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The modular invariant partition functions of two-dimensional minimal superconforrnal theories are obtained by extending a 
systematic method developed for conformal theories. They are classified in three infinite series and a few exceptional cases 
and labelled by simply laced Lie algebras. 

In  a recent paper  [1] (hereafter referred as I), a systematic method  has been developed which yields 
modular  invariant part i t ion functions of two-dimensional  minimal conformal  invariant  theories with 
central charge c < 1 [2,3]. There are strong indications that this is a complete classification, where each 
solution is labelled by a pair  of  simply laced Lie algebras. Superconformal  minimal  theories [4] are 
invariant under  a larger class of  local t ransformations satisfying a pair  of  superconformal  
N e v e u - S c h w a r z - R a m o n d  algebras and have c < 3- 

The tricritical Ising model  in two dimensions is an example of  the simplest superconformal  theory [4]; 
since it has e = ~ it is also a minimal conformal  theory. Amazingly,  it provides a realiZation of  N = 1 
supersymmetry in nature. 

In  this letter we obtain modular  invariant part i t ion functions for superconformal  theories by  extending 
the methods in I. The two mathematical  problems are very similar and we shall see that  superconformal  
solutions are made  by the same building blocks as the conformal  one. 

The modular  invariance problem has been settled in ref. [5] and two simpler solutions have been 
obtained. The unitari ty condit ion for representations of  the superconformal  algebra constrains the values 
of c < -32 to the discrete series [4] 

c = ~ [ 1 - 8 / m ( m + 2 ) ] ,  m = 3 , 4  . . . . .  (1) 

The values of the highest weights can be consistently constrained tO a finite set (the Kac  table): 

hrs= hm . . . .  +2-s--- {[(rn  + 2 ) r -  ms] 2 -  4 } / 8 m ( m  + 2) + ~ [ 1  - ( - ) r - ~ ] ,  

l<~r<~rn-1,  l ~ < s ~ < m + l .  (2) 

The superconformal  algebra and its representations split into two sectors, the Neveu -Schwarz  (NS) and 
R a m o n d  (R) sectors, which are selected by  ant iper iodic  or periodic bounda ry  condit ions on fermionic 
fields, respectively. In  eq. (2), the NS states have r - s even and the R states r - s odd. The  NS vacuum 
state has h = 0, i.e. r = s = 1, while the R " v a c u u m "  ,x has h = ~ c  and appears for even m only, at the 
self-symmetric point  of  the Kac  table (r,  s)  lm  =(3 ,½m+l)- 

A fundamental  domain  A is a set of independent  h values in each sector: ANS = {hrs [1 ~< s ~< r ~< rn - 1}, 
r - s  e v e n a n d  A R =  {hr~]l  <~s<~r- 1 fo r l~<r~<  [ ½ ( m -  1 ) ] a n d l  <%s<~r+ 1 f o r [ l ( m +  1)] <~r<~m- 1}. 

1 On leave of absence from Dipartimento di Fisica and INFN, Sezione di Firenze, Largo E. Fermi 2, 1-50125 Florence, Italy. 
,1 This is the state of lowest energy in the R sector and it is globally supersymmetric invariant. 

82 0370-2693/87/$03 .50  © Elsevier Science Publishers B.V. 
(Nor th-Hol land  Physics Publishing Division) 



Volume 185, number 1,2 PHYSICS LETTERS B 12 February 1987 

As in conformal theories [3], the modular invariance conditions on the partition function of the theory 
defined on a toms yield the possible values of scaling dimensions (h, h) of primary (super) fields, with h 
and h taken from the Kac table. The partition function is the sum of four terms for periodic ( + )  and 
antiperiodic ( - )  boundary conditions. Let us take a toms with periods ~1, ~2, ~" = ~°2/°q. Im ~" > 0 and 
denote Z ( a , / 3 )  the term pertaining to condition a along w 2 and 13 along ~01, a, fl = _ .  We have 

= Ev~'h~ Xh (~')(X~ ( ) )  , (3a) Z(_,_)(~') zvS=Tr ( .q - )NS  = NS NS NS ~ * 
h,F~ 

F ~JV'hT, X4 (¢)(X~ ( ) )  , (3b) Z ( + , _ ) ( T ) = Z N " ~ = T r ( B r ( - )  )NS = ~ ~'~ ~'~ ? * 
h,h 

