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Overview

A recent research activity in theoretical condensed matter physics concerns the topo-

logical phases of matter, that are many body collective states with strong quantum effects

occurring e.g. at very low temperatures and/or under high magnetic fields. In these states,

the interacting electrons give rise to fascinating quantum macroscopic phenomena, whose

understanding involves fundamental aspects of quantum field theory, mathematical physics

and geometry. Therefore, the topological phases of matter are interesting and relevant for

theoretical physics in a very broad sense.

The Ginzburg–Landau theory provides the framework for understanding the phases of

matter such as ferromagnets, superfluids and superconductors. In the early eighties other

states have been found that cannot be explained by this theory. The topological states realize

a new kind of order, the so called Wen’s topological order, which measures the influence of

the topology of space on the collective behavior of correlated electrons. In mathematics,

topology concerns properties that are preserved under continuous deformations, such as

stretching and bending, but not tearing or gluing. In condensed matter, topology specifies

the robustness of the quantum phenomena under deformations of the Hamiltonian as well

as the Aharonov-Bohm phases that are associated to excitations.

The best known example of a topological phase is given by the quantum Hall effect

(QHE), a two-dimensional electron system subjected to strong magnetic field and placed

at very low temperatures. In these conditions, the system shows constant plateaus in the

transverse conductivity σH , called Hall conductivity, which takes very precise quantized

values in units of e2/h. These can be integer or fractional, corresponding to the integer and

fractional QHE, respectively. The Hall states possess an energy gap for bulk excitations,

but also massless excitations at the edge of the system that are chiral due to the magnetic

field. Furthermore, the fractional states display anyon excitations with fractional charge and

fractional exchange statistics.

Recently many other topological phases of matter have been discovered; these are also

gapped in the bulk and possess massless boundary excitations. A classification of these states

in ten universality classes has been achieved for free electron (band) systems. This follows

from the analysis of general quadratic Hamiltonians, constrained by time-reversal symmetry,

charge-conjugation and chiral symmetry. The ten possible phases are characterized by topo-

logical numbers. The present challenge is to extend the classification to interacting electron

systems. For example, the integer Z classification of topological superconductors of class

DIII in three spatial dimensions is known to reduce to Z16 in presence of interactions.

The aim of this thesis is to describe the topological phases of matter by means of effec-

tive field theories. In many cases, this approach provides an hydrodynamics picture of the

topological excitations that is valid at energies below the bulk gap, realizes the underlying
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symmetries and is independent of microscopic details. The field theory approach reproduces

the classification of non-interacting phases and, moreover, allows to discuss the effect of

interactions.

We begin this thesis by reviewing the effective field theory description of the QHE. This

involves the Chern-Simons theory, a topological gauge theory that accounts for the responses

of the system, such as the Hall conductivity and the fractional charge and statistics of anyonic

excitations. In presence of a boundary, the Chern-Simons theory is not gauge invariant and

needs additional massless degrees of freedom located at the boundary. These are described

by a conformal field theory (CFT) in (1+1) dimensions, whose relation with the bulk Chern-

Simons theory is well established. The boundary modes of the QHE states are stable: owing

to their chirality, they cannot self-interact and acquire a mass.

We first review the edge theory of QHE states, the CFT of a compactified free boson,

whose canonical quantization provides an exact description of interacting Hall states with

Abelian fractional statistics. Moreover, we recall that the Hall current is described in the

CFT by the non-conservation of the boundary charge, namely by a chiral anomaly. On the

other hand, the charge is conserved in the whole theory of bulk and boundary: thus, the edge

anomaly is cancelled by the bulk current of the Chern-Simons theory, through a mechanism

called anomaly inflow. We remark that in this thesis we will often make use of anomalies, i.e.

of classical symmetries broken by quantum effects. Being related to topological quantities,

anomalies allow to explain and characterize the robustness of topological phases of matter.

The main topic of this thesis is to understand, by means of effective field theory, the stabil-

ity of boundary excitations of two and three dimensional time-reversal invariant topological

insulators. In these systems, the boundary massless states can self-interact and become mas-

sive, leading to a decay of topological phases onto trivial insulators. In literature, systems

like these are called symmetry protected topological phases, due to the central role played

by symmetry. In particular, time-reversal symmetry forbids interactions that give mass to

excitations when certain conditions are met.

Two-dimensional topological insulators have been first analyzed in free fermion systems

using band theory: they are characterized by a Z2 index (−1)N , where N is the number

of energy-level crossings between different bands. In the pioneering works of Fu, Kane and

Mele, the odd (even) N cases were shown to be stable (unstable) by means of symmetry

argument based on an adiabatic flux insertion. The stability analysis was then extended

to interacting Abelian systems by Levin and Stern, which related the Z2 index to certain

properties of edge excitations.

One result of this thesis is the generalization of the previous analysis. Using CFT tech-

niques, we derive the partition functions of edge states in the space-time geometry of the

torus. The antiperiodic and periodic boundary conditions in space and time give the four

spin sectors of relativistic fermionic theories, such as the Neveu-Schwarz and Ramond sec-

tors. Next, we reformulate the flux insertion argument due to Kane and coworkers in terms

of transformation properties of partition functions. We then prove the general validity of

the Levin-Stern Z2 index for interacting Abelian and non-Abelian topological insulators. In
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particular, our analysis clarifies that the stability is associated to the anomaly of the Z2

spin-parity, that is the fermion index of edge excitations. Furthermore, we point out that

partition functions of stable topological insulators have interesting geometrical properties.

Under modular transformations, the discrete coordinate changes respecting the periodicities

of the torus, the four partition functions transform among themselves. We show that the

stability is associated to the impossibility of combining these functions into a modular in-

variant expression. Thus, a discrete gravitational anomaly is accompanying the spin-parity

anomaly.

Summarizing, an anomalous system possesses massless protected boundary excitations.

This leaves open the question of whether a non-anomalous system does become fully gapped.

In this thesis we find the interactions that completely gap the edge modes of unstable non-

Abelian topological insulators: for example, we analyze the time-reversal invariant Pfaffian

topological insulator, that is made of two copies of the Pfaffian QHE state with opposite

chiralities.

