Anyon Physics

Andrea Cappelli (INFN and Physics Dept., Florence)

Outline

- Anyons & topology in 2+1 dimensions
- Chern-Simons gauge theory: Aharonov-Bohm phases
- Quantum Hall effect: bulk & edge excitations
- measure of fractional charge & statistics
- non-Abelian fractional statistics
 - & topological quantum computation

Fractional statistics in 2+1 dimensions

Exchange

 $e^{i\theta}$

Monodromy

$$\Psi \left[(z_1 - z_2)e^{i2\pi}, z_2 \right] = e^{i2\theta} \Psi \left[z_1, z_2 \right]$$

- $\theta = \pi \nu$, e.g. $\nu = 1/3$ fractional $\neq \pm 1$
- exchange of identical particles described by the braid group
- $e^{i\theta} \neq e^{-i\theta}$ violates P and T symmetries
- If excitation is described by multiplet of m states:

$$\Psi_a \left[z_1, z_2 \right] \longrightarrow U_{ab} \ \Psi_b \left[z_1, z_2 \right]$$

$$a,b = 1, ..., m$$

m-dim unitary repres. of braid group = Non-Abelian statistics

Chern-Simons gauge theory

- Special facts of 2+1 dimensions:
- matter current \iff gauge field: $J_{\mu}=(\rho,J_i),\quad \partial_{\mu}J_{\mu}=0,\;\langle J_{\mu}\rangle=0$ $J_{\mu} = \varepsilon_{\mu\nu\rho}\partial_{\nu}\mathcal{A}_{\rho}$
- low-energy effective action, 1, 7:

rgy effective action, 7, 7: ext. source
$$S_{CS} = \frac{k}{4\pi} \int \varepsilon_{\mu\nu\rho} \mathcal{A}_{\mu} \partial_{\nu} \mathcal{A}_{\rho} + \mathcal{A}_{\mu} s^{\mu} + \frac{1}{M} \mathcal{F}_{\mu\nu}^{2}$$

eq. of motion —— no local degrees of freedom

$$\mathcal{F}_{\mu\nu} = \frac{2\pi}{k} \, \varepsilon_{\mu\nu\rho} s^{\rho}, \qquad B = \frac{2\pi}{k} \, \delta^{(2)}(z - z_2)$$

$$\exp\left(i\oint_{z_2}\mathcal{A}\right)=e^{i2\pi/k}$$
 Aharonov-Bohm phase

Quantum Hall Effect

 2 dim electron gas at low temperature T ~ 10 mK and high magnetic field B ~ 10 Tesla

Conductance tensor
$$J_i = \sigma_{ij} E_j, \quad \sigma_{ij} = R_{ij}^{-1}, \qquad i,j = x,y$$

$$\sigma_{xx} = 0, \ R_{xx} = 0$$

Plateaux: $\sigma_{xx} = 0$, $R_{xx} = 0$ no Ohmic conduction \longrightarrow gap

- High precision & universality
- Uniform density ground state: $\rho_o = \frac{eB}{hc} \nu$

$$\rho_o = \frac{eB}{hc}\nu$$

Incompressible fluid

Figure 1. This figure shows a quantum Hall experiment trace. (Source: Goldman et al. [2].) The sample geometry is shown in the inset. The various resistances are defined as: Hall resistance $R_{xy} = V_{26}/I_{14}$; longitudinal resistance $R_{xx} = V_{23}/I_{14}$; and non-local resistance $R_{NL} = V_{26}/I_{35}$. Here, V_{jk} denotes the voltage difference between the leads j and k, and I_{jk} denotes the current from lead j to lead k. The experiment was performed at $40 \, \text{mK}$.

Laughlin's quantum incompressible fluid

Electrons form a droplet of fluid:

- incompressible = gap fluid = $\rho(x,y) = \rho_o = \mathrm{const.}$

$$\mathcal{D}_A = BA/\Phi_o, \; ext{\# degenerate orbitals} = ext{\# quantum fluxes}, \quad \Phi_o = rac{hc}{e}$$

filling fraction:
$$\nu=rac{N}{\mathcal{D}_A}=1,2,\ldotsrac{1}{3},rac{1}{5},\ldots$$
 density for quantum mech.