Z(_,+)(~)  = Z R= Tr(Y' )R = Z J~'~ +XaR(~') (X~ (~')) *, (3c) 
h,h 

Z(+,+) = Z ~ =  Tr (~q ' ( - )  V)R = T r ( - )  F, (3d) 

In eqs. (3), the o~ 1 boundary conditions select the sector (NS or R) of states in the transfer 
matrix ~---- exp{2i~rD'(L 0 - ~ c )  - "r*(L o - 1 c )]}, while periodic ~2 conditions yield the sign ( _ ) F  
for the fermionic states. In the last term, Xh ] are the characters of the irreducible superconformal represen- 

tations of weight h [6] for J = R, NS and NS sectors. They include the prefactor exp( -2¢r i¢c /24)  for all J 
and for J =  NS they contain the sign ( _ ) F  in the trace over NS states, as it will be explained later. 
Summations extend to the h values in eq. (2) of the NS or R sectors. 

The decomposition Of the trace into irreducible representations yields the non-negative integer matrices 
,/K s- = vt/'~ In particular, for J = NS signs may arise in the decomposition, but they are included in the h,h h,h" 

= J~Phh" definition of X~ s characters, in such a way that modular invariance will give JV'h~ s N~ Therefore all 
matrices will be positive. In the following, the modular invariance conditions will determine them. 

Since the R states, excluding the vacuum, are doubly degenerate and of opposite "chirality" F = (--)F, a 
factor ~ -  will be included in the definition of X~ in eq. (3c); in eq. (3d) their contributions cancel leaving 
the constant Z ~ which is not determined by modular invariance [5]. 

The modular group F = PSL(2, ;v) of -r-transformations [7] 

F ~ A =  , A:  ¢ ~ a ~ . =  c'r+------d 

is generated by the transformations S: ~- ~ - 1/~- and T: ~- -~ "r + 1, 
conditions. We have 

zNS(~ + 1) = z N s ( , ) ,  z ~ S ( -  1/~') = z N S ( r ) ,  zNS(~ " + 1) = zNS( ' r ) ,  

zR(  + 1) = = 

It follows that modular invariance requires 

Z = a ( Z  ~s + zN"~+ Z R) + b Z  f~, 

Zf~(~" + 1) = ZR(~) ,  

(4) 

which may change boundary 

zNs( -- l / r )  = ZR(r ) ,  

zr (- = (5 )  

(6) 

with a, b free constants up to the normalization. From eqs. (3), we see that this corresponds to the 
projection F = ( - - ) F =  1 in the NS sector; by taking b = + a we may have F = _+ 1 in the R sector. These 
projections yield consistent local theories called "spin models" in ref. [4]. The subgroup F 2 of iRIF 2 = 
{(a ba)=(~ 0)mod 2}, is generated by T 2 and S T 2 S  and transforms each term into itself; the local 
fermionic theory in the NS sector, corresponding to Z = Z Ns, is F 2 invariant only. 
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Table 1 
List of known partition functions in terms of affine A(11) characters (from I). 

12 February 1987 

k + l  

k>~l ~ IXxl a A~+ 1 

4 0 + 1  2p--1 2p--1  

k + 2 = e p + 2 ,  ~ IXxl2+2]X20+ll2+ ~ (XxX~o+2-x + e.c.) = Y'~ IXx + X4p+2_xl2 +21X2p+x [ 2 D2o+2 
p >11 x odd = 1 X odd = 1 x odd = 1 

2 , ~ 2 0 + 1  

40 - 1  2p - 2  

k+2=4p,  ~ [Xxl 2+ 1X2012 + ~ (XxX~o-x +c.c.) D2o+1 
p ~> 2 X odd = 1 ~ even = 2 

k + 2 = 1 2  [Xlq -  X712 + [X4-b  X812-} - [ X s +  X l l [  2 E 6 

k + 2 = 1 8  IX1-[-X1712-1 - IX8q-  X1312 q - [X7-k  X I I I 2 - k  IX9 [2 q-[(X3Xi-5)X~ -~c.c.] E 7 

k +2 = 30 IX1 + Xll + X19+ X2912 + IX7 + X13 +Xl7+ X2312 E8 

Here we discuss the invariance under the full modular group and we present matrices "f'~h solutions of 
eqs. (5). Our results are natural extensions of those in the conformal case, which were analyzed in details in 
I. Let us state them: 

