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Chiral and non-chiral Topological States of Matter

Stability of edge states of 2D Topological Insulators: Zs2 anomaly

Partition function: electromagnetic and gravitational (discrete) responses

Stability of TI with interacting & non-Abelian edges



Topological States of Matter

System with bulk gap but non-trivial at energies below the gap
global effects and global degrees of freedom (edge states, g.s. degeneracy)

described by topological field theory: Chern-Simons theory etc.

quantum Hall effect is chiral (B field, chiral edge states)

quantum spin Hall effect is non-chiral (edge states of both chiralities)

other systems: Chern Insulators, Topological Insulators,
Topological Superconductors, etc.

Topological Band Insulators (free fermions) have been observed in 2 & 3 D
=) <« fever »



Questions/Answers

Q: systems of interacting fermions? (e.g. fractional insulators)

A: use quantum Hall modelling and CFTs

Q: but non-chiral edge states are stable?

A: generically NO

Q: stability with Time Reversal symmetry?

A: YES/NO; there is a Zo symmetry; if this is anomalous, they are stable



Chiral Topological States

Quantum Hall effect D,
chiral edge states

no Time-Reversal symmetry (TR) -»%A

Laughlin's argument. V=3
O D4+ Dy, HI[®+ Do = H[P] 7

Qr — Qr+ AQ = v, AQ = /dtd:c Oy = I//F =vn  chiral anomaly

® — & +ndy spectral flow between charge sectors {0} — {3} = {£} — {0}

edge chiral anomaly = response of topological bulk to e.m. background

chiral edge states cannot be gapped <= topological phase is stable

anomalous response extended to other systems and anomalies in any D=1,2,3,......

(S. Ryu, J. Moore, A. Ludwig '10)



Non-chiral topological states

Quantum Spin Hall Effect

take two v =1 Hall states of spins I l
system is Time Reversal invariant: /‘—-—.—-.
Ttk =%k, Uk = Yok

non-chiral CFT with U(1)g x U(1)s symmetry

}!g@*

adding flux pumps spin === [7(1)s anomaly (X-L Qi, S-C Zhang '08)

i”'i P III‘I AQ=AQ"+AQ*=1-1=0

Ty e

in Top. Insulators U(1)s is explicity broken by Spin-Orbit Coupling etc.

no currents og =0sgg = kg =0

28

but TR symmetry keeps Z2 symmetry (—1) Kramers theorem




Symmetry Protected Topological Phases

QSHE Topological Trivial
U(1)s Insulator Insulator
TR : Zo no T'R

* QSHE edge theory is used to describe Topological Insulator with Time-Reversal
symmetry U(l)s — Zo of (—1)*°

Main issue: stability of TT <===p stability of non-chiral edge states

* e.g. TR symmetry forbids mass term in CFT with odd number of free fermions

T : Hins. = ’m/ﬂ% +h.c. = —Hin. Zo classification (free fermions)




Flux insertion argument . cane, mele ‘05.06,
Levin, Stern '10-13)

* TRsymmetry: TH[®T '=H[-®] & H[®+ $]| = H[D]

<I>0 3<I>0

* TRinvariant points: & =0, —, %5, —,...
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* Kane et al. define a TR-invariant Z2 polarization (bulk quantity) that:

- is topological and conserved by TR invariance

- is equal to parity of edge spin (=1)%% = (=) TN

- if (—1)** = -1 there exits a pair of edge states degenerate by Kramers theorem
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4 Kramers
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Conclusions
* topological phase is protected by TR symmetry if 3 edge Kramers pair ( N;odd)

* spin parity is anomalous, discrete remnant of spin anomaly U (1)s — Zs

2AS — 1

Fu-Kane argument is Laughlin's argument for Zo anomaly: (—1)
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Conclusions

topological phase is protected by TR symmetry if = edge Kramers pair ( Nfodd)

spin parity is anomalous, discrete remnant of spin anomaly U(1)s — Zs

Fu-Kane argument is Laughlin's argument for Zs anomaly: (—1)*2° = —1

Questions

Can we extend this to Topological Insulators with interacting fermions?