Time-reversal reversal invariant topological insulators in three space dimensions have also

been analyzed using band theory. Extending their flux argument, Fu, Kane and Mele showed

that they are classified again by a Z2 topological index. These phases have a bulk energy

gap and surface states protected by time-reversal symmetry consisting of an odd number

of massless Dirac fermions in (2 + 1) dimensions. At first glance this results might seem in

contradiction with the known parity and time-reversal anomaly in (2 + 1) dimensions. How-

ever, we verify that a cancellation between bulk and boundary terms of the effective action

restores the symmetries. This cancellation is different from the anomaly inflow mechanism

occurring in two dimensions.

Another result of this thesis is the reformulation of the Z2 stability criterion for three-

dimensional topological insulators by studying the partition functions of boundary fermions.

In the geometry of the three dimensional space-time torus we find eight partition functions,

corresponding to periodic and antiperiodic boundary conditions. These are the spin sectors

of the fermionic theory, among which we recognize the corresponding Neveu-Schwarz and

Ramond sectors. Studying their transformations under the modular group and flux inser-

tions, we show that the stability is again associated to the anomaly of the Z2 spin-parity.

Furthermore, a modular invariant partition function cannot be constructed.

Recently, interacting three-dimensional topological insulators were also introduced and

theoretically analyzed, showing that they possess fractional charge and vortex excitations.

The final part of this thesis is dedicated to the effective field theory description of interacting

topological insulators provided by the BF gauge theory. This is a time-reversal invariant

topological gauge theory depending on two hydrodynamic fields, describing particles and

vortex excitations. The theory depends on a coupling constant K, that is an odd integer.

We first verify that the stable K = 1 bosonic theory matches the fermionic description for

the topological properties.

In presence of a boundary, an additional surface action should be introduced to compen-

sate for the gauge non-invariance of the BF bulk theory, in full analogy to what happens in
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lower dimension. We thus study the corresponding bosonic surface theory and the dynamics

it can support, respecting time-reversal invariance. We identify the fermionic excitations

within the bosonic theory by studying the partition functions, and thus we are able to ex-

tend the stability argument to this theory. Of course, an exact map between fermions and

bosons cannot be achieved in (2 + 1) dimensions; nonetheless, we obtain some exact results

that do not depend on the details of interactions.

After the canonical quantization of the compactified bosonic surface field, we calculate

the partition functions on the three torus. We find a set of eight functions that transform

under the modular group and flux insertions exactly as the fermionic functions. Although

the bosonic and fermionic expressions are different in three dimensions, they become equal

under dimensional reduction, owing to the exact map between bosons and fermions in (1+1)

dimensions. Upon comparison, we can assign fermionic numbers to the bosonic states and,

thus, define the corresponding bosonic Neveu-Schwarz and Ramond sectors. Using this iden-

tification, we reformulate the Z2 stability criterion explained before and extend it for K > 1,

namely for topological phases possessing fractionally charged particles and vortex excita-

tions.

This thesis is organized as follows: In Chapter 1 we recall some general aspects of QHE

and discuss the effective theories of bulk and boundary. In Chapter 2 we introduce the

Fu-Kane-Mele stability argument of two dimensional topological insulators; then we present

our reformulation in terms of transformations properties of partition functions for edge ex-

citations (see work [1] in the following list of publications). Next, we discuss the extension

of the stability criterion to Abelian and non-Abelian topological states [1]. In Chapter 3

we find the edge interactions that completely gap the edge spectrum of non-Abelian topo-

logical states, such as the Pfaffian and Read-Rezayi states (see work [2]). In Chapter 4

we discuss three-dimensional fermionic topological insulators and the anomaly cancellation

between bulk and boundary. Next, we show our reformulation of the three-dimensional ver-

sion of the Fu-Kane-Mele stability argument: we calculate the partition functions of the

surface excitations and relate the Z2 stability criterion to their modular transformations (see

work [3]). In Chapter 5 we discuss the topological BF theory in three space dimensions.

We calculate the surface effective action, the bosonic partition functions and their modular

transformations; thus, we present our results on exact properties of bosonization in (2+1)

dimensions concerning fermion parity and spin sectors (see work [3]). Using these results, we

extend the Fu-Kane-Mele stability analysis to interacting topological states in three space

dimensions [3]. In Chapter 6 we give our conclusions.
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Chapter 1

The quantum Hall effect

This chapter is devoted to a brief introduction of the quantum Hall effect (QHE). After

showing the main properties of this quantum phenomenon, we will focus on its low energy

effective field theory description. We will see that the topological Chern-Simons gauge theory

describes excitations with fractional charge and fractional statistics.

The QHE is a quantum system of electrons in a planar geometry which is characterized by

a gapped insulating bulk and conducting massless degrees of freedom living at the boundary.

We will analyze these boundary modes using conformal field theory methods and construct

their partition function. We will show that these excitations have two descriptions, one

bosonic and one fermionic, owing to the bosonization map in (1 + 1) dimensions.

In the final part of this chapter we will show that a quantum anomaly is associated to the

edge effective field theory. Actually, this provides another way to characterized the QHE and

its relation to topological invariants. It turns out that similar arguments based on anomalies

are also useful for other topological phases of matter and will be used very often throughout

this thesis.

1.1 Integer and fractional QHE

The classical Hall effect is observed in a conducting strip subjected to an orthogonal magnetic

field B0. When an electric current I flows in the strip, a difference of voltage VH , the Hall

voltage, is detected in the direction orthogonal to the current, see Fig. 1.1. If ρ indicates the

electron density in the strip, we can define the orthogonal resistance, or Hall resistance, as

RH =
VH
I

=
B0

ρec
. (1.1)

This linear dependence on the magnetic field is modified by quantum effects when the

system is placed at extreme low temperatures (∼ 100 mK) and high magnetic fields (∼ 10

Tesla) [5]. In these conditions, the Hall resistance shows some constant plateaus at the values

RH =
h

e2

1

ν
, ν = 1, 2, · · · , 1

3
,
2

5
, · · · (1.2)

where h is the Planck constant and ν is the filling fraction, an integer or rational number,

that is equal to the ratio between the number of electrons and the degeneracy of the Landau
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Conducting strip

0

Figure 1.1: Set-up for the Hall effect

levels, see Fig. 1.2. At the same time, the longitudinal conductance vanishes, because the

system is insulating in the bulk. At the beginning only integer values of ν were observed,

but later fractional values of ν were found, among which the Laughlin sequence ν = 1/p,

p odd [5]. These phenomena were called, respectively, integer and fractional QHE and,

in both cases, the experimental results showed an high precision of the quantized values,

independently of the sample details (universality) [6, 7, 8].

