Benchmarking the Ising Universality Class in $3 \le d < 4$ dimensionss

Istituto Nazionale di Fisica Nucleare

Speaker: CLAUDIO BONANNO INFN FIRENZE Claudio.bonanno@fi.infn.it

Bootstrapping Nature: Non-perturbative Approaches to Critical Phenomena

 $GGI-Nov.\ 2^{nd}\ 2022$

TALK BASED ON:

CB, A. Cappelli, M. Kompaniets, S. Okuda, K. J. Wiese, [arXiv:2205.06190]

Introduction

Critical phenomena have been extensively studied in non-integer space-time dimensions $d \in \mathbb{R}$:

- Perturbative expansion around d=4 gives results for non-integer d
- Universality Class may change in non-integer dimension (e.g., systems with long-range interactions or disorder)

In this talk we are mainly concerned with the investigation of the Ising Universality Class in fractional dimension $4 > d \ge 3$.

Our approach: numerical conformal bootstrap. We use 1-correlator $\langle \sigma \sigma \sigma \sigma \rangle$ setup [El-Showk et al., 1403.4545], SDPB routine [Simmons-Duffin, 1502.02033] and the Extremal Functional Method (EFM) [El-Showk and Paulos, 1211.2810].

Although more advanced methods have been recently introduced, see, e.g., the *navigator* [Reehorst et al., arXiv:2104.09518], our setup turns out to be reliable enough to determine low-lying spectrum with up to per-mill precision.

We will also compare our results with those obtained by other perturbative and non-perturbative techniques: different boostrap approaches, perturbative expansion, resummed perturbative series, Monte Carlo, ...

C. Bonanno

Benchmarking the Ising Universality Class in $3 \le d < 4$ dimensions 02/11/22

22 2/15

Results for anomalous dimensions γ_{σ} , γ_{ϵ} , $\gamma_{\epsilon'}$

Lowest-lying $\ell = 0$ operators $(\gamma_{\sigma}, \gamma_{\epsilon}, \gamma_{\epsilon'} \to \eta, \nu, \omega$ Ising critical exponents)

C. Bonanno Benchmarking the Ising Universality Class in $3 \le d < 4$ dimensions 02/11/22 3/15

Brief recap of perturbative eps. expansion

The perturbative β function takes the following form in the $\overline{\text{MS}}$ scheme:

$$\beta_{\overline{\mathrm{MS}}}(g,y) = -yg + \sum_{k=2}^{n+1} \beta_k g^k, \qquad y \equiv 4 - d.$$

Using the fixed-point equation for the critical coupling $g = g^{\star}$

$$\beta_{\overline{\mathrm{MS}}}(g^\star,y)=0 \quad \longrightarrow \quad g^\star=g^\star(y)$$

we can convert a perturbative series in g into a perturbative series in y:

$$\gamma_{\mathcal{O}}(g) = \sum_{k=1}^{n} \gamma_{\mathcal{O},k} \ g^{k} \quad \longrightarrow \quad \gamma_{\mathcal{O}}(y) = \sum_{k=1}^{n} \overline{\gamma}_{\mathcal{O},k} \ y^{k}$$

Expansion coefficients grow factorially:

$$\overline{\gamma}_{\mathcal{O},k} \underset{k \to \infty}{\sim} (-1)^k C a^k k^b k! \,.$$

Thus, the more terms are added, the sooner the perturbative series diverges:

$$|\overline{\gamma}_{\mathcal{O},n}/\overline{\gamma}_{\mathcal{O},n-1}| \sim ayn \implies y \ll y_{\max} \sim \frac{1}{an}$$

We expect perturbative predictions to be reliable when $y \ll y_{\text{max}}$, i.e., only sufficiently close to d = 4. Let us check by comparing with bootstrap results.

Comparison with eps. expansion for γ_{σ} - 1

Close to d = 3, eps. expansion [Kompaniets et al., 1705.06483; Schnetz, 1606.08598] sensibly deviates from bootstrap results. Deviation increases with increasing order n.

In the range $4 > d \ge 3.8$, instead, perturbation theory prediction perfectly agrees with bootstrap results within errors. Triangles = navigator [Henriksson et al., 2207.10118].

Upon increasing n, perturbative series describes better and better $\gamma_{\sigma}^{(\text{CB})}(y)$ up to some $y_{\text{optimal}} \sim 1/n$ before starting to diverge.

Agreement between fully non-perturbative bootstrap results and perturbation theory close to d = 4 is a **non-trivial check** that **non-perturbative effects** become negligible for $y \to 0$ in the bootstrap equations.

Comparison with eps. expansion for γ_{σ} - 2

Agreement between fully non-perturbative bootstrap results and perturbation theory close to d = 4 (up to $O(y^3)$ terms) is a **non-trivial check** that **non-perturbative** effects become negligible for $y \to 0$ in the bootstrap equations.

Comparison with eps. expansion for γ_{ϵ} and $\gamma_{\epsilon'}$

Similar considerations hold also for γ_{ϵ} and $\gamma_{\epsilon'}$. Also in this case agreement between bootstrap fit and perturbative series is very good for d > 4 > 3.8 (up to $O(y^3)$ terms).

