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Topological States of Matter

* System with bulk gap but non-trivial at energies below the gap

* global effects and global degrees of freedom:

==up Massless edge states, exchange phases, ground-state degeneracies

* not described by symmetry breaking and Landau-Ginzburg approach

* quantum Hall effect is chiral (B field breaks T symmetry)

* quantum spin Hall effect is non-chiral (T symmetric)

* other systems: QAnomalousHE, Chern Insulators, Topological Insulators and

Superconductors, Weyl Semimetals in d=1,2,3

* Ten-fold classification of non-interacting systems (electron bands)

Topological Insulators have been observed in d=2 & 3

(Molenkamp et al. '07;
Hasan et al. '08)



Quantum Hall Effect

2 dim electron gas at low temperature T ~ 10-100 mK
and high magnetic field B ~ 5-10 Tesla
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Conductance tensor Jz — O'Z'jEj, 055 = Ri_jl, Z,] =X,y
Plateaus: Opr =0 no Ohmic conduction ==smp  gap

High precision & universality
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Uniform density ground state: ~ Po = 7V

Incompressible fluid
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“igure 1. This figure shows a quantum Hall experiment trace. (Source: Goldman et al. [2].) The
sample geometry is shown in the inset. The various resistances are defined as: Hall
resistance R,,=V,¢/1,,; longitudinal resistance R, ,=V,,/I,,; and non-local resistance
Ry =Vse/l5s- Here, Vi denotes the voltage difference between the leads j and k, and I
denotes the current from lead j to lead k. The experiment was performed at 40 mK.



Laughlin's quantum incompressible fluid

Electrons form a droplet of fluid:
====p- incompressible: gap mmp  fluid: p(z,y) = po = const.
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Edge excitations

The edge of the droplet can fluctuate: massless (1+1)-dimensional edge waves
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edge ~ Fermi surface: linearize energy  e(k) = %(k —kr), k€ Z
relativistic field theory in (1+1) dimensions with chiral excitations (X.G6.Wen)

===p conformal field theory of edge excitations  (chiral Luttinger liquid)

===p CFT modelling describes nonperturbative quantum effects

mmmp experimental predictions for conduction and tunneling



Effective field theory

Quantum field theory in a nutshell:

* Take a massive phase and fix a maximal energy scale A
* Guess the low-energy degrees of freedom (fields) and symmetries

*  Worite the action compatible with them, as a power series in the fields and their
derivatives (1/A expansion). Ex. Landau-Ginzburg:

S[J] :/(8Mgb)2+a¢—|—bgb2+cqb4—|—---+¢J a,b,c,... tobe fitted

=) Successful examples: LG, SC, FL, SM, SYM, AdS/CFT, you name it

mm=p Successful if leading terms are simple: universality

* Topological states need effective theories beyond Landau-Ginzburg, Higgs eftc.

m==p Topological gauge theories and anomalies

Bulk & boundary




Chern-Simons effective action of QHE
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no local degrees of freedom in (2+1) dim., only global effects
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Hall current is topological, i.e. robust

Introduce Wen's hydrodynamic matter field a, and current j* =&""?0,a,

S[A] = /—gada + A, j* = Smatt[a] + (e.m. coupl.)

Sources of a, field are anyons (Aharonov-Bohm phases % =V %, o)

Gauge invariance requires a boundary term in the action:
Smatt[@] = Smatt[a] + Scrr @], Oup =a,|, w==p massless edge states

Bulk topological theory is tantamount to conformal field theory on boundary



CFT on the boundary and chiral anomaly

edge states are chiral fermions/bosons Dy

chiral anomaly: boundary charge is not conserved

bulk (B) and boundary (b) compensate: %

&;Ji +0ip=0, — j{deB + 0:Qp =0

adiabatic flux insertion (Laughlin) R
d— &+ P,

+oo
Qr > Qr+AQy=v, AQy= / dt %dﬂi Opr = V/FR =vn  chiral anomaly

Anomaly inflow Index theorem: exact quantization of Hall current

edge chiral anomaly = response of topological bulk to e.m. background

chiral edge states cannot be gapped <==» topological phase is stable




Summary

*  Quantum Hall effect is a Topological State of Matter:

- bulk gap and massless edge states

- electrons non-interacting v =1 and interacting v =3,+, -
- effective theory is Chern-Simons (bulk) + CFT (edge)

- topological and geometrical effects

- chiral edge states and chiral anomaly
next

* Many other Topological states:

