Field Theory Description of Topological States of Matter

Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti)

<u>Outline</u>

- Topological states of matter
- Quantum Hall effect: bulk and edge
- Effective field theory & chiral anomaly
- Ten-fold classification of topological states for non-interacting electrons
- Interacting fermions & anomalies

Topological States of Matter

- System with <u>bulk gap</u> but non-trivial at energies below the gap
- global effects and global degrees of freedom:
- massless edge states, exchange phases, ground-state degeneracies
- not described by symmetry breaking and Landau-Ginzburg approach
- quantum Hall effect is <u>chiral</u> (B field breaks T symmetry)
- quantum spin Hall effect is non-chiral (T symmetric)
- other systems: QAnomalousHE, Chern Insulators, Topological Insulators and Superconductors, Weyl Semimetals in d=1,2,3
- Ten-fold classification of non-interacting systems (electron bands)

Topological Insulators have been observed in d=2 & 3

(Molenkamp et al. '07; Hasan et al. '08)

Quantum Hall Effect

2 dim electron gas at low temperature T ~ 10-100 mK and high magnetic field B ~ 5-10 Tesla

Conductance tensor
$$J_i = \sigma_{ij} E_j, \quad \sigma_{ij} = R_{ij}^{-1}, \qquad i,j = x,y$$

$$\sigma_{xx} = 0$$

<u>Plateaus:</u> $\sigma_{xx} = 0$ no Ohmic conduction

High precision & universality

$$\sigma_{xy} = R_{xy}^{-1} = \frac{e^2}{h}\nu, \quad \nu = 1(\pm 10^{-9}), 2, 3, \dots \frac{1}{3}, \frac{2}{5}(\pm 10^{-6})$$

Uniform density ground state: $\rho_o = \frac{eB}{hc}\nu$

$$\rho_o = \frac{eB}{hc}\nu$$

Incompressible fluid

Figure 1. This figure shows a quantum Hall experiment trace. (Source: Goldman et al. [2].) The sample geometry is shown in the inset. The various resistances are defined as: Hall resistance $R_{xy} = V_{26}/I_{14}$; longitudinal resistance $R_{xx} = V_{23}/I_{14}$; and non-local resistance $R_{NL} = V_{26}/I_{35}$. Here, V_{jk} denotes the voltage difference between the leads j and k, and I_{jk} denotes the current from lead j to lead k. The experiment was performed at $40 \, \text{mK}$.

Laughlin's quantum incompressible fluid

Electrons form a droplet of fluid:

filling fraction:
$$\nu=rac{N}{\mathcal{D}_A}=rac{N}{\Phi/\Phi_o}=1,2,\ldotsrac{1}{3},rac{1}{5},\ldots$$
 $\Phi_o=rac{hc}{e}$

Edge excitations

The edge of the droplet can fluctuate: massless (1+1)-dimensional edge waves

edge ~ Fermi surface: linearize energy $\varepsilon(k) = \frac{v}{R}(k-k_F), \quad k \in \mathbb{Z}$

$$\varepsilon(k) = \frac{v}{R}(k - k_F), \quad k \in \mathbb{Z}$$

relativistic field theory in (1+1) dimensions with chiral excitations (X.G.Wen)

- <u>conformal field theory of edge excitations</u> (chiral Luttinger liquid)
- CFT modelling describes nonperturbative quantum effects
- experimental predictions for conduction and tunneling

Effective field theory

Quantum field theory in a nutshell:

- Take a massive phase and fix a maximal energy scale $\,\Lambda\,$
- Guess the low-energy degrees of freedom (fields) and symmetries
- Write the action compatible with them, as a power series in the fields and their derivatives ($1/\Lambda$ expansion). Ex. Landau-Ginzburg:

$$S[J] = \int \left(\partial_\mu \phi\right)^2 + a\,\phi + b\,\phi^2 + c\,\phi^4 + \dots + \phi J \qquad \quad a,b,c,\dots \text{ to be fitted}$$

- Successful examples: LG, SC, FL, SM, SYM, AdS/CFT, you name it
- Successful if leading terms are simple: universality
- Topological states need effective theories beyond Landau-Ginzburg, Higgs etc.
- Topological gauge theories and anomalies

Bulk & boundary

Chern-Simons effective action of QHE

$$S\left[A\right] = \frac{\nu}{4\pi} \int dx^3 \, \varepsilon^{\mu\nu\rho} A_\mu \partial_\nu A_\rho = \frac{\nu}{4\pi} \int A dA \qquad \qquad \text{Laughlin state} \qquad \nu = 1, \frac{1}{3}, \frac{1}{5}, \cdots$$

no local degrees of freedom in (2+1) dim., only global effects

$$\rho = \frac{\delta S}{\delta A_0} = \frac{\nu}{2\pi} \mathcal{B} \qquad \text{Density} \qquad J^i = \frac{\delta S}{\delta A_i} = \frac{\nu}{2\pi} \varepsilon^{ij} \mathcal{E}^j \qquad \text{Hall current}$$

