators at CFT can be computed by eq . (5.2) and
the definition

L

	

<Po ( z) = d,
T( -q) 0o( z)

(77-z)

t r

	

i

The integrals in the lower order of conformal perturbation theory can be done by

d2x

	

(á -X) Y(1-b) s

	

-

	

7r(á
- b) Y+'5

	

F(a+0-1)

(ja_ CI2)a(IX-612)a

	

( j a- b1 2 ) « +ß_i

	

Qa)F(0)

X
I(1 -f3 +8)1'(1 -a+y)
I'(2+8+y-ß-a)

(A.2)
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More difficult integrals show up in f d2x (T(0))t,(z)-Po(w)O �(x))o of subsect . 4 .2,
for the term

A
2>>

( 1 -Y/2)
IZ-wI4_

2v I(w,Z)

1

	

1

	

1

	

1
-aoh

	

d2x (x2
- x(z - x)

	

x(w -x) ~ (IZ - xI lw-XI)2-v > (A.3)

where I(z, w) appears in eqs . (4.19) and (4.20). We regularize the holomorphic
poles and the double pole by the replacement 1/x __,X/(Ix12)1+E which respects
rotation invariance, and compute the integral by using the Feynman parameters .
Then we can take the limit c - 0, i .e . the holomorphic poles are harmless, and
obtain

J(w, z)
= - (7r/2)A�bhy(1 + O( Y))

Iw-zla -3i,

x
~ds ( .s(1 - .s) )

s,i2- 1 (ws+z(Z-S ))Z
F,(Y>2 ;3 ; ), (A .4)

(w2s +z2 (1 -s))

where 6 =1 - [s(1 - s)(w - z)2/(w2s + z2 (1 - s))] . Since 0 < 6 < 1 and F(y, 2; 3,1)
= 1 + O(y), we can approximate F - 1 + O(y) inside the integral (A.4) . Then the
limits in eq . (4.20) can be obtained in terms of hypergeometric functions and
expanded for y - 0 as well . The conservation of the stress tensor provides a test of
eq . (A.4),

d� ( T(21)0o(z) ~Po(w)) =a�J(z--7>w-77) = z'TTYÄod,, ( 0o(rl) ~P o(Z)<Po(w)i .

(A.5)

Eq . (A.5) can be checked explicitly at the symmetric point ~wI 2 = Iz12= 2Iw-ZIZ
= rc 2 , rl =0.

References
[1] A.B . Zamolodchikov, JETP Lett . 43 (1986) 730
[2] H. Saleur and C. Itzykson, J. Stat . Phys . 48 (1987) 449
[3] A.B . Zamolodchikov, Sov. J. Nucl . Phys . 4 6 (1987) 1090



690

	

A. Cappelli, JL Latorre / Conserved currents offcriticality

[4] A.A . Ludwig and J.L. Cardy, Nucl . Phys . B285 (1987) 687
[5] A.B . Zamolodchikov, JETP Lett . 46 (1987) 161; Int. J. Mod. Phys. A3 (1988) 743;
A.B . Zamolodchikov, Integrable field theory from conformal field theory, Proc. of the Taganuchi
Symposium, Kyoto 1988, to appear in Adv. Studies Pure Math .

[6] J.L . Cardy, J. Phys. A20 (1987) L891
[7] VI .S. Dotsenko, Nucl . Phys . B314 (1989) 687
[8] J.L . Cardy, in Champs, cordes et ph6nomènes critiques, Proc. of the 1988 Les Houches summer

school, ed . E. Brézin and J. Zinn-Justin, (North-Holland, Amsterdam, 1989)
[9] A. Bondi, G. Curci, G. Paffuti and P . Rossi, Metric and central charge in the perturbative

approach to two dimensional fermionic models, preprint Pisa Univ . IFUP-TH 23/89;
D. Kutasov, Phys . Lett . B227 (1989) 68

[10] T. Eguchi and S.-K. Yang, Phys . Lett . B224 (1989) 373
[11] A.A . Belavin, A.M . Polyakov and A.B . Zamolodchikov, Nucl . Phys . B241 (1984) 333;

see also Conformal invariance and applications to statistical mechanics, ed . C. Itzykson, H. Saleur
and J.B . Zuber (World Scientific, Singapore, 1988);
A. Cappelli, in Proc . of the XXIVth Int. Conf . on High energy phys ., ed . R . Kotthaus and J. K6hn
(Springer, Berlin, 1989) and ref. therein