- hon-interacting fermions === band systems === ten-fold classification

- interacting fermions ===) anomalies =) continuous & discrete

K Effective FTs




Ten-fold classification (non interacting)
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* Study T, C,P symmetries of quadratic fermionic Hamiltonians Ludwig et al. 09)

* Matches classes of disordered systems/random matrices/Clifford algebras

* Does it extend to interacting systems? YES - NO - ???

m—> study field theory anomalies




Ten-fold classification

Fermionic bulk Hamiltonian

H = Z CIMijCj
1,
classes of matrices M;; depend on C, P, T symmetries and C?=41,7T?=+1
€4===) random systems (Altland-Zirnbauer; Cartan symmetric spaces)

Massless states: fermion bands with level crossing

Energy (eV)

- zoom at low energy

- approximate translation & Lorentz invariance

- massive Dirac fermion with kink mass m(x)

- boundary (d — 1) dim. massless fermion
localized at =z =0 (Jackiw-Rebbi)

<€==) (lifford algebras P

-m,




Classification by chiral anomalies: Z classes
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* d = even boundary anomaly, bulk Chern-Simons theory (QHE, A class)

* d=odd bulk anomaly, bulk theta term, ex. d=3 U(1) gauge theory (AIII)

S[4]

_ Y /F ANF = v dz*E - B magneto-electric effect
3272 472

(A.Ludwig, Furusaki,

gravitational anomaly = non-conservation of the thermal current  J- Moore, S. Ry,
Schnyder '08-12)




Non-chiral states & discrete anomalies

Quantum Spin Hall Effect
take two v =1 Hall states of spins I l

system is Time-reversal invariant: || I .

Ty =Yk, Ykl = Yok

non-chiral CFT with U(1)g x U(1)s symmetry

}!g@*

adding flux pumps spin === [7(1)s anomaly (I. Fu, C. Kane, E. Mele 06)
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in Topological Insulators U(1)s is explicitly broken by spin-orbit interaction

ho currents o0mg =o0spg =0

yet 7T isagoodsymmetry T2=(-1)"




Topological Insulators (T symmetry)

alagglio il 0 S [ e T BB i B T
A (S I I O e N e
ATII o 0 11 0 zZ 0 zZ O Z 0 Z
Al - 0 0 Z 0 0 0 22 O 7Zs Z»
BDL | + + 1| Zs Z 0O 0O 0 2Z 0 Zs
D 0 + 0| Z2 Zo Z O 0 0 22 O
DT el et Ll g iy o 2
Top.Ins. wmmp ATl | — 0 O 2Z O /e e I
CII e e SRR s e 0
C SR A (20 W Ty g el
CI + — 1 0 0 0 2Z 0 Zx Zo Z

stability of TT <ep

stability of non-chiral edge states

T symmetry forbids a mass term for one fermion (for odd numbers)

T : Hine. = ’m/ﬂ% + h.c. = —Hiy. Zi classification (free fermions)




Flux insertion argument . cane, mele ‘05.06,
Levin, Stern '10-13)

* Tsymmetry: THI[®T '=H[-®|& H[®+ Dy =H[P]

D 3<I>0

* T-invariant points: & =0,—, %y, —,...

2 2

* Kane et al. defined a T-invariant Z2 polarization of band system, equal to the

" spin parity” at the edge

(~1)% = (-1 VN

« if (—1)>° = —1 there exits a pair of edge states degenerate by Kramers theorem,

owing to T2 = —1
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4 Kramers
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Conclusions
* topological phase is protected by T symmetry (IV;odd)

* spin parity is anomalous, discrete remnant of spin anomaly U (1)s — Zs

2AS — 1

Fu-Kane argument is Laughlin's argument for Zo anomaly: (—1)

Question: Can we extend this argument to fermions with T-invariant interactions?

