
  

Anyon PhysicsAnyon Physics

● Anyons & topology in 2+1 dimensions
● Chern-Simons gauge theory:  Aharonov-Bohm phases
● Quantum Hall effect:   bulk & edge excitations
● measure of fractional charge & statistics
● non-Abelian fractional statistics

n

& topological quantum computation         

Andrea Cappelli
(INFN and Physics Dept., Florence)

OutlineOutline



  

Fractional statistics in 2+1 dimensionsFractional statistics in 2+1 dimensions

●            e.g.              fractional  
● exchange of identical particles described by the braid group
●                  violates P and T symmetries
● If excitation is described by multiplet of m states:

ExchangeExchange MonodromyMonodromy

12

ª
£
(z1 ¡ z2)e

i2¼; z2
¤
= ei2µª [z1; z2]

µ = ¼º; º = 1=3 6= §1

eiµ 6= e¡iµ

ªa [z1; z2] ¡! Uab ªb [z1; z2] a,b = 1, . . , m

m-dim unitary repres. of braid group =   Non-Abelian statistics

eiµ



  

Chern-Simons gauge theoryChern-Simons gauge theoryC

Special facts of  2+1 dimensions:
● matter current         gauge field:  m

● low-energy effective action,  P,  T:
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Quantum Hall EffectQuantum Hall Effect

● 2 dim electron gas at low temperature T ~ 10 mK 2

and high magnetic field B ~ 10 Teslaaaa

● Conductance tensor
● Plateaux:                                     no Ohmic conduction          gapg

● High precision & universality
● Uniform density ground state:

Incompressible fluid
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Laughlin's quantum incompressible fluidLaughlin's quantum incompressible fluid

Electrons form a droplet of fluid:
         incompressible = gap            fluid = 
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Laughlin's trial wave functionLaughlin's trial wave function

●              filled Landau level: obvious gap 
●              non-perturbative gap due to Coulomb interaction
● ground state w. vortex condensation, like QCD but chiral
● quasi-hole excitation = elementary vortex
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fractional charge                      & statistics
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Conformal field theory of edge excitationsConformal field theory of edge excitations

● edge ~ Fermi surface: linearize energy
● relativistic field theory in 1+1 dimensions, chiral  (X.G.Wen)

(

conformal field theory  
● here compactified boson (c=1)  = “chiral Luttinger liquid”  
● vortex in the bulk            charged excitation at the edge

The edge of the droplet can fluctuate: edge waves are massless
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CFT descriptions of QHECFT descriptions of QHE

● same function by analytic continuation from the circle:

s

both equivalent to Chern-Simons theory in 2+1 dim  (Witten)

● spectrum of chiral boson CFT proofs Laughlin's fractional       and
– wave functions: spectrum of anyons and braiding

– edge correlators: conduction experiments (low V and small I)
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CFT modelling of fractional QHECFT modelling of fractional QHE

● CFTs exactly describe nonperturbative quantum effects
● Big zoo of interacting theories (& integrable massive FT)
● experimental confirmations:

– tunneling of edge excitations

● sophisticated technical tools all relevant:
– repres. theory (affine and         algebras) (A.C.,Trugenberger,Zemba)

– fusion rules (& modular invariance & boundaries)
– n-point correlators (braid & fusion relations)

n

       nice spin-off of string theory of '85-'95(-'05)
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Measure of fractional chargeMeasure of fractional charge

● electron fluid squeezed at one point: L & R edge excitations interact
● fluctuation of the scattered current: Shot Noise (T=0)

– low current                           tunnelling of weakly interacting carriers

l

                                                                       Poisson statistics 

P

● CFT description & integrable massive interaction: (Fendley, Ludwig, Saleur)
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                                                     universality & “anomalous” scaling 
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(Milliken et al '95)



  

(Glattli et al '97)



  

(Fendley et al '97)



  

Remark 1. Can we prove the Laughlin state?Remark 1. Can we prove the Laughlin state?

● Effective theories but no microscopic theory
● Exact eigenstate of model interactions         numerics
● Gap is nonperturbative          need “Non Relativistic effective theory”
● NR fermions + extra Chern-Simons interaction
● Matrix gauge theory  

–     electrons                               D0 branes

D

– non commutative:                                     minimal area

n

 
– predicts Laughlin's states and more general Jain's states

p

                                                   “composite fermion”

(Fradkin et al.; Halperin 
et al.; Shankar et al.)

(Susskind '01; Polychronakos; A.C., I. Rodriguez)
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Remark 2. W-infinity symmetryRemark 2. W-infinity symmetry

● one CFT for each plateau: which CFT?
● area-preserving diffeomorphisms of incompressible fluid:

a

                                                       A = constant

A A

● W-infinity symmetry can be implemented in CFT
● representations completely known 
● “minimal models” of       match Jain's states 

m

                              

 

                             CFT                                            plateaux  

(A.C., Trugenberger, Zemba)

(V.Kac, A. Radul)
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Measure of fractional statisticsMeasure of fractional statistics

● need interference like double slit experiment
● 4-point function of edge states
● induce anyon(s) in the central cell          Aharonov-Bohm phase
● first experiment has side effects and instabilities 
● can manufacture better interference geometries
● no doubts by low-energy effective theory
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Non-Abelian fractional statisticsNon-Abelian fractional statistics
●           described by Moore-Read “Pfaffian state” ~ Ising CFT x boson
● Ising fields:       identity,       Majorana = electron,      spin = anyon
● fusion rules:    

–                             2 electrons fuse into bosonic bound state
–                             2 channels of fusion = 2 “conformal blocks”

2

                                                       Hypergeometric functions

H

        state of 4 anyons is two-fold degenerate     (Moore, Read '91)

● statistics of anyons ~ analytic continuation          2x2 matrix
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Quantum computationQuantum computation

● qubit = two-state quantum system, e.g. spin ½:
● boolean gates          unitary transformations on qubits 

b

discrete subgroup of            transformations in    qubit Hilbert space
● minimal set of generators:

– 2x2 Pauli matrices + one specific 4x4 matrix

2

“Universal Quantum Computation”
● many proposals of systems for QC: excitement & money 
● quantum computer is unavoidable & useful (e.g. for war, electronic)

● big problem: decoherence by the environment
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Topological quantum computationTopological quantum computation
● Proposal: use non-Abelian anyons for qubits and operate by braiding

:

 e.g. in Ising-like state            (Kitaev; M. Freedman; Nayak; Das Sarma)

● anyons topologically protected from decoherence (local perturbations):
– decay due to finite size                               

– thermal pair creation

● use 4-spin system                         as 1 qubit ( 2n spin has dim =         )
● consider multi-gate bar geometry of before: 

c

perform anyon exchanges by tuning the various gate voltages
● Ising is not universal QC;      parafermions            are OK & others
● study other anyonic media, e.g. array of Josephson junctions

s

                

 

                     many ideas & open problems
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