To describe this kind of behavior, the main idea due to Laughlin [9] is that the electrons

form an incompressible quantum fluid, namely that the density is constant in the bulk,

ρ(x) = ρ0, and there is a gap for density waves. In the following, we shall see this picture

clearly applies to the case of n completely filled Landau levels, i.e. for integer QHE with

ν = n. For fractional fillings, the idea is that the Coulomb repulsion puts the electrons in

the most symmetric configuration compatible with their density, such that the ground state

has a gap and is again an incompressible fluid.

For integer filling, we can neglect the Coulomb interaction and also omit the constant

Zeeman term for spin polarized electrons. Then, the hamiltonian H for electrons with charge

e and mass m is

H =
1

2m

(
p− e

c
A
)2
, (1.3)

in the symmetric gauge A = 1
2B(−y, x, 0). The classical motion of cyclotron frequency

ω = eB/mc gives rise to quantization of the kinetic energy E = ~ωn and to quantized radii

rk. The corresponding orbits enclose a flux multiple of the quantum unit of flux Φ0 = hc/e,

i.e. πr2
kB = kΦ0. The flux quantization implies that the magnetic field has associated a

unit of length, the magnetic length `0 =
√

2~c/eB. In the following, we shall mainly use the

units ~ = c = e = `0 = 1, which imply ω = 2 and Φ0 = 2π.

At the quantum level, the hamiltonian and canonical angular momentum can be written
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Figure 1.2: Longitudinal (R) and Hall (RH) resistances as function of the applied magnetic field [8].

in terms of a pair of independent harmonic oscillators [10] [11]:

H = ω

(
a†a+

1

2

)
, J = b†b− a†a, (1.4)

satisfying the commutation relations [a, a†] = 1, [b, b†] = 1, with all other commutators

vanishing. Starting from the vacuum, satisfying a |0〉 = b |0〉 = 0, one finds energy (a†)

excitations, the Landau levels, which are degenerate with respect to the angular momentum

(b†) excitations. The degeneracy Ng of levels occupying an area A is equal to the flux passing

through it in quantum units, Ng = Φ/Φ0 = BA/2π.

When n Landau levels are completely filled, the number of electrons is an integer multiple

of the degenerate states for each Landau level, N = nNg. The filling fraction ν is then

ν =
N

Ng
= N

Φ0

Φ
=

ρ

B
= n. (1.5)

In this case, when the Fermi energy is placed between the last occupied and the first empty

Landau levels, the electrons can not jump in the higher level due to the energy gap ω ∼ B

and the system has vanishing longitudinal conductivity. From Eq.(1.5), we express ρ in

term of ν, and substituting this in (1.1) we find the quantized values of the Hall resistance

RH = 2π/ν.
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For ν = 1, the ground state wavefunction is given by the Slater determinant of N

one-particle states of the lowest Landau level, that takes the form of the Vandermonde

determinant [10, 11]

Ψ
(
{zi}, {z̄i}

)
=

∏

06i<j6N

(zi − zj) exp
(
−
∑

i

|zi|2/2
)
, (1.6)

where zi are the positions of the n-th electrons. In this state, every orbital angular momentum

l is filled. The total angular momentum L is related to the number of electrons N by

N = L+ 1, and the density is constant with the shape of a droplet of radius R '
√
L. The

angular momentum can be decreased by moving electrons to the second Landau level: these

transitions are forbidden at low temperatures due to the large gap ω ∝ B. Therefore the

fluid is incompressible.

The states corresponding to fractional values of ν are incompressible due to the Coulomb

interaction between electrons, and the gap is a non perturbative effect. One should use

effective approaches and trial wavefunctions. For ν = 1/p, with p an odd integer, Laughlin

proposed the wave function [12]

Ψp({zi}, {z̄i}) =
∏

06i<j6N

(zi − zj)pexp
(
−
∑

i

|zi|/2
)
, (1.7)

that describes very well the physics of the fractional QHE states. It approximates accurately

the numerical ground state for a large class of repulsive interactions, and the excitations

have a finite gap. Laughlin developed the incompressibility picture, as well as the properties

of the excitations, by interpreting |Ψ|2 as the classical probability distribution for a two

dimensional Coulomb gas of charges, the so called plasma analogy. For ν = 1/p, it is know

that this plasma is a liquid and that the charge is screened, thus providing a gap; furthermore,

the excitations have fractional charge e/p [12]. We shall describe these properties by using

effective field theories in the following subsections.

1.2 Chern-Simons bulk effective action

We have seen that the electrons gas forms a state of incompressible quantum fluid that is

characterized by universal and robust quantities; in such a system, we expect that the phys-

ical properties can be deduced from general considerations of symmetries and conservation

laws, that are independent of the detailed microscopic theory. It is then natural to formulate

the problem in terms of the effective field theory for low-energy excitations [10, 11].

If we consider a system of N fully polarized electrons, with coordinates {xi} and veloc-

ities {vi}, with i = 1, · · · , N , we can define a local density j0(x) and current ji(x) by the

expressions

j0(x) =
N∑

i=1

δ(2)(x− xi), ji(x) =
N∑

i=1

viδ
(2)(x− xi). (1.8)

The condition of local charge conservation means that the 3-vector jµ(x) = (j0, j), with

x = (t,x), obeys the continuity equation

∂µj
µ = 0 ⇐⇒ ∂tj0 +∇ · j = 0. (1.9)
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Since the current jµ is conserved, it can be expressed as the dual of a gauge field aµ(x),

called the hydrodynamic field,

jµ =
1

2π
εµνρ∂νaρ, (1.10)

where εµνρ is the completely antisymmetric symbol. This current is invariant under a gauge

transformation of the aµ field, i.e. aµ → aµ + ∂µΛ.

In the effective field theory approach, the main step is to guess the form of the low

energy action with the desired symmetries, in this case an Abelian gauge theory for the field

aµ (1.10). Since the external magnetic field breaks parity and time reversal symmetries, the

leading term with lowest number of derivatives in the (2 + 1) dimensional action is of the

Chern-Simons type. This captures the main physical properties of the QHE with ν = 1/p.