Laughlin's trial wave function

$$\Psi_{\nu}(z_1, z_2, \dots, z_N) = \prod_{i < j} (z_i - z_j)^{2k+1} e^{\sum |z_i|^2/2} \qquad \nu = \frac{1}{2n+1} = 1, \frac{1}{3}, \frac{1}{5}, \dots$$

$$\nu = \frac{1}{2n+1} = 1, \frac{1}{3}, \frac{1}{5}, \dots$$

- $\nu=1$ filled Landau level: obvious gap $\omega=\frac{eB}{mc}\gg kT$
- $\nu = \frac{1}{3}$ non-perturbative gap due to Coulomb interaction
- ground state w. vortex condensation, like QCD but chiral
- quasi-hole excitation = elementary vortex $\Psi_{\eta} \propto \prod_{i} (\eta z_{i})$

$$\begin{array}{ll} \longrightarrow \underline{\text{fractional charge}} & Q = \frac{e}{2k+1} & \underline{\text{\& statistics}} & \frac{\theta}{\pi} = \frac{1}{2k+1} \\ & \Psi_{\eta_1,\eta_2} \propto (\eta_1 - \eta_2)^{\frac{1}{2k+1}} \prod_i \left(\eta_1 - z_i\right) \left(\eta_2 - z_i\right) \end{array}$$

Anyons

vortices w. long-range topological correlations

long-distance physics reproduced by effective field theory

Conformal field theory of edge excitations

The edge of the droplet can fluctuate: edge waves are massless

- edge ~ Fermi surface: linearize energy $\varepsilon(k)=rac{v}{R}(k-k_F), \;\; k\in Z^+$
- relativistic field theory in 1+1 dimensions, chiral (X.G.Wen)
 - --- conformal field theory
- here compactified boson (c=1) = "chiral Luttinger liquid"
- vortex in the bulk
 — charged excitation at the edge

CFT descriptions of QHE

- same function by analytic continuation from the circle:
 both equivalent to Chern-Simons theory in 2+1 dim (Witten)
- ullet spectrum of chiral boson CFT proofs Laughlin's fractional $\,Q\,$ and $rac{ heta}{\pi}$
 - wave functions: spectrum of anyons and braiding
 - edge correlators: conduction experiments (low V and small I)

CFT modelling of fractional QHE

- CFTs exactly describe nonperturbative quantum effects
- Big zoo of interacting theories (& integrable massive FT)
- experimental confirmations:
 - tunneling of edge excitations
- sophisticated technical tools all relevant:
 - repres. theory (affine and W_{∞} algebras) (A.C., Trugenberger, Zemba)
 - fusion rules (& modular invariance & boundaries)
 - n-point correlators (braid & fusion relations)
 - nice spin-off of string theory of '85-'95(-'05)

Measure of fractional charge

- electron fluid squeezed at one point: L & R edge excitations interact
- fluctuation of the scattered current: Shot Noise (T=0)
 - low current $I_B \ll I$ \longrightarrow tunnelling of weakly interacting carriers

$$S_I = \langle |\delta I(\omega)|^2 \rangle_{\omega \to 0} = \frac{e}{3} I_B$$

Poisson statistics

CFT description & integrable massive interaction: (Fendley, Ludwig, Saleur)

$$G = \frac{e^2}{h} \frac{1}{3} F\left(\frac{V_G}{T^{2/3}}\right)$$

 $G=rac{e^2}{h}rac{1}{3}\;F\left(rac{V_G}{T^{2/3}}
ight)$ universality & "anomalous" scaling

Figure 4.7. Two-terminal conductance as a function of gate voltage of a GaAs quantum Hall point contact taken at $42 \,\mathrm{mK}$. The two curves are taken at magnetic fields that correspond to v = 1 and v = 1/3 plateaus. (From Ref. [29].)

(Milliken et al '95)

FIG. 2. Tunneling noise at $\nu = 1/3$ ($\nu_L = 2/3$) when following path A and plotted versus $I_B = (e^2/3h)V_{ds} - I$ (filled circles) and $I_B(1-R)$ (open circles). The slopes for e/3 quasiparticles (dashed line) and electrons (dotted line) are shown. $\Theta = 25$ mK. Inset: data in same units showing electron tunneling for similar $G = 0.32e^2/h$ but in the IQHE

Figure 4.14. Log-log scaling plot of the lineshape of resonances at different temperatures from Ref. [29]. The x axis is rescaled by $T^{2/3}$. The crosses represent experimental data a temperatures between 40 and 140 mK. The squares are the results of the Monte Carlo

Remark 1. Can we prove the Laughlin state?