Answer: Yes!
s Fractional topological insulators




22 anomaly in fractional topological insulators

Strategy:

* Study partition functions of TI (& QSHE) using known general results for QHE

(AC, Zemba '97; AC, Viola '10)

* Use them to analyze flux insertions and repeat stability argument

= //,5 classification extends to interacting & non-Abelian CFT edges

(_1)2AS — 41

—1

2A8 =

OsH
e*

(AC, Randellini '14 -15)

unstable
stable

spin-Hall conduct. = chiral Hall conduct.

minimal fractional charge
(Levin, Stern, '09, '12)

* Stability, i.e. Zo anomaly, is associated to a discrete gravitational anomaly, i.e.

to the lack of modular invariance of the partition function (s Ryu, S.-C. Zhang '12)



Partition Function of Topological Insulators

- Grand-canonical partition function of

a single edge, combining the two chiralities @

- Four sectors of fermionic systems

NS, NS, R, R, risp. (AA), (AP), (PA), (PP)

- Neveu-Schwarz sector describes ground state and integer flux insertions:

ZNS (7,0) = ZN5 (1, ¢+ 1), V:i(—=(+7 addsaflux & — &+
r=1i8/L, (= B(iV,+ u)
Dy 30y

- Ramond sector describes half-flux insertions: S g

N[

v

ZVS (1,0) » 2V (1,04 5) = 2R (¢7)




E.m. & gravitational responses
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Flux addition Modular transformations



Conclusion

Many topological states of matter exist and are actively investigated both
theoretically and experimentally

Effective field theories of massless edge excitations and their anomalies
describe universal properties and characterize interacting systems

Theoretical problems both practical and technical:

- study signatures and observables of topological phases
- study discrete anomalies (gravitational) in 2d, 3d, K-theory,....
(S.Ryu et al.; 6. Moore; E. Witten, N. Seiberg)

Technological applications of topologically protected excitations:

- quantum information and computation
- conduction without dissipation

- quantum devices, quantum sensors, etfc



Readings

* M. Franz, L. Molenkamp eds., "Topological Insulators”, Elsevier (2013)
* X.L.Qi, S. C. Zhang, Rev. Mod. Phys. 83 (2011) 1057

* C.K. Chiu,J.C. Y. Teo, A. P. Schnyder, S. Ryu, arXiv:1505.03535
(to appear in RMP)



Fractional statistics in 2+1 dimensions

Exchange Monodromy
&z
- - o @
~V 2 1
e'? U [(21 — 22)€”7, 20] = e [21, 2]

0 =nv, eg. v=1/3 fractional e’ # +1
exchange of identical particles described by the Braid group
e £ e= violates P and T symmetries

If excitations are described by m-dimensional multiplets W,

\Ifa [21,22] — Uab \Ifb [21,22] Cl,bz 1,.. , M

===p m-dim unitary repres. of braid group Non-Abelian statistics




Non-Abelian fractional statistics

v = % described by Moore-Read "Pfaffian state” ~ Ising CFT x boson

Ising fields: I identity, ¥ Majorana = electron, o spin = anyon

fusion rules:
Yo =1 2 electrons fuse into bosonic bound state
oc-oc=1+1 2 channels of fusion = 2 “conformal blocks"

(0(0)o(z)o(1)o(0)) = a1 F1(z) + azF2(z) Hypergeometric functions

===p state of 4 anyons is two-fold degenerate  (Moore, Read '91)

statistics of anyons ~ analytic continuation === 2x2 matrix

(B)e-(o %) (R)e G e
(B )= (1) (R)e DL

(CFT tech: Verlinde; Moore, Seiberg; Alvarez-Gaume, Gomez, Sierra)



Quantum computation

qubit = two-state quantum system, e.g. spin :  |y) = |0) + 5|1)
boolean gates w===p unitary transformations on qubits
==p discrete subgroup of U(2") transformations in n qubit Hilbert space

minimal set of generators:

2x2 Pauli matrices + one specific 4x4 matrix
“Universal Quantum Computation”
===p many proposals of systems for QC: excitement & money
quantum computer is unavoidable & useful (e.g. for war, electronic)

big problem: decoherence by the environment




Topological quantum computation

(C. Nayak, S. Simon,
A. Stern, M.Freedman,

e.g. in Ising-like state v = g S. Das Sarma, 07)

Proposal: use non-Abelian anyons for qubits and operate by braiding

anyons are topologically protected from decoherence (local perturbations):
decay due to finite size P ~exp(—L/€), (system size)/¢ = O(10*)
thermal pair creation P ~exp(-=A/T), A/T =0(10%)

use 4-spin system  aF1) + BF5) as 1 qubit ( 2n spin has dim = 2"~ 1)

consider multi-gate bar geometry:

=mmp perform anyon exchanges by tuning the various gate voltages

Ising is not universal QC;  Z3 parafermions v = 2 are OK & others

study other anyonic media, e.g. array of Josephson junctions

many ideas & open problems
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