We write:

S[a,A] = − p

4π

∫

Ω
d3x εµνρaµ∂νaρ +

1

2π

∫

Ω
d3x εµνρAµ∂νaρ, (1.11)

where the first term is the Chern-Simons action for aµ and the second term is the coupling

between the matter current jµ and the external electromagnetic field Aµ. The Chern-Simons

action for the aµ field is a topological action, because it does not depend on the metric and

does not describe propagating degrees of freedom in the bulk. Therefore, this description is

valid for energies below the bulk gap in the Hall system.

Upon integrating the field aµ, we find the induced effective action

Sind[A] =
1

4πp

∫

Ω
d3x εµνρAµ∂νAρ, (1.12)

that describes the response of the system to varying the external field Aµ. The induced

electromagnetic current is given by

J i =
δSind[A]

δAi
=

1

2πp
εijEj = σHε

ijEj , ρ =
δSind[A]

δA0
=

1

2πp
B = σH (B0 + δB) , (1.13)

where Ej = ∂iA0 − ∂0Ai and B = ∂iAj − ∂jAi, are, respectively, the electric and magnetic

field. One recovers the Hall conductivity σH = ν/2π, ν = 1/p, and the density of Laughlin

states.

The quasiparticles/quasiholes are the low-energy excitations of the incompressible fluid,

whose world-lines can be represented by a set of currents Jµ, that couple to the hydrodynamic

field aµ. Including these excitations, the effective action becomes

S[a,A] = − p

4π

∫
d3x εµνρaµ∂νaρ +

1

2π

∫
d3x εµνρAµ∂νaρ +

∫
d3x J µaµ. (1.14)

Integrating out the aµ field, we obtain the induced action for the excitations and the external

field,

Sind[A] =

∫

Ω
d3x

(
1

4πp
εµνρAµ∂νAρ +

1

p
Aµj

µ − π

p
εµνρJ µ ∂ν

∂2
J ρ
)
. (1.15)
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Figure 1.3: The confining potential modifies the Landau levels at the edge. The edge excitations

(green line) are massless and chiral.

Computing the electromagnetic current for the case of one static quasiparticle at the origin,

i.e. J µ = k(δ(x), 0), we obtain

ρ =
ν

2π
B +

k

p
δ(x), (1.16)

where k is the charge of the quasiparticle/hole with respect to the hydrodynamic field.

Besides the ground state density, the additional term corresponds to the increase of the

electron density due to the excitation: its electric charge is Qqp = ek/p and, moreover, it

carries k/p units of flux with respect to the aµ field. The third term in the induced action

(1.15) describes the Aharonov-Bohm phase θk that arises upon carrying one excitation around

another. This is given by

θk = 2π
k2

p
. (1.17)

For identical excitations, half of the monodromy defines the statistics phase of the quasipar-

ticles. For k = 1, this is fractional, θ/π = 1/p, thus showing that the effective Chern-Simons

theory describes anyons [13, 14]. Next, the excitation with k = p has a charge and statistics

respectively equal to Q = e and θ/π = p. Thus for p odd this is nothing but that the

electron. Experiments on fractional Hall states have accumulated a definitive evidence of

fractionally charged excitations, see for example [15]; the observation of fractional statistics

has been announced but it has not been definitely confirmed yet[16].

1.3 Bulk-edge correspondence in the QHE

In a finite geometry, like a disk or an annulus, the confining potential V (|x|) modifies the

structure of the Landau levels such that the energy eigenvalues are not longer degenerate,

see Fig. 1.3 [17]. Due to incompressibility, a Fermi surface is created at the boundary. Upon
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expanding the energy around the Fermi surface, one obtains a linear dependence on l, the

rescaled boundary angular momentum J = L + l, with L = R2/2ν � l and R the disk

radius, Fig. 1.3. The energy spectrum takes the form El ∼ vl/R = vk of massless excitations

propagating on the edge in one direction only, i.e. they are chiral [17].

The presence of a non-trivial boundary physics can be explained using the effective field

theory and the connection between bulk and boundary [10, 18]. We consider the QHE

system in the geometry of a disk, with boundary circle of length 2πR, that form the space-

time cylinder C = S1 ×R. In such a geometry, the Chern-Simons action S[a, 0] (1.14) is not

gauge invariant: under aµ → aµ + ∂µΛ, it gives the term

δS = − p

4π

∫

C
d2x Λ (∂0a1 − ∂1a0) , (1.18)

where x1 = Rθ is the coordinate along the boundary of the disk. In order to cancel this

term and make sure that the matter current is globally conserved, one introduces boundary

degrees of freedom and a boundary action whose gauge transformation cancels δS in (1.18).

At the edge of the system the gauge field aµ can be expressed in terms of a scalar degree of

freedom φ by aµ = ∂µφ, that acquires a dynamics Sedge[φ] [10]. The correct theory is that of

the (1+1) dimensional chiral and massless scalar field with Floreanini-Jackiw action [10, 19]

Sedge[φ] = − p

4π

∫

C
d2x (∂0 + ∂1)φ∂1φ. (1.19)

The equations of motion,

(∂0 + ∂1) ∂1φ = 0, (1.20)

shows that the field is chiral as required (we fix the velocity vF = 1). The gauge invariance

of the complete system, δS + δSedge = 0 is checked by transforming φ → φ + Λ and fixing

the boundary gauge condition a0 + a1 = 0.

1.3.1 Conformal field theory of the compactified chiral boson

In this section we study the chiral boson action (1.19). This quadratic action, once quantized,

gives rise to a sets of conformal fields with fractional dimensions appropriate to describe the

universal long-range properties of the fractional QHE [20].

Rescaling the space-time coordinates as x → Rθ and t → Rt, the action (1.19), the

Hamiltonian and the higher moments read:

Sedge[φ] = − p

4π

∫ +∞

−∞
dt

∫ 2π

0
dθ (∂0 + ∂θ)φ∂θφ, (1.21)

H =
v

R
L0, with L0 =

p

4π

∫ 2π

0
dθ (∂θφ)2 , (1.22)

Ln ≡
p

4π

∫ 2π

0
dθ (∂θφ)2 exp (−in (θ − vt)) . (1.23)
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We impose the following compactification condition

φ(θ, t) ≡ φ(θ, t) + 2πnr, n ∈ Z. (1.24)

Namely the field φ(θ) maps the edge circle into another circle with radius r.