Can we use modular non-invariance, i.e. discrete gravitational anomaly of the

partition function as another probe?
(S. Ryu, S.-C. Zhang '12)



Answers in this talk

partition functions of edge states for QHE, QSHE and TI are completely
understood (AC, Zemba '97; AC, Georgiev, Todorov '01; AC, Viola "11)

we can study flux insertions and discuss stability
modular transformations: e.m. & grav. responses
=——p TI. /o classification extends to interacting & non-Abelian edges

(—1)2AS = +1 unstable, Z modular invariant
—1 stable, Z not modular invariant

osg Ul spin-Hall conduct. = chiral Hall conduct.
2AS8 = = — — .
e* e* minimal fractional charge

(Levin, Stern)




QHE partition function

Consider states of outer edge for v = %, p odd describedby c=1CFT

L
E~P~ fu§0 edge energy & momentum
=0 i + 1 dul
T=v5 b modular parameter
¢ = %(ZVO +u)  electric & chemical pot.

. ) A
Partition function for one charge sector @ = » +n, neZ

e~

sum of characters for representations of U(1) current algebra

K\ (7,¢;p) = Tryyon [exp (1277 Lo + 127¢Q)]

np+ A

_ % ;exp <i27r (7’ (np ;}’)A)Z

+¢

p

)

theta function

Dedekind function

Kyyp = K\



Modular trasformations

K\(1,¢p) = Zexp<z27f( (np;;A) +Cnp;)\)), Q=%+Z
discrete coordinate changes respecting double periodicity
S:t7——1/7
T:7—=71+1
e.m. background changes:
U:C—(+1 adds the weight 2™
V:¢—=(+7 addsa flux quantum & — & + ®,
1 —¢ & . .
S K — — |~ > Sauku(r,) unitary S matrix, completeness
u=1
T2 Ki(7+2,() ~ Kx(7,2) odd-integer electron statistics
U: Kx(1,¢+1)~ Kx(7,2) integer electron charge
Vi K¢ +7) ~ Knsa(T2) Py flux insertion: Q@ — Q +v



Partition Function of Topological Insulators

Partition function for a single edge: I

- combine two chiralities K] Fﬁ ®

p
ZNS (1,¢) = ZKIFS, S, T%,U,V invariant
A=1

In fermionic systems there are always four sectors of the spectrum:

NS, NS, R, R, risp. (4A), (AP), (PA), (PP)

. : . 3P
Ramond sector describes half-flux insertions: 70 70 -
Vz:zZNS(r,¢) — ZN® (T,§+ g) ~ 78 (¢, 7) add half flux
Each sector has A =1,...,p vacua for the would-be fractional charges

p

~p ~ T

ZR:ZKIK—M Kx(T,¢) ~ K (T,<+§>
A=1



E.m. & gravitational responses
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Modular invariant partition function of a single TT edge can be found

Zising = ZN5 + ZNS 4 ZB 4 7ZR, S T.U,V: invariant

But: is Zigine consistent with TR symmetry?




Stability and modular (non)invariance

p fluxes are needed to create one electron in the same charge sector

VP K] — K, = K], AQT:§:1 ,,:119

Flux argument: add % fluxes and check if (—1)?4% = —1 i.e. Kramers pair

[Nl

Vz: Ky = K,/ ~ KE, Vg = D5, AQT =AS =1
(D> [ Nns=1Dns — D) =—1Dp stable TI

Spin parities of Neveu-Schwarz and Ramond ground states are different

====p 7.5 Spin-parity anomaly recovered

— 710 = 25 + ZNS 1 ZB 4 7B not consistent with TR symmetry
(—1)25 =1 1 -1 -1

TR symmetry + anomaly === no modular invariance === stable insulator

TR symmetry + modular invariance =sssp no anomaly === trivial insulator




General stability analysis

Edge theory involves neutral excitations (possibly non-Abelian)
electron is Abelian: "simple current” modular invariant (A.C., Viola '11)

fractional charge sectors ©¢(r,¢) parametrized by two integers (k,p)

k
O%(1,¢) =Y Knyap (T,ECG kD) Xyap(1,0) ={gs}+{lel}+{2el}+..