(i) the characters Xh J carry a unitary projective representation of the finite group M4N = I'/F4N = 
PSL(2, 7I /4NZ)  for m odd and M N for m even, where N = 2 m ( m  + 2); 

(ii) the solution factorizes in the tensor product of a pair of modular invariants matrices of the affine 
A(x 1~ K a c - M o o d y  algebra [81, for representations of level k --- m - 2 and k'  = m, respectively; 

(iii) the positive solutions are made by pairs of positive affine invariants (they are recalled in table 1). 
In I they were labelled by simply laced Lie algebras, because the values of the index r in the diagonal 
matrix terms were recognized as the Betti numbers of such algebras. Superconformal solutions are 
therefore labelled by a pair of simply laced Lie algebras and are listed in table 2. 

For rn odd only the diagonal solution ~f'h, ~ = 3h, ~ appears because it is the unique choice for both k 
and k'  odd (algebras (Am_ 1, Am+l) ). For even rn two further infinite series appear. They are for m = 4p: 

(Am_l, D20+2 ) p >~ 1 and (D20+1, Am+l)  p >~ 2; for rn = 4p + 2: (Am_l, D2o+3 ) p >/1 and (D2o+2 , Am+l) 
O >~ 1. The (D, D) pair is equivalent to one of the two. Solutions (A, A), (A, D2p+2 ) and (D2~+2 , A) were 
already found in ref. [5]. In addition, there are exceptional cases for m = 10, 12, 16, 18, 28, 30, by 
combining (A, E) or (D, E) affine invariants. There are two more solutions for m = 10 ((A9, E6) , (06, E6) ) 
and m = 12 ((E6, A13 , (E6, D8) ), one more solution for m = 16 ((Aas, E7) = (09, ET)), m = 18 ((ET, A19 ) 

(ET, 911)). m = 28 ((A27 , E8) = (915 , E8) ) and m = 30 ((E8, A29 ) ~ (E8, O17)). 
As our analysis parallels that of I and sometimes reduces to it, it seems natural to extend the two 

conjectures made there: namely, 
(i) our methods yield all invariants including those with negative signs ,2; 
(ii) the subset of positive invariants is labelled by simply laced Lie algebras. In the supersymmetric case 

however, this labelling is not unique, since D20+1 combinations are sometimes degenerate with A m ones; 
we shall clarify this point later on. 

These solutions yield the operator content of superconformal theories as follows. In the R-sector, there 
exist primary conformal fields Oh-+~, called "spin-fields" in ref. [4], with multiplicity given by the matrix 
elements .W'h~ ¢ 0. In the NS sector, pr imary superfields ~h,~ corresponding to ,g ,~s ~ 0 decompose into 
bosonic and fermionic components (conformal) fields and their descendants; fermionic components are 
cancelled by the projection 1 + ( - - )F  leaving only bosonic combinations. 

:~2 A proof exists for conformal solutions when rn has no square factors (unpublished). 
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Table 2 
List of known partition functions in terms of superconformal characters: 
( m ,  m + 2) or  ( m  + 2, m )  b y  e x c h a n g i n g  r ~ s. 

x N S = x ,  x N S = x ,  x R = x ;  (p' ,p) cor respond  to 

m--1 m + l  m - - ,  m + l  
1 1 

m)3 7 E 12 (Ix,-,12+lL~12)+ 7 E E IL, I 2 (Am 1, Am+l)  
r = l  s = l  r = l  s = l  

p' = 4p 
p>l 

p' = 4 0 
p ) 2  

p'=lO 

r -- s even r -- s odd 

1_ y~ iXr.,+Xr.p_,]2+2lx,.2o+l[2+{X_~2 } 
4 r = l  s = l  

odd odd 

/ -2/2,- ,  ) 
+ l r e ~ e 2 t s ~  [Xr, s@2r.p-s'2-l-212r.2#+l[2 

i 'p'-I 2"+ 1¢2[ [2 2 0 - 2  ) 12.1 ) / * ! £ Ix . + I2 (x.x, . . . .  + } 
4 s = l  r = l  e~en x r = 2  

odd odd e v e n  

_ 12 (2r,2  . . . . .  +c.e.)J 
r = l  s =1 r~en2 . 

