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Introduction

Critical phenomena have been extensively studied in non-integer space-time
dimensions d € R:

e Perturbative expansion around d = 4 gives results for non-integer d

e Universality Class may change in non-integer dimension (e.g., systems
with long-range interactions or disorder)

In this talk we are mainly concerned with the investigation of the Ising
Universality Class in fractional dimension 4 > d > 3.

Our approach: numerical conformal bootstrap. We use 1-correlator (cooo)
setup [El-Showk et al., 1403.4545], SDPB routine [Simmons-Duffin, 1502.02033] and the
Extremal Functional Method (EFM) [El-Showk and Paulos, 1211.2810].

Although more advanced methods have been recently introduced, see, e.g., the
Nnavigator [Reehorst et al., arXiv:2104.09518], our setup turns out to be reliable
enough to determine low-lying spectrum with up to per-mill precision.

We will also compare our results with those obtained by other perturbative
and non-perturbative techniques: different boostrap approaches, perturbative
expansion, resummed perturbative series, Monte Carlo, ...
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Results for anomalous dimensions v,, Ve, Ve

Lowest-lying ¢ = 0 operators (Yo, Ye, Ve — 7, ¥, w Ising critical exponents)

0.00004 0.0004

0.00002 0.0002
L ! { ) P S S [ [
< - A A A 5 [ A N N R a A A T
—0.00002 —0.0002
—0.00004 —0.0004
0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0
4—d 4—d
0.004
Very good agreement with recent
0002 3-corr. boostrap results obtained by
= [ l T I the navigator method for 4 > d >
(15
& B l I | | 3 [Henriksson et al., 2207.10118]. Note
3 -
o e e et { that errorbars for 3-corr. results at
d = 3 are rigorous bounds [Kos et al.,
0004 1603.04436; Reehorst, 2111.12093].
0 0.2 0.4 0.6 0.8 1

C. Bonanno Benchmarking the Ising Universality Class in 3 < d < 4 dimensions 02/11/22 3/15



Brief recap of perturbative eps. expansion

The perturbative 3 function takes the following form in the MS scheme:
n+1

Bm(g,y):*yngZﬂk g~ y=4—d.
k=2

Using the fixed-point equation for the critical coupling g = g*
Pus(dy) =0 — g"=g"(y)

we can convert a perturbative series in g into a perturbative series in y:
n n
k - k
0@) =Y tord" — oW =D Fory"
k=1 k=1

Expansion coefficients grow factorially:

~ (=) Ca" KR!

Yo,k oo

Thus, the more terms are added, the sooner the perturbative series diverges:

_ _ 1
|’Yo,n/7(’),n—1| ~ayn = Y <K Ymax ~ %

We expect perturbative predictions to be reliable when y < ymax, i-€., only
sufficiently close to d = 4. Let us check by comparing with bootstrap results.
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Agreement between fully non-perturbative bootstrap results and perturbation theory
close to d = 4 is a non-trivial check that non-perturbative effects become negligible
for y — 0 in the bootstrap equations.
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Close to d = 3, eps. expansion
[Kompaniets et al., 1705.06483; Schnetz,
1606.08598] sensibly deviates from boot-
strap results. Deviation increases with
increasing order n.

In the range 4 > d > 3.8, instead, per-
turbation theory prediction perfectly
agrees with bootstrap results within er-
rors. Triangles = navigator [Henriksson
et al., 2207.10118].

Upon increasing n, perturbative series
describes better and better WL(TCB) (y) up
to some Yoptimal ~ 1/n before starting
to diverge.
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Comparison with eps. expansion for 7, - 2
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Agreement between fully non-perturbative bootstrap results and perturbation theory

close to d = 4 (up to O(y?) terms) is a non-trivial check that non-perturbative
effects become negligible for y — 0 in the bootstrap equations.
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Comparis it , on for v, and

Similar considerations hold also for 7. and 7./. Also in this case agreement between
bootstrap fit and perturbative series is very good for d > 4 > 3.8 (up to O(y*) terms).
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Brief recap of Borel resummation of perturbative series

The Borel transform is defined so as to remove the factorial growth of the
coefficients of the perturbative series ¥ ;, oy (—-1)*Ca*kk!
’ —00

- io,k k 1

B’Yo (t) = — k! ~ (1 —|—at)b+1

The Borel transform has finite radius of convergence [¢t| < 1/a.

Resummed perturbative series is obtained from the inverse Borel transform:

Fo(y) = / dt et By (yt),

Series Yo has the same perturbative expansion of vo(y) by construction but is
better behaved if B, (t) is analytically continued outside [¢| < 1/a.

Such analytic continuation can be done by several means, and introducing
some parameters that can be varied to obtain a robust resumation scheme.

In this work we will mainly show resummed results obtained by the
state-of-the-art techniques of [Kompaniets and Panzer, 1705.06483].
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Comparison with resummed pertur
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Extended comparison for d

3

For d = 3, the comparison can be further extended considering other
results obtained by different methods.
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Different determinations for vs, e, Ver
obtained by several perturbative and
non-perturbative methods give overall
very good agreeing results. It is highly
non-trivial given the reached precision.

Non-perturbative RG [Balog et al., 1907.01829; Depuis et al., 2006.04853]

SC Borel Resummation [Kompaniets and Wiese, 1908.07502]
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Results for OPE coeffic
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Results for low-

Scaling dimensions and structure constants of low-lying operators in the ¢ = 2,4
channels can be determined with good precision too.

Very good agreement with recent navigator results [Henriksson et al., 2207.10118] in the
whole range, and with perturbation theory for 4 > d > 3.8.
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Results for higher-dimensional operator: the case of C’

With our bootstrap setup we were not able to resolve the spectrum of
higher-dimensional fields. As an example we show the case of C’ (£ = 4).
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Comparing our results with those of the navigator [Henriksson et al., 2207.10118],

we find a state that seems to approach correctly C’ for d — 3 but that gets
closer and closer to C"" as d — 4, which in this limit is degenerate with C".

Taking a look at the OPE coefficient of our would-be-C’ state we observe that,
close to d = 4, it approaches the perturbative prediction for f,,c~, which is
larger than f,,c — it dominates in our mixted state close to y ~ 0.
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Concluding remarks

e Our simple 1-correlator bootstrap is capable of precisingly determine the
low-lying spectrum of the Ising CFT for 4 > d > 3.

e Our results provide a benchmark for future more refined studies of Ising
critical exponents in fractional dimensions (e.g., new resummation
results).

e Very good agreement between bootstrap best fit and perturbative series
up to O(y?) terms close to d = 4, more precisely perturbative series agrees
with bootstrap results in the range 4 > d > 3.8.

e Very good agreement among different numerical bootstrap determinations
in the whole 4 > d > 3 range.

e Very good overall agreement among several different perturbative
(resummed eps. expansion) and non-perturbative (Monte Carlo,
non-perturbative RG, 1-corr. and 3-corr. bootstrap) methods to compute
Ising critical exponents for d = 3.
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Future outlooks

e [t would be interesting to perform analogous studies in the range
3 > d > 2 to better understand how the strongly-interacting model
at d = 3 reduces to the minimal Virasoro theory for d = 2.

e To this end it is of the utmost importance to precisely compute
scaling dimensions and OPE coefficients of higher-dimensional
operators, by using, e.g., the recent navigator method.
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