- Hall current is topological, i.e. robust
- Introduce Wen's hydrodynamic matter field $\,a_\mu\,$ and current $\,j^\mu=arepsilon^{\mu
 u
 ho}\partial_
 u a_
 ho$

$$S[A] = \int -\frac{\pi}{\nu} a da + A_{\mu} j^{\mu} = S_{\text{matt}}[a] + (\text{e.m. coupl.})$$

- Sources of $\,a_{\mu}$ field are anyons (Aharonov-Bohm phases $rac{ heta}{\pi}=
 u=rac{1}{3},\cdots$)
- Gauge invariance requires a boundary term in the action:

$$S_{\mathrm{matt}}[a] \to S_{\mathrm{matt}}[a] + S_{CFT}[\varphi], \quad \partial_{\mu}\varphi = a_{\mu}|_{b}$$
 massless edge states

Bulk topological theory is tantamount to conformal field theory on boundary

CFT on the boundary and chiral anomaly

- edge states are chiral fermions/bosons
- · chiral anomaly: boundary charge is not conserved
- bulk (B) and boundary (b) compensate:

$$\partial_i J^i + \partial_t \rho = 0, \ \to \ \oint dx J_B + \partial_t Q_b = 0$$

adiabatic flux insertion (Laughlin)

$$\Phi \to \Phi + \Phi_0$$

$$Q_R o Q_R + \Delta Q_b = \nu, \quad \Delta Q_b = \int_{-\infty}^{+\infty} dt \oint dx \; \partial_t \rho_R = \nu \int F_R = \nu \, n \quad \text{chiral anomaly}$$

Anomaly inflow

- Index theorem: exact quantization of Hall current
- edge chiral anomaly = response of topological bulk to e.m. background
- chiral edge states cannot be gapped topological phase is stable

Summary

- Quantum Hall effect is a Topological State of Matter:
 - bulk gap and massless edge states
 - electrons non-interacting $\;\; \nu=1 \;\;$ and interacting $\;\; \nu=\frac{1}{3},\frac{1}{5},\cdots$
 - effective theory is Chern-Simons (bulk) + CFT (edge)
 - topological and geometrical effects
 - chiral edge states and chiral anomaly

next

- Many other Topological states:
 - non-interacting fermions band systems ten-fold classification
 - interacting fermions anomalies continuous & discrete

Effective FTs

Ten-fold classification (non interacting)

- Study T, C, P symmetries of quadratic fermionic Hamiltonians
- (A. Kitaev; Ludwig et al. 09)
- Matches classes of disordered systems/random matrices/Clifford algebras
- Does it extend to interacting systems?
 YES NO ???

study field theory anomalies

Ten-fold classification

Fermionic bulk Hamiltonian

$$H = \sum_{i,j} c_i^{\dagger} M_{ij} c_j$$

classes of matrices M_{ij} depend on C, P, T symmetries and $\mathcal{C}^2 = \pm 1, \mathcal{T}^2 = \pm 1$ random systems (Altland-Zirnbauer; Cartan symmetric spaces)

- Massless states: fermion bands with level crossing
 - zoom at low energy
 - approximate translation & Lorentz invariance
 - massive Dirac fermion with kink mass $\ m(x)$
 - boundary (d-1) dim. massless fermion localized at x=0 (Jackiw-Rebbi)

Classification by chiral anomalies: \mathbb{Z} classes

- d = even boundary anomaly, bulk Chern-Simons theory (QHE, A class)
- d = odd bulk anomaly, bulk theta term, ex. d=3 U(1) gauge theory (AIII)

$$S[A] = rac{ heta}{32\pi^2} \int F \wedge F = rac{ heta}{4\pi^2} \int dx^4 \, E \cdot B$$
 magneto-electric effect

gravitational anomaly = non-conservation of the thermal current

(A.Ludwig, Furusaki, J. Moore, S. Ryu, Schnyder '08-12)

Non-chiral states & discrete anomalies

Quantum Spin Hall Effect

- take two $\, \nu = 1 \,$ Hall states of spins $\,$
- system is Time-reversal invariant:

$$\mathcal{T}: \psi_{k\uparrow} \to \psi_{-k\downarrow}, \qquad \psi_{k\downarrow} \to -\psi_{-k\uparrow}$$

- non-chiral CFT with $U(1)_Q \times U(1)_S$ symmetry
- adding flux pumps spin \longrightarrow $U(1)_S$ anomaly