The following field expansion solves the equations of motion (1.20)

φ(θ, t) = φ0 − α0 (θ − vt) + i
∑

k 6=0

αk
k

exp (ik (θ − vt)) , (1.25)

with α∗k = α−k and φ0 ≡ φ0 + 2πr to satisfy the constraint (1.24). Note that the field

expansion contains zero modes φ0, α0 and oscillating terms that are periodic for θ → θ+ 2π.

Imposing canonical commutation relations of the field and its momentum Π(θ, t) = δL/δφ̇ =

−p/4π∂θφ, i.e. [19, 20]
[
φ(θ, t),Π(θ′, t)

]
=
i

2
δ(θ − θ′), (1.26)

we infer the corresponding commutation relations of the modes, that are

[φ0, α0] =
i

p
, [αn, αm] =

n

p
δn+m,0. (1.27)

Upon quantization, the coefficients φ0, α0 and αn become operators acting on a bosonic Fock

space, whose ground state |Ω〉 is defined as

αn |Ω〉 = 0, n > 0. (1.28)

Once defined the ground state, the Hamiltonian L0 (1.22) takes the following normal

ordered form in terms of the oscillating modes

L0 =
p

2
α2

0 + p
∞∑

k=1

α−kαk −
1

24
. (1.29)

The higher moments of the Hamiltonian density (1.23) similarly read:

Ln =
p

2

∞∑

k=−∞
αn−kαk. (1.30)

By using (1.27), we find that the free compactified boson gives rise to a representation of a

chiral algebra defined by the following commutation relations

[αn, αm] =
n

p
δn+m,0, (1.31)

[Ln, αm] = −mαn+m, (1.32)

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0, c = 1. (1.33)

The first relation is the U(1) Kac-Moody algebra for the generators αn; the third expression

is the Virasoro algebra for the generators Ln of local conformal transformations [21, 22]. As

is well known in the CFT literature, the c−number term in the right-hand side comes from
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the conformal anomaly and defines the central charge c, that takes the value c = 1 for this

model [21, 22].

We now discuss the quantization conditions on the zero modes of the field φ, that at

t = 0 takes the following form [20]

φ(θ, 0) = φ0 − α0θ + i
∑

k 6=0

αk
k

exp (ikθ) . (1.34)

Owing to the compactification (1.24), φ0 is periodic of 2πr. Another condition comes from

the fact that φ0 and pα0 are canonically conjugate (1.27): actually, their wave function

Ψ(φ0) = exp(ipα0φ0) should be periodic, implying the quantization

pα0 =
m

r
, m ∈ Z. (1.35)

Altogether, we obtain two periodicities

φ(2π) = φ0 + 2π

(
rn+

m

pr

)
, n,m ∈ Z, (1.36)

whose commensurability requires pr2 to take rational values [20].

A further physical condition is that the edge action Sedge[φ] in (1.21) should reproduce

the bulk physics, in particular the excitations with fractional statistics (1.17), for ν = 1/p.

Therefore ∮
aµdx

µ = φ(2π)− φ(0) =
2πn

p
, n ∈ Z. (1.37)

This gives the spectrum of α0 (1.35) and fixes the compactification radius to r = 1 due to

(1.36). Thus, the fractional charges of the bulk excitations are [20]

Q |α0 =
m

p
〉 =

m

p
|α0 =

m

p
〉 , m ∈ Z. (1.38)

The corresponding conformal dimensions are given by the eigenvalues of L0 (1.29) [20], i.e.

L0 |α0 =
m

p
〉 = hm |α0 =

m

p
〉 , hm =

m2

2p
. (1.39)

In particular, the spectrum contains electrons excitations with integer charge and odd

integer statistics for p odd. It can be shown that more general quantizations of zero modes

of this theory are possible for r 6= 1 but would not have electron excitations and thus should

be discarded [20].

We now compute the euclidean grand canonical partition function at the outer edge of

the annulus: this circle and the euclidean time period β realize the geometry of a torus

(see Fig. 1.4). Owing to the knowledge of the spectrum of edge excitations for the Laughlin

states with ν = 1/p, (1.38) and (1.39), the trace on the Hilbert space can be decomposed

into orthogonal sectors H(λ), corresponding to the basic anyons plus any number of electrons

[23]. There are p sectors, for λ = 1, . . . , p, which contains representations with charges
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Figure 1.4: Space annulus with indicated the torus geometry of periods (2πR, β).

Qn = λ/p + n of the U(1) current algebra of the c = 1 CFT with conformal weights hn =

(λ+ pn)2/2p. The partition function for each sector takes the following form [23]:

Kλ(τ, ζ; p) = TrH(λ) [exp (i2πτL0 + i2πζQ)]

=
F (Imτ, Imζ)

η(τ)

∑

n∈Z
exp

(
i2π

(
τ

(np+ λ)2

2p
+ ζ

np+ λ

p

))
, (1.40)

where η(τ) is the Dedekind function

η(τ) = q1/24
∞∏

n=1

(1− qn) , with q = exp(2πiτ), (1.41)

and F (Imτ, Imζ) is a pre-factor explained in [23]. The function Kλ is parameterized by the

two complex numbers,

τ =
iβ

2πR
+ t, ζ =

β

2π
(iVo + µ), (1.42)

that are the modular parameter τ and the “coordinate” ζ. Imτ > 0 is related to the euclidean

time period β, while Re τ is the parameter conjugate to momentum P ; ζ contains Vo and µ,

respectively the electric and chemical potentials. These functions Kλ have the periodicity

Kλ+p = Kλ, corresponding to the p anyon sectors [23].

The primary fields of the CFT with c = 1 are the vertex operators [21, 22]. These have

the form [20]

Vm(z) = : eimφ(z)/p :, m ∈ Z, z = exp(vτ + iθ), (1.43)

and satisfy the following commutation relations

[L0, Vm(z)] =

(
z
∂

∂z
+
m2

2p

)
Vm(z), (1.44)
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[α0, Vm(z)] =
m

p
Vm(z). (1.45)

The vertex operators Vm(z), m > 0, describe the insertion at point z on the boundary

of a quasi-hole excitations with fractional charge Qm = m/p and conformal dimension hm =

m2/2p. Moreover, the operator product expansion (OPE) of two vertex operators is [21, 22]

lim
z1→z2

Vm1(z1)Vm2(z2) ' (z1 − z2)m1m2/pVm1+m2(z2), (1.46)

whose phase gives the value of the fractional statistics [20]. The operators Vm, m < 0,

describe the insertion of quasiparticle excitations at the boundary having opposite charge.