a=1
\ charged \ neutral
kA , 1
minimal charge: @ = W A=h =

k
Hall current: Vo471, Ao A+k AQ=v"==

P
construct TI partition function as before  zV5 =Y 058",
A

Stability: add fluxes to create an excitation in the same charge sector

(S]]

1% AS = AQT =

N |3

T = g Kramers pairs if k odd === stgble TI



R
Levin-Sternindex 2AS =2, (—1)*25 =(—1)* fully general
6*

Analysis of modular invariance vs. stability can be extended to any edge CFT

k even = unstable, TR-inv. modular invariant  Zyg,, = ZV5+ ZNSy Ry zR

k odd = stable, modular vector 7 = (ZNS,Zﬁé,ZR,Zé)



R
Levin-Sternindex 2AS =2, (—1)*25 =(—1)* fully general
6*

Analysis of modular invariance vs. stability can be extended to any edge CFT

k even = unstable, TR-inv. modular invariant  Zyg,, = ZV5+ ZNSy Ry zR

k odd = stable, modular vector Z = (ZNS,ZW,ZR,ZJA%)
Examples
Jain-like TT p_k o1 _v' _, stable
g mk+1 © 2nk + 1’ 285 = ex g unstable
(331) & Pfaffian TT A % . i) 5AS — 2  unstable
i 1
Abelian TI K = ( ? 5 ) v = §, e’ = 1, 2A8 =3 stable
7 7
Read-Rezayi TT t k \ 1 OAS — k stable

= Y, e = T,
kM + 2 kM + 2 unstable



Remarks

general expression of partition function allows to extend Levin-Stern stability

criterium to any TI with interacting fermions

Zio classification of TI protected by TR invariance

neutral states are left invariant by flux insertions

unprotected edge states do become fully gapped?

- Abelian states: yes, by careful analysis of possible TR-invariant interactions
(Levin, Stern; Neupert et al.; Y-M Lu, Vishwanath)

- non-Abelian states: yes, use projection from "parent” Abelian states

e.g. (331) -> Pfaffian because [projection, TR-symm.]=0 (A.C., to appear)



Conclusions

Zio spin parity anomaly characterizes Topological Insulators protected by

Time Reversal symmetry (cf. Ringel, Stern; Koch-Janusz, Ringel)
: : IAS vtk
anomaly signalled by index (—1)2° = —1, 208 = — = 1_9

Pfaffian TTI is unstable

To do:
- explicit form of interactions gapping the edge of non-Abelian states  (done)

- stability of Topological Superconductors <= Ryu-Zhang stability criterium

- stability 3D systems and 2D-3D systems (cf. arxiv: 1306.3238, 3250, 3286)



Gapping interactions for Pfaffian TT

Gapping interactions for Abelian states defined by K matrix

Us = exp (iAZKCI)T—iKZKEO + h.c. a=1,...,n=c

For (331) state, they can be written in terms of Weyl fermions fields
Uy = 0], U429, ¥5 + he.

Up =0, 0,010 + he.

Projection (331) — Pfaffian, i.e. to identical layers ¥, ~ U1, — Vy
Up =: xOx : : XOX : neutral

Uy = V2V? V =V charged field

U, couples to fermion field, Uz to charges modes, giving both mass

Analysis extends to Read-Rezayi states and Ardonne-Schoutens NASS states



Topological Superconductors

stability of TS <==» gapless non-chiral Majorana edge states

Ny free Majorana, they are neutral === no flux insertion argument

Zy x Zs chiral spin parity (—1)*'(-1)%" = (=)™ (=1)™  no spin flip

Z, classification (free fermions)

Ny = 8 unstable by non-trivial quartic interaction: 7% — Zs (Kitaev, many people)

m=mp proposal: study partition function and gravitational response  (Ryu, S-C-Zhang)

Standard invariant for any Ny

Zrsing = ZN5+2ZN5 4 zB 1 7R Is it consistent with Zo X Zo parity?
Yes, for N; =8:mod. trasf. ST ~ V2 creates AST = AS* =1 in R sector OK

Ryu-Zhang: test modular invariance of subsector (—1)V# = (-1)"* =1
===p (SO projection N;y=38

general analysis of modular invariance + discrete symm. not understood yet

many modular invariants are possible without charge matching 7z =3 My KIK,



