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Anyons & topology in 2+1 dimensions

Chern-Simons gauge theory: Aharonov-Bohm phases
Quantum Hall effect: bulk & edge excitations
measure of fractional charge & statistics
non-Abelian fractional statistics

& topological quantum computation



Fractional statistics in 2+1 dimensions
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m-dim unitary repres. of braid group =

exchange of identical particles described by the braid group
e # e~ violates P and T symmetries

If excitation is described by multiplet of m states:

ab=1 .., m

Non-Abelian statistics




Chern-Simons gauge theory

===p Special facts of 2+1 dimensions:
* matter current @ gauge field: J, = (p,J;), 0u.J. =0, (J.) =0
Ju = €uvpdv Ay

* low-energy effective action, }‘( 7’ ext. source

k u/ ys
Scs = P EpvpAuOvAp + Apst + pv

eq. of motion ===p | no local degrees of freedom

2
Fruv = - € uvpS’, B = % 5(2)(,2 — 29)

exp (@ 7{ A) — ei2m/k Aharonov-Bohm phase



Quantum Hall Effect

2 dim electron gas at low temperature T ~ 10 mK

and high magnetic field B ~ 10 Tesla
B
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Plateaux: Oze =0, Rze =0 no Ohmic conduction ===p gap
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Oy = Ry} = —v, v=1(£107°),2,3,..
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High precision & universality

Uniform density ground state:  po = —v

Incompressible fluid
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“igure 1. This figure shows a quantum Hall experiment trace. (Source: Goldman et al. [2].) The
sample geometry is shown in the inset. The various resistances are defined as: Hall
resistance R, = V,¢/1,,; longitudinal resistance R, = V,,/I,,; and non-local resistance
RyL=V6/15s. Here, V;, denotes the voltage dlfference between the leads j and k, and I,
denotes the current frorn lead j to lead k. The experiment was performed at 40 mK.




Laughlin's quantum incompressible fluid

Electrons form a droplet of fluid:
e incompressible = gap e fluid = p(z,y) = po = const.




Laughlin's trial wave function
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v =1 filled Landau level: obvious gap ~ w = <& > kT
* v =1 non-perturbative gap due to Coulomb interaction
* ground state w. vortex condensation, like QCD but chiral

* quasi-hole excitation = elementary vortex W, o [],; (n — 2:)

. L e s a4 6 1
===p fractional charge @ = 5777 & statistics ~ = ShT
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Anyons | vortices w. long-range topological correlations

long-distance physics reproduced by effective field theory



Conformal field theory of edge excitations

The edge of the droplet can fluctuate: edge waves are massless
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Fermi surface
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edge ~ Fermi surface: linearize energy c(k) = £(k—kr), ke ZT

relativistic field theory in 1+1 dimensions, chiral (X.6.Wen)

===p conformal field theory

here compactified boson (c=1) = "chiral Luttinger liquid”

vortex in the bulk ===p charged excitation at the edge



CFT descriptions of QHE

‘ < 5 — ret? plane (bulk excit)

” ¢ =e"e?  cylinder (edge excit)

P (z1 — 22)® anyon wave function

ioupy Liapo

vertex operators (e’ s .
TN (¢1 —¢2)” edge-excit. correlator

* same function by analytic continuation from the circle:
both equivalent to Chern-Simons theory in 2+1 dim (Witten)
* spectrum of chiral boson CFT proofs Laughlin's fractional ¢} and %
- wave functions: spectrum of anyons and braiding

- edge correlators: conduction experiments (low V and small I)



CFT modelling of fractional QHE

CFTs exactly describe nonperturbative quantum effects

Big zoo of interacting theories (& integrable massive FT)

experimental confirmations:
- tunneling of edge excitations

sophisticated technical tools all relevant:
- repres. theory (affine and 17, algebras) (A.C., Trugenberger,Zemba)
- fusion rules (& modular invariance & boundaries)

- n-point correlators (braid & fusion relations)

=—p- Nice spin-off of string theory of '85-'95(-'05)




Measure of fractional charge

I =GAV

* electron fluid squeezed at one point: L & R edge excitations interact
* fluctuation of the scattered current: Shot Noise (T=0)

- low current Ip < I w===p tunnelling of weakly interacting carriers

St = {(|61(w)[2)es0 = g In Poisson statistics

* CFT description & integrable massive interaction: (Fendley, Ludwig, Saleur)

62 1 VG . . \ " .
_c - universality & "anomalous” scaling
C=33F (T2/3> !
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Figure 4.7. Two-terminal conductance as a function of gate voltage of a GaAs quantun
Hall point contact taken at 42mK. The two curves are taken at magnetic fields tha:

correspond to v=1 and v = 1/3 plateaus. (From Ref. [29].)