e v e n  odd odd 

p--1  + ~ + -, 1 p- -2  1 
7 2., [[Xrl X : [  + I x ~ s x m l  2 (x 2)]=7 L ([X~4+Xr812+{X~2}) 

r = '  r = 2  
odd e v e n  

p t - 2  p ' - - i  
1 li 1 +~- ~, (12,1+2,-7 + [2rs+2,.1,12)+7 ~ IL4+L812 

r = 2  r = l  
e v e n  odd 

/ - 1  

E (]Xrl+Xr5+Xr7+XrH] 2+ ]Xrl+2r5+Xr7+Y(rll12+212r4+2rS] 2) 
r = l  
odd 

p ' -  1 
1 

12 2 +  * 7 E { ]Xrl-l-Xrl7[2+ [ Xr5+Xrl3 + ] xr7+Xrll[ ]Xr912+[(Xr34-Xr15)Xr9 +c'c']} 
r=' 
odd / 

p ' - i  p ' ~ 2  
1 1 

+7 ~ (x -*x}+7  ~ ( x ~ 2 }  
r = l  r = 2  
odd e v e n  

p 1 ' -  + + 2 +  1 
7 2~ ( I Xrl Xrll Xrl9 + Xr29 [ [ Xr7 + Xrl3 + Xrl7 + Xr23 ] 2) 

r = l  
odd 

p '  i / - - 2  
1 1 

+7 ~ {x-~23+7 ~ (x-+Z} 
r = l  r = 2  
odd e v e n  

(Ap,-1, D2p+2) 

(D2p+l ,  A p - 1 )  

(Ap,_ l, E6) 

p '  = 10 (D2o+2 , E6)  
= 4 p  + 2  

p' =16 

p' = 28 

( A p ,  1, E7)  

( A p , -  1, E8) 

The main difference with respect to conformal  solutions is the possibi l i ty  of  half-integer spins in the N S  
sector, i.e. , ¢ N s #  0 for s = h -  h ~ g or Z + ½. The exceptional  solutions (A, E) and (D,  E) indeed ~" h,h 
contain half-integer spin superfields: this only  means  that they have ferlrfionic and bosonic  component s  
interchanged; fermionic  components  are still projected out. 

Let us first write the characters and their modular  transformations.  The first Step is to trade the vector 
index (r,  s )  which labels characters m o d u l o  ( m ,  m + 2) and m, - m  - 2), into the scalar )~ = ( m  + 2)r  - ms 
m o d u l o  N = 2m(m + 2). W e  need to consider the cases m odd and even separately. 
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For m odd, m and m + 2 are coprimes, then the discussion in I applies directly: setting X = (m + 2)r + 
ms, we have 

X = % X  m o d N ,  ¢ % = m + 1 - 1 N ,  w0Z=lmod4N.  (7) 

The superconformal characters [6] are written in our notations as follows: 

x~S(,r) = [Nx(½"r)-Nx(½~')] exp(-~scri)~(½(~-+ 1))71-2('/') ~k even, (8a) 

xxNS(~')=xxNS('r+I) = [ N x ( I ( ' r + I ) ) - N x ( ½ ( ~ ' + I ) ) ]  exp(-2cri)~/(½~)~/-2(~ -) X even, (8b) 

XR(r) = 1/2-[Nx(½r ) -Nx(½r)]~l(21")~I-2(~ ") X odd, (8c) 

in terms of the functions 
+co 

N x ( r ) =  • exp[2icr,r(Nn+X)2/2N], ~(q-)=exp(~iTrl") f i  [ ! -exp(2i~r ,n) ] .  (9) 
n ~ - - o 0  n = l  

Due to the symmetry properties 

X~ = XJ-x = X~+N = -X~, for all J, (10) 

the matrix problem in eqs. (3)-(5) requires h modulo N. The matrices ~4/'~x, are extended out of the 
fundamental domains As according to these symmetries; we shall remove this degeneracy at the end of the 
discussion. Intermediate steps of the calculations require sometimes k modulo 2N but these extensions do 
not lead to ambiguities. 