(I. Fu, C. Kane, E. Mele 06)

$$\Delta Q = \Delta Q^{\uparrow} + \Delta Q^{\downarrow} = 1 - 1 = 0$$
$$\Delta S = \frac{1}{2} - \left(-\frac{1}{2}\right) = 1$$

- in Topological Insulators $U(1)_S$ is explicitly broken by spin-orbit interaction
- no currents $\sigma_H = \sigma_{sH} = 0$
- yet \mathcal{T} is a good symmetry $\mathcal{T}^2 = (-1)^F$

Topological Insulators (Tsymmetry)

	$class \setminus \delta$	Т	С	S	0	1	2	3	4	5	6	7
	A	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
	AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
	AI	+	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
	BDI	+	+	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
	D	0	+	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
	DIII	_	+	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$
Top. Ins.	AII	<u> </u>	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
	CII	-	_	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
	\mathbf{C}	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
	CI	+		1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
		•					· ·			·		

- <u>stability of TI</u> <u>stability of non-chiral edge states</u>
- T symmetry forbids a mass term for one fermion (for odd numbers)

$$\mathcal{T}: H_{\mathrm{int.}} = m \int \psi_{\uparrow}^{\dagger} \psi_{\downarrow} + h.c. \rightarrow -H_{\mathrm{int.}}$$

 \mathbb{Z}_2 classification (free fermions)

Flux insertion argument

(Fu, Kane, Mele '05-06; Levin, Stern '10-13)

- T symmetry: $\mathcal{T}H\left[\Phi\right]\mathcal{T}^{-1}=H\left[-\Phi\right]$ & $H\left[\Phi+\Phi_{0}\right]=H\left[\Phi\right]$
- T-invariant points: $\Phi=0, \frac{\Phi_0}{2}, \Phi_0, \frac{3\Phi_0}{2}, \dots$
- Kane et al. defined a T-invariant \mathbb{Z}_2 polarization of band system, equal to the "spin parity" at the edge $(-1)^{2S}=(-1)^{N_\uparrow+N_\downarrow}$

• if $(-1)^{2S}=-1$ there exits a pair of edge states degenerate by Kramers theorem, owing to $\mathcal{T}^2=-1$

$$\Phi = 0: \quad (-1)^{2S} |\Omega\rangle = |\Omega\rangle$$

$$\Phi = \frac{\Phi_0}{2} : (-1)^{2S} |\Omega\rangle = -|\Omega\rangle$$

 $|ex\rangle$ gapless edge state

Conclusions

- topological phase is protected by T symmetry (N_f odd)
- spin parity is anomalous, discrete remnant of spin anomaly $\ U(1)_S o \mathbb{Z}_2$

Fu-Kane argument is Laughlin's argument for \mathbb{Z}_2 anomaly: $(-1)^{2\Delta S}=-1$

Question: Can we extend this argument to fermions with T-invariant interactions?

Answer: Yes!

Fractional topological insulators

\mathbb{Z}_2 anomaly in fractional topological insulators

Strategy:

- Study partition functions of TI (& QSHE) using known general results for QHE
 (AC, Zemba '97; AC, Viola '10)
- Use them to analyze flux insertions and repeat stability argument
 - \mathbb{Z}_2 classification extends to interacting & non-Abelian CFT edges (AC, Randellini '14 -15)

$$(-1)^{2\Delta S}=+1$$
 unstable -1 stable

$$2\Delta S = \frac{\sigma_{sH}}{e^*} = \frac{\nu^{\uparrow}}{e^*}$$

spin-Hall conduct. = chiral Hall conduct. minimal fractional charge

(Levin, Stern, '09, '12)

• Stability, i.e. \mathbb{Z}_2 anomaly, is associated to a discrete gravitational anomaly, i.e. to the lack of modular invariance of the partition function (S. Ryu, S.-C. Zhang '12)

Partition Function of Topological Insulators

- Grand-canonical partition function of
 a <u>single edge</u>, combining the two chiralities
- Four sectors of fermionic systems

$$NS, \widetilde{NS}, R, \widetilde{R}, \text{ risp. } (AA), (AP), (PA), (PP)$$

- Neveu-Schwarz sector describes ground state and integer flux insertions:

$$Z^{NS}\left(au,\zeta
ight)=Z^{NS}\left(au,\zeta+ au
ight), \qquad V:\zeta o\zeta+ au ext{ adds a flux } \Phi o\Phi+\Phi_0, \ au=ieta/L, \qquad \zeta=eta(iV_o+\mu)$$

- Ramond sector describes half-flux insertions: $\frac{\Phi_0}{2}, \frac{3\Phi_0}{2}, \dots$

$$V^{\frac{1}{2}}:Z^{NS}\left(au,\zeta
ight) \;
ightarrow \;Z^{NS}\left(au,\zeta+rac{ au}{2}
ight) =Z^{R}\left(\zeta, au
ight)$$