These results are in agreement with those obtained from the bulk effective action, i.e.

Eq.(1.17). Because p is odd, the spectrum always allows the excitation Vp with the quantum

numbers Q = 1 and θn = 2πp, that is the electron. These results indicate that the c = 1

CFT of the chiral edge excitations is in agreement with the Laughlin’s theory with ν = 1/p

of Section 1.1, as it describes the long-range universal properties at the boundary of the

fractional QHE.

We remark that the same bosonic CFT theory can also be applied to describe bulk

wavefunctions [11]. Indeed, the Laughlin function (1.7) is basically the same function as the

N−point correlator of vertex operators Vp(z) for electrons (1.43), now located at the points

z = x+ iy of the plane [24]. The description of quasi-hole and quasi-particle wavefunctions

requires some modifications of the conformal fields that are described in the works [25, 26].

In this thesis, we will not discuss this subject because we will not make use of wavefunctions.

1.3.2 The free fermion theory: bosonization in (1 + 1) dimension

The ν = 1 integer QHE is a system of non-interacting electrons and the corresponding edge

theory involves one Weyl fermion [27, 28]. Choosing the parameter p = 1, the CFT of the

compactified boson is the same as that of the Weyl fermion, due to bosonization in (1 + 1)

dimensions [29]. The two theories have the same conformal charge c = 1, satisfy the same

chiral algebra (1.31), and the bosonic vertex operators represent the fermion fields ψ and ψ†

as follows [20]:

ψ(θ, t) = V−1 = : e−iφ(θ,t) :, ψ†(θ, t) = V+1 = : eiφ(θ,t) : . (1.47)

Indeed, these fields satisfy the usual anti-commutation relations:

{
ψ(θ, t), ψ(θ′, t)

}
=
{
ψ†(θ, t), ψ†(θ′, t)

}
= 0, (1.48)

{
ψ(θ, t), ψ†(θ′, t)

}
= 2πδ(θ − θ′). (1.49)

The charge density ρ =: ψ†ψ : can be accordingly expressed in terms of the bosonic field

once subtracted the short-distance divergent part using (1.46) [20]; the result is

ρ = − 1

2π
∂1φ. (1.50)
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This implies the mapping ρn = αn among the moments of the fields; in particular, the total

charge ρ0 is represented in the bosonic theory by α0, in agreement with the previous results

[20].

The equivalence between the bosonic and fermionic theories also amounts to the equiva-

lence of their partition functions on the torus geometry and of the spectra of excitations. We

first clarify a property of the normal ordering of the fermion field ψ(θ, t) (1.47) [29]. Using

the relation eAeB = eA+Be
1
2

[A,B], if [A,B] = c is a number, and the definition of the vacuum

state (1.28), the normal ordered fermion field is expressed in terms of the bosonic modes as

follows

ψ(θ, t) =exp

(
−
∑

n<0

αn
n

exp (in (θ − t))
)

eiφ0e−i(α0+ 1
2)(θ−t)exp

(
−
∑

n>0

αn
n

exp (in (θ − t))
)
.

(1.51)

We see that the integer or half-integer quantizations of α0 determines the antiperiodic (A)

and periodic (P ) spatial boundary conditions of the fermion field [29]:

ψ(θ + 2π, t) =




−ψ(θ, t), (A) if α0 ∈ Z,

ψ(θ, t), (P ) if α0 ∈ Z + 1
2 .

(1.52)

In the double periodic geometry of a torus, a fermion may have two types of boundary

conditions along the space and time directions, i.e. antiperiodic (A) and periodic (P ). These

correspond to the spin sectors known as the Neveu-Schwarz (NS) and Ramond (R) sectors

and their tildes, as follows [21, 22]:

NS, ÑS, R, R̃, respectively : (A,A), (A,P ), (P,A), (P, P ). (1.53)

The partition functions of each sectors can be constructed via the operator formalism, namely

expanding the Weyl field in terms of rising and lowering operators as follows

ψ(θ, t) =
∑

k

dke
ik(θ−t), (1.54)

with the modes operators satisfying the anti-commutation rules {bk, bl} = δkl and acting on

the vacuum as

dk |Ω〉 = 0, k > 0, (1.55)

d†k |Ω〉 = 0, k 6 0. (1.56)

As shown in Appendix A, the Neveu-Schwarz sector corresponds to choosing k ∈ Z+1/2;

for k ∈ Z we obtain the Ramond one. The Neveu-Schwarz sector has a unique ground state

|Ω〉NS . Instead, owing to the presence of the zero modes operators d†0 and d0, the Ramond

sector has two degenerate ground states; they have eigenvalues±1 with respect to the fermion

number operator (−1)F , that is (−1)F |Ω〉±R = ± |Ω〉±R.
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The charge operator assumes the following normal ordered expression [20] (see Appendix A)

Q =
∑

k

: d†kdk :=





∑
k>0

(
d†kdk − d−kd

†
−k

)
, if k ∈ N + 1

2 ,

∑
k>0

(
d†kdk − d−kd

†
−k

)
+ d†0d0 − 1

2 , if k ∈ N,

(1.57)

from which follows that the Neveu-Schwarz ground state is neutral, that is Q |Ω〉NS = 0. On

the other hand, the Ramond ground states are charged and satisfy Q |Ω〉±R = ±1/2 |Ω〉±R.

On the space-time cylinder the hamiltonian operator L0 is written in terms of the

fermionic modes by the following normal ordered expression [20]

L0 =
∑

k

k : d†kdk :=
∑

k>0

k
(
d†kdk + d−kd

†
−k

)
+




− 1

24 , if k ∈ N + 1
2 ,

+ 1
12 , if k ∈ N,

(1.58)

where the vacuum energies are determined by the ζ-function regularization procedure.