(Milliken et al '95)
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FIG. 2. Tunneling noise at » = 1/3 (v = 2/3) when fol-
lowing path A and plotted versus Iz = (e?/3h)Vy — I (filled
circles) and Ig(1 — R) (open circles). The slopes for e/3
quasiparticles (dashed line) and electrons (dotted line) are
shown. ® = 25 mK. Inset: data in same units showing elec-
tron tunneling for similar G = 0.32¢*/h but in the IQHE



Conductance
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Figure 4.14. Log-log scaling plot of the lineshape of resonances at different temperature:
from Ref. [29]. The x axis is rescaled by T%/>. The crosses represent experimental data a
temperatures between 40 and 140 mK. The squares are the results of the Monte Carlc



Remark 1. Can we prove the Laughlin state?

Effective theories but no microscopic theory

Exact eigenstate of model interactions ==+ numerics (Haldane,.....)

()

Gap is nonperturbative ==+ need "Non Relativistic effective theory'

NR fermions + extra Chern-Simons interaction (Fradkin et al.;Halperin
et al.; Shankar et al.)

Matrix gauge TheOf‘Y (Susskind '01; Polychronakos; A.C., I. Rodriguez)

- electrons ———— DO branes

Ta(t), a=1,...,N Xab(t), NxN matrices
- non commutative: (X1, Xo] = i6 minimal area
1 _ 1 _ 1

Po = 375> VYV = 13B0 — TI+2k
- predicts Laughlin's states and more general Jain's states

v n

1_1 . o “composite fermion"



Remark 2. W-infinity symmetry

* one CFT for each plateau: which CFT?

* area-preserving diffeomorphisms of incompressible fluid:
/d2:13 p(r) =N = p,A  wemmmp A = constant

* W-infinity symmetry can be implemented in CFT
* representations completely known  (V.Kac, A. Radul)

* "minimal models” of W match Jain's states (A.C., Trugenberger, Zemba)
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U(1)gpy1 x SU(n),
SU(n)

o n
2k n+1

CFT <= v

plateaux



Measure of fractional statistics
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need interference like double slit experiment

4-point function of edge states

induce anyon(s) in the central cell == Aharonov-Bohm phase

first experiment has side effects and instabilities (Goldman et al. '05)
can manufacture better interference geometries (cf. Stern review '07)

no doubts by low-energy effective theory



Non-Abelian fractional statistics

* v =2 described by Moore-Read "Pfaffian state” ~ Ising CFT x boson

* Ising fields: I identity, ©» Majorana = electron, o spin = anyon
* fusion rules:

- Y =1 2 electrons fuse into bosonic bound state

- |o-oc=1+1v | 2 channels of fusion = 2 “conformal blocks"

(0(0)o(2)o(1)o(00)) = a1 Fi(2) + a2F>(2) Hypergeometric functions
==> state of 4 anyons is two-fold degenerate  (Moore, Read '91)

* statistics of anyons ~ analytic continuation == 2x2 matrix

(B )e==(0 %) (R )0 LI
(§Q)<<z_1>ei2”>:($ }))(g)(z) - ;V:,):O

(CFT tech: Verlinde; Moore, Seiberg; Alvarez-Gaume, Gomez, Sierra)



Quantum computation

qubit = two-state quantum system, e.g. spin 3: [x) = a|0) + S|1)
boolean gates === unitary transformations on qubits
==p discrete subgroup of U(2") transformations in 1 qubit Hilbert space
minimal set of generators:
- 2x2 Pauli matrices + one specific 4x4 matrix
==> "Universal Quantum Computation”
many proposals of systems for QC: excitement & money
quantum computer is unavoidable & useful (e.g. for war, electronic)

big problem: decoherence by the environment




Topological quantum computation

Proposal: use non-Abelian anyons for qubits and operate by braiding

e.g. in Ising-like state v = 2 (Kitaev; M. Freedman; Nayak; Das Sarma)
anyons topologically protected from decoherence (local perturbations):
- decay due to finite size P ~ exp(—L/€), (system size)/¢ = O(10%)
- thermal pair creation P ~exp(—A/T), A/T = 0(10%)
use 4-spin system «|F1) + 3|F2) as 1qubit (2n spin has dim =271 )
consider multi-gate bar geometry of before:
===p perform anyon exchanges by tuning the various gate voltages
12

Ising is not universal QC; Z3 parafermions v = % are OK & others

study other anyonic media, e.g. array of Josephson junctions

many ideas & open problems
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