E.m. & gravitational responses

grav.
$$\frac{T}{S}$$
 Z^{NS} $Z^{\widetilde{NS}}$ $Z^{\widetilde{R}}$

$$V:\zeta
ightarrow \zeta + au \qquad \qquad T: au
ightarrow au + 1 \qquad \qquad S: au
ightarrow -rac{1}{ au}$$

Flux addition

Modular transformations

Conclusion

- Many topological states of matter exist and are actively investigated both theoretically and experimentally
- Effective field theories of massless edge excitations and their anomalies describe universal properties and characterize interacting systems
- Theoretical problems both practical and technical:
 - study signatures and observables of topological phases
 - study discrete anomalies (gravitational) in 2d, 3d, K-theory,....

(S. Ryu et al.; G. Moore; E. Witten, N. Seiberg)

- <u>Technological applications</u> of topologically protected excitations:
 - quantum information and computation
 - conduction without dissipation
 - quantum devices, quantum sensors, etc

Readings

- M. Franz, L. Molenkamp eds., "Topological Insulators", Elsevier (2013)
- X. L. Qi, S. C. Zhang, Rev. Mod. Phys. 83 (2011) 1057
- C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, S. Ryu, arXiv:1505.03535 (to appear in RMP)

Fractional statistics in 2+1 dimensions

Exchange

 $e^{i\theta}$

Monodromy

$$\Psi \left[(z_1 - z_2)e^{i2\pi}, z_2 \right] = e^{i2\theta} \Psi \left[z_1, z_2 \right]$$

$$\theta=\pi\nu,$$
 e.g. $\nu=1/3$ fractional $e^{i2\theta}\neq\pm1$

exchange of identical particles described by the Braid group

$$e^{i heta}
eq e^{-i heta}$$
 violates P and T symmetries

If excitations are described by m-dimensional multiplets $\,\Psi_a\,$

$$\Psi_a\left[z_1,z_2\right] \rightarrow U_{ab} \Psi_b\left[z_1,z_2\right]$$

$$a,b = 1, ..., m$$

m-dim unitary repres. of braid group

Non-Abelian statistics

Non-Abelian fractional statistics

 $u=rac{5}{2}$ described by Moore-Read "Pfaffian state" ~ Ising CFT x boson

Ising fields: I identity, ψ Majorana = electron, σ spin = anyon fusion rules:

$$\psi \cdot \psi = I$$

$$\sigma \cdot \sigma = I + \psi$$

2 electrons fuse into bosonic bound state

2 channels of fusion = 2 "conformal blocks"

$$\langle \sigma(0)\sigma(z)\sigma(1)\sigma(\infty)\rangle = a_1F_1(z) + a_2F_2(z)$$
 Hypergeometric functions

state of 4 anyons is two-fold degenerate (Moore, Read '91)

statistics of anyons ~ analytic continuation —> 2x2 matrix

$$\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} \begin{pmatrix} ze^{i2\pi} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} (z)$$

$$\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} \left((z-1)e^{i2\pi} \right) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} (z)$$

(CFT tech: Verlinde; Moore, Seiberg; Alvarez-Gaume, Gomez, Sierra)

Quantum computation

qubit = two-state quantum system, e.g. spin $\frac{1}{2}$: $|\chi\rangle=lpha|0
angle+eta|1
angle$

boolean gates — unitary transformations on qubits

discrete subgroup of $U(2^n)$ transformations in n qubit Hilbert space minimal set of generators:

2x2 Pauli matrices + one specific 4x4 matrix

"Universal Quantum Computation"

many proposals of systems for QC: excitement & money

quantum computer is unavoidable & useful (e.g. for war, electronic)

big problem: decoherence by the environment

Topological quantum computation

Proposal: use non-Abelian anyons for qubits and operate by braiding e.g. in Ising-like state $\nu = \frac{5}{2}$

(C. Nayak, S. Simon, A. Stern, M.Freedman,

S. Das Sarma, 07)

anyons are topologically protected from decoherence (local perturbations):

decay due to finite size
$$P \sim \exp(-L/\xi)$$
, (system size) $/\ell = O(10^4)$

thermal pair creation

$$P \sim \exp(-\Delta/T), \quad \Delta/T = O(10^2)$$

$$|\alpha F_1\rangle + \beta F_2\rangle$$

use 4-spin system $\alpha F_1 \rangle + \beta F_2 \rangle$ as 1 qubit (2n spin has dim = 2^{n-1})

consider multi-gate bar geometry:

perform anyon exchanges by tuning the various gate voltages

Ising is not universal QC; Z_3 parafermions $u=rac{12}{5}$ are OK & others study other anyonic media, e.g. array of Josephson junctions

many ideas & open problems