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● Introduction: wave functions, edge excitations and CFT
● CFT for Jain wfs:  Hansson et al. results
● CFT for Jain wfs:  W-infinity minimal models
● independent derivation of Jain wfs from symmetry arguments
● CFT suggests non-Abelian statistics of quasi-holes
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Quantum Hall EffectQuantum Hall Effect
● 2 dim electron gas at low temperature T ~ 10 mK 

        and high magnetic field B ~ 10 Tesla

● Conductance tensor
● Plateaux:                                     no Ohmic conduction           gap

● High precision & universality
● Uniform density ground state:

Incompressible fluid
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Laughlin's quantum incompressible fluidLaughlin's quantum incompressible fluid
Electrons form a droplet of fluid:
         incompressible = gap                 fluid = 
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Laughlin's wave functionLaughlin's wave function

●             filled Landau level: obvious gap 
●              non-perturbative gap due to Coulomb interaction

  effective theories

● quasi-holes  = vortices

  

fractional charge                    & statistics
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Conformal field theory of edge excitationsConformal field theory of edge excitations

● edge ~ Fermi surface: linearize energy
● relativistic field theory in 1+1 dimensions, chiral       (X.G.Wen '89)

  chiral  compactified c=1 CFT      (chiral Luttinger liquid)

The edge of the droplet can fluctuate: edge waves are massless
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CFT descriptions of QHECFT descriptions of QHE

     wavefunctions: spectrum of anyons and braiding matrices

     edge correlators: physics of conduction experiments
● equivalence of descriptions: analytic continuation from the circle,

           use map CFT             Chern-Simons theory in 2+1 dim
● general CFT is U(1) x neutral
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Non-Abelian fractional statisticsNon-Abelian fractional statistics
●           described by Moore-Read “Pfaffian state” ~ Ising CFT x U(1)
● Ising fields:       identity,       Majorana = electron,      spin = anyon
● fusion rules:    

–                           2 electrons fuse into a bosonic bound state

–                              2 channels of fusion = 2 conformal blocks

                                                          

      state of 4 anyons is two-fold degenerate     (Moore, Read '91)
● statistics of anyons ~ analytic continuation            2x2 matrix
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Jain composite fermionJain composite fermion

● Correspondence       FQHE                                IQHE

● generalize to     filled Landau levels

● composite fermion: quasiparticle feeling the reduced  
● many experimental confirmations + mean field theory
●                written directly in LLL using projection                in
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CFT for Jain: Hansson et al.  CFT for Jain: Hansson et al.  ('07-'11)('07-'11)

● result based on non-trivial algebraic identites
● recover Abelian two-component edge theory

                

● but there is more:
–    : two fermions                        one fermion

– descendant fields needed for non-vanishing result,            
yield correct “shift”

● Next: find improved CFT that complete the derivation
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W-infinity symmetryW-infinity symmetry    

Area-preserving diffeomorphisms of incompressible fluid

                                                          A = constant

A A

● W-infinity symmetry can be implemented in the edge CFT
● CFT with higher currents characteristic of 1d fermions  (+ bosonization)

● representations completely known            classification 
●           generically reproduce Abelian theories            with      matrices
● but special representations for  enhanced symmetry                                

                         

(V.Kac, A. Radul '92)

c = n [U(1)
n

Z
d2x ½(x) = N = ½oA

[U(1)£ \SU(n)1

K

W k =: ¹F (@z)
k
F :; W 0 = ¹FF = J; W 1 = T =: J2 :; W 2 =: J3 :; ¢ ¢ ¢



  

W-infinity minimal modelsW-infinity minimal models
● repres. with enhanced symmetry are degenerate and should be projected:    

                  minimal models

● these edge theories reproduce Jain fillings, 

with usual      matrices for charge and statistics
● extra  projection of             amounts to keeping edge excitations                  

     completely symmetric w.r.t. layer exchanges:  
– single electron excitation

– reduced multiplicities of edge states

– non-Abelian statistics of quasi-particles & electron (see later)

                                 

W1 (A.C., Trugenberger, Zemba '93-'99)
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Ex: c=2 minimal modelEx: c=2 minimal model

● take edge excitations symmetric w.r.t. two layers only
● neutral part is described by the Virasoro minimal model for          
● fields characterized by dimension               i.e. total spin               NO    
● electron has
● identify two vertex operators by Dotsenko-Fateev screening operators

                                                

Vir = SU(2) Casimir subalgebra
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Derivation of Jain wf in Hansson et al. formDerivation of Jain wf in Hansson et al. form
● use W-infinity minimal models to describe ground state wf
● 4-el.  wf has two channels,                             , given by choices of

 
● impose antisymm of electrons
● consider descendant with same charge:

                                                       

Underlying theory of Jain wf is W-infinity minimal model             
               + Fermi statistics for electrons

Indipendent, exact derivation of Jain state from                    
symmetry principles            universality, robustness, etc.
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Jain wf vs. Pfaffian wfJain wf vs. Pfaffian wf

● reminds of Paffian state in Abelian version       (A.C, Georgiev, Todorov '01)

● same vanishing behaviour:

● same pairing?  
● fractional statistics?
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● projection = symmetric layers,                                Weyl          Majorana
● ground state & excitations are singlets
● distinguishable excit. (Abelian)            identical excit. (non-Abelian)
● 3-body pseudo-potential 

● ground state:            singlet (up to short-distance deformation                )

        distinguishable              Abelian
● excitations:

        also singlets (       irrep.)          non-Abelian      

(Read, Rezayi '99)
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Non-Abelian statistics of Jain quasiholesNon-Abelian statistics of Jain quasiholes

● smallest q-hole, e.g.            at          , has  neutral part          :

          two components                 identified by the projection

          i.e. q-holes in two layers are symmetrized
● fusion                                                                  non-Abelian statistics

●  first non-trivial case is 4 q-holes: three independent states

● they trasform among themselves under monodromy 

             multidimensional representation
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●      quasiholes have quantum dimension                 (not Rational CFT)
● other Jain q-holes:                    , odd no., antisymm combinations,        

are projected out in the        minimal theory.
● Jain quasi-particles & hierarchy (after Hansson et al.)  also fit in 
● edge is consistently non-Abelian     (long-distance physics)   

But
● energetics of         projection not understood   (in the bulk) 
● entaglement spectrum does not seem to show projection
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ConclusionsConclusions

● CFT + W-infinity symmetry  rederive Jain states 

 independently of composite fermion picture 
● Jain states are consistent & universal
● same CFT hints at non-Abelian q-hole excitations
● open problems:

– investigate space of states and energy spectrum

– relation to Pfaffian and Gaffnian states and their CFTs
● experimental tests:

– thermopower, if measure can be extended to higher B

– puzzles in known experiments?