The characters are traces of exp(2icc~-L0) over states of weight h, which have degeneracy d(n) at level n. 
We have 

XF(~-)(X~,s(~-))* = lexp(-2¢riq'2~c)I 2 exp[2~ri(h - h')] 

oo 

× Y'~ d(n)d(n') exp[2i~r(~-n- r*n '+  n + n')],  (11) 
r / , n t ~ 0  

where n, n' run over integer and half-integer values for NS states. Therefore the sign into eq. (3b) is given 
by ( _ ) r =  exp[2~ri(h-h '+ n + n')]: since modular invariance constrains h - h '  to be integer or half 
integer, the sign is correct for the lowest level n = n ' =  0, the highest weight; additional negative signs 
appear for higher level states built by an odd number of fermionic operators. 

The modular transformation of characters can be written as 

T: xxNs(~'+ 1)=exp[2~ri(X2/2N--~)]xNS(r), X~($ + 1)=exp(2wih2/4N)x~(r ), 
N 

S: x ~ S ( - 1 / ~ - ) = ~  ~exp(2r r iX?¢/2N)x~S(~)  Xeven, 
2¢=2 
even 

N 

x~S( -1 /~  -) = exp[2~ri(k2/4N - ~) ]  2 ~  ~ exp(2~riXX'/2N)x~,('r ) X even, 

odd 

N 

X~( -1 / ' r )  = ~ ~ exp[2wi(XN/2N- X'2/4N + 1~)] xNS(~') X odd. (12) 
N=2 
even 

By using the symmetries in eq. (10), it can be checked that the S transformation reduces to the form in ref. 
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[5], and it can be written as a matrix acting on a vector of all characters whose square is the identity. 
Therefore the characters carry an unitary representation of the group F. Moreover the results of appendix 
B in I apply to the characters in eqs. (8), (9) and show that they transform by a 2t- and ~'-independent 
phase under transformations of the subgroup F4NC F [7]. They carry therefore a unitary projective 
representation of the quotient group M4N =/"/F4N. 

From eqs. (12), (5), the modular invariance conditions for the JV'~x, matrices are 

T: ~4c Ns - ~t/'Ns ~ 0, only if ~2 __ ~t2 mod 2N, (13a) ~t,X' - -  X ,X' 

affx~, ¢ 0, only if ~k 2 = X '2 mod 4N, (13b) 

and 

2 N 
S: ~ Z e x p [ i 2 ~ r ( ' / ) ~ - ~ ' X ' ) / 2 N ] ~  s="4/z~s,  x y  ?~, 7t' even (14a) 

~ , ~ ' =  2 even 

2 N 
N Y~" exp(i2~r[(*l)t-~l'X')/2N-(*12-*l'z)/4U]}'A/'Nnns'-~v:R X, )t' odd. (14b) 

~/,r / t  ~ 2 e v e n  

The modular equations in the conformal case (eq. (3.8) in I) are similar to eqs. (13), (14): indeed it can be 
checked that the conformal solution .A/:c°~" for N = 2m(m + 2), m odd, also satisfies eqs. (13), (14), by 

identifying .A 'zNs =JV "Ns - -4< c°~f' for 7t, X' even, and , f :R --,tZoonf. for ~, X' odd. Let us recall its ~,h '  X,~' - -  X,X' }t,X' - -  X,7~' 
expression (eq. (3.14) in I): 

@--1 

= g EC( , . )  g (15) 
a:oeZ[N/2 p. ~ = 0  

a[a,alX' 

The C(a, I~) are free coefficients of the linear combination of solutions, which are characterized by the 
pairs (a, #) where a 2 is a factor of ½N and /~ are numbers mod N/a  2 such that /~2= 1 rood 2N/a 2. 
Actually, for m odd a is also odd and it can be shown that #2 = 1 mod 4N/ot 2. It follows that only integer 
spin solutions appear. 

The subsequent analysis of I applies completely: for odd m the unique positive solution is the diagonal 
one for both the NS and the R sector. We shall not discuss here the possibility of half integer spin 
solutions for the NS sector only, which are modular invariants on the subgroup F 2. 