Once we know the spectrum and the properties of the ground states of the fermionic

theory, we can construct the corresponding partition functions on the torus geometry. Intro-

ducing the variable w = exp(2πiζ), with ζ the coordinate of the torus (2.11), the partition

functions of the Weyl fermion are given by the following expressions in each spin sector [21, 22]

ZNSW = trAq
L0wQ =

1

η(τ)

∏

n=1

(1− qn)(1 + wqn−1/2)(1 + w−1qn−1/2) =
θ3(τ, ζ)

η(τ)
, (1.59)

ZÑSW = trA(−1)F qL0wQ =
1

η(τ)

∏

n=1

(1− qn)(1− wqn−1/2)(1− w−1qn−1/2) =
θ4(τ, ζ)

η(τ)
,

(1.60)

ZRW = trP q
L0wQ =

1

η(τ)
w1/2q1/8

∏

n=1

(1− qn)(1 + wqn)(1 + w−1qn−1) =
θ2(τ, ζ)

η(τ)
, (1.61)

ZR̃W = trP (−1)F qL0wQ =
1

η(τ)
w1/2q1/8

∏

n=1

(1− qn)(1− wqn)(1− w−1qn−1) =
iθ1(τ, ζ)

η(τ)
.

(1.62)

Here, trA(P ) means the trace over the states of the Hilbert space with antiperiodic (A) and

periodic (P ) spatial boundary conditions. The temporal periodic boundary conditions are

obtained inserting the fermion operator (−1)F [21, 22].

The equivalence of the fermionic partition functions with the corresponding bosonic ex-

pressions follows from the Jacobi’s triple product identity [21, 22]:

∏

n=1

(1− qn)(1 + wqn−1/2)(1 + w−1qn−1/2) =
∑

n∈Z
qn

2/2wn. (1.63)
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This gives a representation of each theta functions θ(τ, ζ) in (1.59)-(1.62) in term of sums

instead of products, leading to the bosonic representation in each spin sector as follows

ZNSW =
θ3(τ, ζ)

η(τ)
=

1

η(τ)

∑

α0∈Z
qα

2
0/2wα0 , (1.64)

ZÑSW =
θ4(τ, ζ)

η(τ)
=

1

η(τ)

∑

α0∈Z
(−1)α0qα

2
0/2wα0 , (1.65)

ZRW =
θ2(τ, ζ)

η(τ)
=

1

η(τ)

∑

α0∈Z+1/2

qα
2
0/2wα0 , (1.66)

ZR̃W =
iθ1(τ, ζ)

η(τ)
=

1

η(τ)

∑

α0∈Z+1/2

(−1)α0−1/2qα
2
0/2wα0 . (1.67)

We make the following remarks:

i) The equivalence of the partition functions between the fermionic and bosonic picture shows

that the parameter α0 is quantized to integer (half-integer) values in the Neveu-Schwarz (Ra-

mond) sectors, respectively. This result is in agreement with the expression of the fermion

field in terms of bosonic modes, Eq.(1.51), where integer (half-integer) values of α0 imply

antiperiodic (periodic) spatial boundary condition.

ii) The bosonized version of the Neveu-Schwarz spin sector ZNSW in (1.64) coincides with

the partition function Kλ in (1.40) with parameters p = 1 and λ = 0 corresponding to the

ν = 1 QHE. In the following chapter we will see that the other spin sectors play an important

role in the discussion of topological insulators.

1.3.3 Flux insertion and anomaly inflow

The full theory of bulk and boundary, i.e. the Chern-Simon and the chiral boson actions in

(1.12) and (1.19), takes the following form in presence of an external electromagnetic gauge

potential Aµ:

SΩ+∂Ω[A, φ] =
1

4πp

∫

Ω
d3x εµνρAµ∂νAρ −

p

4π

∫

∂Ω
d2x (∂0 + ∂1)φ∂1φ +

+
1

2π

∫

∂Ω
d2x (A0 +A1) ∂1φ −

1

4πp

∫

∂Ω
d2x (A0 +A1)A1. (1.68)
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Figure 1.5: Laughlin’s flux argument: the insertion of a flux Φ0 inside the annulus moves a charge

∆Q = νe from the inner to the outer edge.

This action is left invariant by the gauge transformations φ→ φ+Λ/p when Aµ → Aµ+∂µΛ.

The gauge non invariance of the bulk Chern-Simons term is cancelled by the non-conservation

of the electric charge for the edge states, which is nothing but that the chiral anomaly [20, 28].

Altogether, the Hall current is conserved in the whole system. This mechanism by which an

anomaly is cancelled by a classical effect in a higher-dimensional theory is called anomaly

inflow [30]. The anomaly of the edge theory can be calculated by using the Hamiltonian

equations of motion, which actually give the non-conservation of the charge density at the

edge [20, 28]

(∂0 + ∂1)

(
− 1

2π
∂1φ

)
= − ν

2π
E1. (1.69)

Eq.(1.69) describes the edge density overflowing due to a tangential electric field E1, i.e. the

ν = 1/p Hall effect from the point of view of the edge theory. We can also integrate the

anomaly equation to obtain the adiabatic charge accumulation at one edge

Q(t =∞)−Q(t = −∞) =

∫ +∞

−∞
dt

∫ 2πR

0
dx∂µJ

µ
B = − ν

2π

∫
d2xE1 = − ν

2π

∫
F = νn,

(1.70)

where F is the (1 + 1) electromagnetic field, and n ∈ Z. Eq.(1.70) relates the charge

accumulated to the index of the Dirac operator in (1+1)-dimensions [31]. The index theorem

establishes that the first Chern class, i.e. the quantity 1/2π
∫
F , is an integer topological

number; namely, it is independent of continuous deformations of the geometry of the sample

and of the background field. Therefore, this explains the robustness of the quantization of

the Hall conductivity experimentally observed.

The anomaly inflow mechanism is actually equivalent to the Laughlin’s flux insertion

argument used to explain the charge transport from the inner to the outer edge in the

annulus geometry, as shown in Fig. 1.5 [32]. The adiabatic insertion of a quantum unit of
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magnetic flux Φ0 = hc/e through the hole induces a Faraday electric field dΦ/dt going around

the annulus, which in turn generates a radial Hall current I = σHdΦ/dt. At the end, a net

charge σHh/e has been transported from one edge to the other. When Φ = Φ0, the vector

potential can be eliminated by a gauge transformation, so the Hamiltonian has returned

to its original form at Φ = 0. Although the spectrum does not change, the states in the

spectrum drift one into another, leading to the so-called spectral flow and the quantization

of the transferred charge.

The fractional quantum Hall effect states are topological fluids made by strongly interact-

ing electrons, that are different from standard crystals and liquids: they represent new states

of matter [5, 10, 11]. As it is clear from the low-energy field theory description, there is no

order parameter associated with broken symmetries as in the Landau-Ginzburg description.