C. Bonanno Benchmarking the Ising Universality Class in $3 \le d < 4$ dimensions 02/11/22 7/15

Brief recap of Borel resummation of perturbative series

The **Borel transform** is defined so as to remove the factorial growth of the coefficients of the perturbative series $\overline{\gamma}_{\mathcal{O},k} \underset{k \to \infty}{\sim} (-1)^k Ca^k k^b k!$:

$$\mathcal{B}_{\gamma_{\mathcal{O}}}(t) \equiv \sum_{k=1}^{n} \frac{\overline{\gamma}_{\mathcal{O},k}}{k!} t^{k} \sim \frac{1}{(1+at)^{b+1}}$$

The Borel transform has finite radius of convergence |t| < 1/a.

Resummed perturbative series is obtained from the *inverse Borel transform*:

$$\widetilde{\gamma}_{\mathcal{O}}(y) = \int_0^\infty dt \, e^{-t} \, \mathcal{B}_{\gamma_{\mathcal{O}}}(yt),$$

Series $\tilde{\gamma}_{\mathcal{O}}$ has the same perturbative expansion of $\gamma_{\mathcal{O}}(y)$ by construction but is better behaved if $\mathcal{B}_{\gamma_{\mathcal{O}}}(t)$ is analytically continued outside |t| < 1/a.

Such analytic continuation can be done by several means, and introducing some parameters that can be varied to obtain a robust resumation scheme.

In this work we will mainly show resummed results obtained by the state-of-the-art techniques of [Kompaniets and Panzer, 1705.06483].

Comparison with resummed perturbative series

Resummation allows to improve agreement among bootstrap and perturbative results even close to d = 3.

For comparison purposes, we also report unresummed perturbative results (magenta solid curves) and Monte Carlo determinations for d = 3(yellow diamond points) [Hasenbusch,

1004.4486; 2105.09781].

Extended comparison for d = 3

For d = 3, the comparison can be further extended considering other results obtained by different methods.

Different determinations for γ_{σ} , γ_{ϵ} , $\gamma_{\epsilon'}$ obtained by several perturbative and non-perturbative methods give overall very good agreeing results. It is highly non-trivial given the reached precision.

Our d = 3 CB 1-corr. result [Cappelli et al., 1811.07751] Non-perturbative RG [Balog et al., 1907.01829; Depuis et al., 2006.04853]

SC Borel Resummation [Kompaniets and Wiese, 1908.07502]

C. Bonanno Benchmarking the Ising Universality Class in $3 \le d < 4$ dimensions 02/11/22 10/15

Results for OPE coefficients of low-lying $\ell = 0$ operators

Overall agreement among different determinations: 3-corr. CB (pentagons) [Simmons-Duffin, 1612.08471], navigator (triangles) [Henriksson et al., 2207.10118].

Lower precision of resummed results for $f_{\sigma\sigma\epsilon}$ due to lower eps. expansion known terms (up to n = 4).

C. Bonanno Benchmarking the Ising Universality Class in $3 \le d < 4$ dimensions 02/11/22 11/15

Results for low-lying $\ell > 0$ operators

Scaling dimensions and structure constants of low-lying operators in the $\ell = 2, 4$ channels can be determined with good precision too.

Very good agreement with recent navigator results [Henriksson et al., 2207.10118] in the whole range, and with perturbation theory for 4 > d > 3.8.

C. Bonanno Benchmarking the Ising Universality Class in $3 \le d < 4$ dimensions 02/11/22 12/15

Results for higher-dimensional operator: the case of C'

With our bootstrap setup we were not able to resolve the spectrum of higher-dimensional fields. As an example we show the case of C' ($\ell = 4$).

Comparing our results with those of the navigator [Henriksson et al., 2207.10118], we find a state that seems to approach correctly C' for $d \to 3$ but that gets closer and closer to C'' as $d \to 4$, which in this limit is degenerate with C'.

Taking a look at the OPE coefficient of our *would-be-C'* state we observe that, close to d = 4, it approaches the perturbative prediction for $f_{\sigma\sigma C''}$, which is larger than $f_{\sigma\sigma C'} \longrightarrow$ it dominates in our mixted state close to $y \sim 0$.

Concluding remarks

- Our simple 1-correlator bootstrap is capable of precisingly determine the low-lying spectrum of the Ising CFT for $4 > d \ge 3$.
- Our results provide a benchmark for future more refined studies of Ising critical exponents in fractional dimensions (e.g., new resummation results).
- Very good agreement between bootstrap best fit and perturbative series up to $O(y^3)$ terms close to d = 4, more precisely perturbative series agrees with bootstrap results in the range 4 > d > 3.8.
- Very good agreement among different numerical bootstrap determinations in the whole $4>d\geq 3$ range.
- Very good overall agreement among several different perturbative (resummed eps. expansion) and non-perturbative (Monte Carlo, non-perturbative RG, 1-corr. and 3-corr. bootstrap) methods to compute Ising critical exponents for d = 3.

- It would be interesting to perform analogous studies in the range $3 > d \ge 2$ to better understand how the strongly-interacting model at d = 3 reduces to the minimal Virasoro theory for d = 2.
- To this end it is of the utmost importance to precisely compute scaling dimensions and OPE coefficients of higher-dimensional operators, by using, e.g., the recent navigator method.