Let us now discuss the even-m case, starting again from eq. (7): now )t = (m + 2)r - ms is always even 
and it is also invariant under (r,  s) --* (r  + ½m, s + ½m + 1). However, this translation changes the r - s 
parity, i.e. it connects the two sectors R and NS. Therefore we may use again the variable X modulo N 
within each sector. We have 

l = ( } m + l ) r - ½ m s ,  ]'=(½m+ l ) r -±rn  2 s '  

NS: [=wol mod±N2 , R: I '=%I+¼N mod½N, (16) 

with w0 = m + 1 and 0~ 2 = 1 mod ½N. 
This allows to define characters and to obtain modular transformations and equations. They are as in 

eqs. (12)-(14) with summations on even ~ in all sectors. The subgroup of modular transformations acting 
by a global phase is now FN. 

For  m even, there are both integer spin solutions to eqs. (13), (14), namely l 2 = l '2 rood N for R, NS, 
and half-integer spin solutions, / 2 =  1,2 rood ½N for NS, / 2 =  l,~ mod N for R. Both solutions may be 
obtained by the methods of I. For  integer spin solutions, it can be checked that the conformal invariant eq. 
(15) for the variable l mod ½N satisfies eqs. (13), (14) for m even. Half-integer spin solutions can be 
obtained by some modifications of the methods. Amazingly, it can be shown that both kinds of solutions 
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factorize into a pair  of affine A(~ ~) invariants provided that  they are contracted with characters of  given 
r - s  pari ty (i.e. in the part i t ion funct ion there are no cross terms like xxNS(x~)*). We obtain  

NS __ NS _ _  ,x' - JV'x,x' - ~ / ~ r ' ~ , ' ,  r - s = r '  - s '  = 0 m od  2, 

~4 ":R =aV~r,aV~,,, r -  s =  r ' -  s '  = l m o d  2, (17) x,7~' 

for pairs (JV~,, .A~,,) of  affine invariants of  level k = m -  2 and k ' =  m, respectively (see table 1); 
X = (m + 2)r  - ms and X' = (rn + 2 ) r '  - ms'  have values in the fundamenta l  domains  A s. 

Conversely, superconformal  solutions can be obtained by  faking pairs of affine invariants; they are split 

into NS, NS  and R sectors according to r - s  pari ty (see table 2). This construct ion yields sometimes 
degenerate solutions for combinat ions  containing the affine invariant  D2p+l. The symmetry  of  the Kac  
table in  eq. (2) implies at~,,,~, = .A~, , ,m_r ,m+2_, ,  therefore only symmetrized tensor products  yield 
independent  solutions in eq. (17): at~,~,~, = al/~r,~V~**, + ~ ' , m -  r'A/',',,, + 2--*" Let us consider now the affine 
invariants which satisfy ~ , ,  = ,A~,,m + e -  s: their combinat ions  with the Dzp + 2 solution (at~,r) or the A one 
(6~r,) are equivalent because JtP~,~ +~4r~,,m_~ = 6r, r. This degeneracy does not  appear  in the conformal  
solutions because these D2p + 2 pairs are not  allowed. 

In  table 2, solutions are normalized t o  have a non-degenerate  vacuum (h,  h) = (0, 0), i.e. aG'NS0,o = "A/'o,0NS 
= 1 /2 .  Since the IX R ] 2 contain a two factor for double  degeneracy of  states, the R representations have 
integer coefficients 2aV'~a, as expected f rom the decomposi t ion of the trace of  the transfer matrix in eq. 
(3); if the R " v a c u u m "  (e /24 ,  c /24 )  appears in the solution; the term in eq. (3d) is also different f rom 
zero, then R (J~c/2<c/24 + Z R ) / 2  ~ Z. (The constant  Z ~ is omit ted in table 2). 

In  conclusion, we hope this classification will be useful in searching for a microscopic 2D statistical 
model  which realizes superconformal  invariance. U p  to now only the tricritical Ising model  (m = 3) fits the 
classification [4,5] and for m = 4 there are at tempts with the Ashkin-Tel le r  model  [9] and the gaussian 
model  [10]. 

Claude I tzykson and Jean-Bernard Zuber  are acknowledged for good suggestions and discussions. The. 
Angelo Della Riccia foundat ion is also acknowledged for partial support.  
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