[12] R.J . Baxter, Exactly solved models in statistical mechanics (Academic Press, New York, 1982);
V. Pasquier and H. Saleur, Nucl . Phys . B330 (1990) 523

[13] J.L . Cardy, Phys. Rev. Lett . 60 (1988) 2709
[14] K.G . Wilson and J. Kogut, Phys . Rep. 12C (1974) 75
[15] A.M . Polyakov, Phys . Lett . B72 (1977) 224
[16] A.B . Zamolodchikov and AI.B. Zamolodchikov, Ann. Phys . 120 (1979) 253
[17] A.B . Zamolodchikov, Int. J . Mod. Phys . A4 (1989) 4235
[18] M. Henkel and H. Saleur, J. Phys . A22 (1989) L513 ;

G . v. Gehlen, Nucl . Phys . B330 (1990)
[19] J.L . Cardy and G. Mussardo, Phys . Lett . B225 (1989) 275;

H.W. Braden, E. Corrigan and P.E . Dorey, Phys . Lett. B227 (1989) 411 ; preprint UDCPT 89/53;
P. Christe and G. Mussardo, Nucl . Phys . B330 (1990) 465;
V.A . Fateev and A.B. Zamolodchikov, Int. J. Mod. Phys . A5 (1990) 1025 ;
A.B . Zamolodchikov, Landau preprint (1989)

[20] T. Hollowood and P. Mansfield, Phys . Lett . B226 (1989) 73 ;
M. Henkel and H. Saleur, J. Phys . A22 (1989) L513

[21] P. Christe and G. Mussardo, Nucl . Phys . B330 (1990) 465
[22] E. Brézin, J .C. Le Guillou and J. Zinn-Justin, Phys . Rev. D8 (1973) 434
[23] G. Parisi, Statistical field theory (Addison-Wesley, Reading, MA, 1988)
[24] C. Itzykson and J.-B. Zuber, Quantum field theory (McGraw-Hill, New York, 1980)
[25] A.M . Polyakov, Gauge fields and strings (Harwood, New York, 1987)
[26] D. Kutasov, Phys . Lett . B220 (1989) 153
[27] M. Lässig, Nucl . Phys . B334 (1990) 652
[28] VI .S . Dotsenko, Proc . Conf. on Yang-Baxter equation, conformal invariance and integrability,

Camberra 1989, Int. J. Mod. Phys . A, to be published
[29] A.M . Polyakov, JETP 30 (1970) 151
[30] J.L . Cardy, J. Phys. A21 (1988) L797 ;

J.L . Cardy and H. Saleur, J. Phys. A22 (1989) L601 ;
A. Cappelli and J.1 . Latorre, unpublished

[31] R.G . Pogosyan, Sov. J. Nucl . Phys . 48 (1988) 763;
D.A . Kastor, E.J . Martinec and S.H . Shenker, Nucl . Phys . B316 (1989) 590

[32] R. Sasaki and I. Yamanada, in Adv. Studies Pure Math . 16 (1988) 271
[33] F.A . Smirnov, Reduction of sine-Gordon model as perturbation of minimal models of conformal

field theory, Lomi preprint E-4-89 ;
J.L. Cardy and G. Mussardo, Form factors of descendent operators in perturbed CFT, preprint
UCSBTH 90-2



A. Cappelli, J.L Latorre / Conserved currents offcriticality

	

691

[34] J. Kodaira, Y. Sasai and H. Sato, Conservation laws away from criticality beyond the lowest order,
preprint Hiroshima (1989)

[351 D. Friedan, unpublished
[36] P. Pascual and R. Tarrach, QCD: Renormalization for the practitioner, Lecture Notes in Phys . 194

(Springer, Berlin, 1983);
J.C . Collins, Renormalization (Cambridge Univ . Press, Cambridge, 1984);
D.J . Gross, in Methods in field theory, Proc. of 1975 Les Houches summer school, ed . R. Balian
and J. Zinn-Justin (North-Holland, Amsterdam, 1976)

[371 A.B . Zamolodchikov, Sov. J. Nucl . Phys . 44 (1986) 529
[38] M.T . Grisaru, A. Lerda, S. Penati and D. Zanon, Phys . Lett. B234 (1990) 88 ; preprint MIT

CPT-1820 (1990) Nucl . Phys . B, to be published; preprint MIT CPT-1850 (1990)