- Effective theories but no microscopic theory
- Exact eigenstate of model interactions \longrightarrow numerics (Haldane,....)
- Gap is nonperturbative \longrightarrow need "Non Relativistic effective theory"
- (Fradkin et al.; Halperin NR fermions + extra Chern-Simons interaction et al.; Shankar et al.)
- Matrix gauge theory (Susskind '01; Polychronakos; A.C., I. Rodriguez)

$$\vec{x}_a(t), \ a=1,\ldots,N$$

$$\vec{X}_{ab}(t)$$

 $ec{X}_{ab}(t),$ NxN matrices

non commutative:

$$[X_1,X_2]=i heta$$
 minimal area

$$\rho_o = \frac{1}{2\pi\theta}, \quad \nu = \frac{1}{1+B\theta} = \frac{1}{1+2k}$$

- predicts Laughlin's states and more general Jain's states

$$\frac{1}{\nu} = \frac{1}{n} + 2k$$
 "composite fermion"

Remark 2. W-infinity symmetry

- one CFT for each plateau: which CFT?
- area-preserving diffeomorphisms of incompressible fluid:

$$\int d^2x \ \rho(x) = N = \rho_o A \qquad \qquad \qquad A = \text{constant}$$

- W-infinity symmetry can be implemented in CFT
- representations completely known (V.Kac, A. Radul)
- "minimal models" of W_{∞} match Jain's states (A.C., Trugenberger, Zemba)

$$\frac{\widehat{U(1)}_{2k+1} \times \widehat{SU(n)}_1}{SU(n)} \quad \text{CFT} \qquad \qquad \qquad \nu = \frac{n}{2k \; n \pm 1} \quad \text{plateaux}$$

Measure of fractional statistics

- need interference like double slit experiment
- 4-point function of edge states
- induce anyon(s) in the central cell \longrightarrow Aharonov-Bohm phase
- first experiment has side effects and instabilities (Goldman et al. '05)
- can manufacture better interference geometries (cf. Stern review '07)
- no doubts by low-energy effective theory

Non-Abelian fractional statistics

- $\nu = \frac{5}{2}$ described by Moore-Read "Pfaffian state" ~ Ising CFT x boson
- Ising fields: I identity, ψ Majorana = electron, σ spin = anyon
- fusion rules:
 - $\psi \cdot \psi = I$

- 2 electrons fuse into bosonic bound state
- $\sigma \cdot \sigma = I + \psi$ 2 channels of fusion = 2 "conformal blocks"

$$\langle \sigma(0)\sigma(z)\sigma(1)\sigma(\infty)\rangle = a_1F_1(z) + a_2F_2(z)$$
 Hypergeometric functions

- state of 4 anyons is two-fold degenerate (Moore, Read '91)
- statistics of anyons \sim analytic continuation \longrightarrow 2x2 matrix

$$\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} \left(z e^{i2\pi} \right) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} (z)$$

$$\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} ((z-1)e^{i2\pi}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} (z)$$

(CFT tech: Verlinde; Moore, Seiberg; Alvarez-Gaume, Gomez, Sierra)

Quantum computation

- qubit = two-state quantum system, e.g. spin $\frac{1}{2}$: $|\chi\rangle = \alpha|0\rangle + \beta|1\rangle$
- boolean gates unitary transformations on qubits
 - \longrightarrow discrete subgroup of $U(2^n)$ transformations in n qubit Hilbert space
- minimal set of generators:
 - 2x2 Pauli matrices + one specific 4x4 matrix
 - "Universal Quantum Computation"
- many proposals of systems for QC: excitement & money
- quantum computer is unavoidable & useful (e.g. for war, electronic)
- big problem: decoherence by the environment

Topological quantum computation

- <u>Proposal</u>: use non-Abelian anyons for qubits and operate by braiding e.g. in Ising-like state $u=\frac{5}{2}$ (Kitaev; M. Freedman; Nayak; Das Sarma)
- anyons topologically protected from decoherence (local perturbations):
 - decay due to finite size $P \sim \exp(-L/\xi)$, (system size) $/\ell = O(10^4)$
 - thermal pair creation $P \sim \exp(-\Delta/T), \quad \Delta/T = O(10^2)$
- ullet use 4-spin system $|lpha|F_1
 angle+eta|F_2
 angle$ as 1 qubit (2n spin has dim = 2^{n-1})
- consider multi-gate bar geometry of before:
 - perform anyon exchanges by tuning the various gate voltages
- Ising is not universal QC; Z_3 parafermions $u = \frac{12}{5}$ are OK & others
- study other anyonic media, e.g. array of Josephson junctions

many ideas & open problems

Low-dimensional Quantum Field Theories and Applications

Workshop

Organizers:

Andrea Cappelli (INFN, Florence), Giuseppe Mussardo (SISSA, Trieste), Hubert Saleur (CEA, Saclay), Paul Wiegmann (EFI, Chicago) and Jean-Bernard Zuber (Paris VI).

Period: from 01-09-2008 to 07-11-2008

Deadline: 31-03-2008

Topics

- Quantum dynamics in mesoscopic systems and cold atoms
- Conformal field theory and topological quantum computation
- Correlations and entanglement in lattice models and field theories
- Sigma models on noncompact groups and logarithmic conformal field theory
- Stochastic Loewner evolution and growth processes
- Integrability in the AdS/CFT correspondence