Every QHE state has the same symmetries, but they are characterized by different filling

fractions ν and different Hall conductivities σH , that are topological and robust quantities.

For these reasons, these new states of matter were called topologically ordered by Wen [10].

1.4 Transport properties and the Hall viscosity

The incompressible Hall fluids have been recently analyzed by coupling them to non-trivial

metric backgrounds, in order to study the heat transport [33, 34] and the response of the fluid

to strain. In particular, the Hall viscosity has been identified as a new universal quantity

describing the non-dissipative transport [35, 36, 37].

In the study of the quantum Hall system, the low-energy effective action has been a

very useful tool to describe and parameterize physical effects, and to discuss the universal

features. Besides the earlier Chern-Simons term leading to the Hall current, the coupling

to gravity was introduced by Fröhlich and collaborators [38] and by Wen and Zee [39]. The

resulting Wen-Zee induced action takes the following form

Sind[A,ω] =
ν

4π

∫
d3xεµνρ

(
Aµ∂νAρ + 2s̄Aµ∂νωρ + s̄2ωµ∂νωρ

)
, (1.71)

where ωµ is the Abelian spin connection relative to the invariance of the system under local

O(2) rotations in space. This action describes the Hall viscosity and other transport effects

in term of the parameter s̄, corresponding to an intrinsic angular momentum of the low-

energy excitations. Since s̄ does not depend of the relativistic spin, it suggests a spatially

extended structure of excitations. The predictions of the Wen-Zee action have been checked

against the microscopic theory of electrons in Landau levels (in the case of integer Hall effect

[40]) and corrections and improvements have been obtained [41, 42]. Further features have

been derived under the assumption of local Galilean invariance of the effective theory, see

for example [43, 44].

In our doctoral work, we studied the dependence on the metric background and we wrote

the paper [4], that will be not reviewed in this thesis for lack of space. Summarizing, in

this work we rederived the Wen-Zee action by using a different approach that employs the

symmetry of Laughlin incompressible fluids under quantum area-preserving diffeomorphism
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(W∞ symmetry) [45, 46]. We studied the bulk excitations generated by W∞ transformations

in the lowest Landau level. We disentangled their inherent non-locality by using a power

expansion in (~/B0)n, where B0 is the external magnetic field. Each term of this expansion

defines an independent hydrodynamic field of spin σ = 1, 2, · · · , that can be related to a

multipole amplitude of the extended structure of excitations. The first term is just the Wen

hydrodynamic gauge field, leading to the the Chern-Simons action (1.12) [10]. The next-to-

leading term involves a traceless symmetric two-tensor field, that is a kind of dipole moment.

Its independent coupling to the metric background gives rise to the Wen-Zee action and other

effects found in the literature. The third-order term is also briefly analyzed. The structure of

this expansion matches the non-relativistic limit of the theory of higher-spin fields in (2 + 1)

dimensions and the associated Chern-Simons actions developed in the Refs.[47].

Our approach allows to discuss the universality of quantities related to transport and

geometric responses. We argued that the general expression of the effective action contains

a series of universal coefficients, the first of which is the Hall conductivity and the second is

the Hall viscosity. In principle, all the universal quantities can be observed once we probe

the system with appropriate background fields, but so far our analysis is complete to second

order in ~/B0 only.

We believe that the multipole expansion developed in [4] offers the possibility of in-

terpreting the physical models of dipoles [48] and vortices [49] developed by Haldane and

Wiegmann, respectively.
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Chapter 2

Two-dimensional topological

insulators

In this chapter we will analyze the topological insulators in two space dimensions. These

are symmetry protected topological phases occurring in systems that are invariant under time

reversal symmetry. Actually, the presence of this symmetry allows the existence of massless

counter-propagating spin polarized edge states.

We will construct the partition functions of edge modes, that turns out to be useful tools

to analyze the stability of the topological phases. Moreover the stability will be associated

to a discrete Z2 anomaly.

Among the models discussed in this chapter, there are the fractional Laughlin topological

insulators and, moreover, the Pfaffian and Read-Rezayi topological insulators, i.e. phases of

matter with non-Abelian statistics.

2.1 The quantum spin Hall effect

The quantum Hall effect is characterized by the breaking of time-reversal (TR) symmetry

due to the presence of an external magnetic field. In the last ten years, it became clear that

topological phases supporting edge states are also possible in absence of external field, that

are TR invariant [50, 51]. The most relevant examples are the topological insulators. These

phases of matter exist in two and three spatial dimensions and occur in certain materials

with strong spin-orbit interactions.

The possible existence of 2d topological insulators was first noticed in a model of graphene

by Kane and Mele [52]. They showed the existence of “spin filtered” edge states, where

electrons with opposite spin orientation propagate in opposite directions. The edge states

of this system are the same as those of two copies of a ν = 1 Hall effect having opposite

spin and chirality as pictorially shown in Fig. 2.1. Each chirality gives a quantized Hall

conductivity ±e2/h and an applied electric field leads to Hall currents for the opposite spins

that chancel each other, but generate a net spin current JS = 1/2(J↑−J↓) corresponding to

a quantized spin Hall conductivity σSH = 1 (we use ~ = e = 1) and the symmetry U(1)S .
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Figure 2.1: Edge states with opposite spin and chirality of a two dimensional topological insulator

This explain the name quantum spin Hall effect.

The original model of Kane and Mele was not realistic because graphene is made out of

carbon, a light element whose spin-orbit interaction is too weak to generate a considerable

energy gap. Subsequently, Bernevig, Hughes and Zhang considered materials made of heavy

elements with strong spin-orbit interactions, such as compounds of Tellurium with Cadmium

and Mercury [53].

These authors analyzed a quantum well structure where HgTe is sandwiched between

layers of CdTe. They studied the band structure of the compound as a function of the

thickness of the quantum well dQW . The theoretical model predicted a phase transition

from a conventional insulator, for dQW < 6.3 nm, to a topological insulator with massless

counter-propagating opposite spin edge states for dQW > 6.3 nm. The authors showed that

the phase transition is due to the inversion of the conducting and valence bands of the

compound when the thickness of the quantum well exceeds the critical value dQW = 6.3 nm,

thus causing energy level crossing at the edge and massless excitations. Within a year of

the theoretical proposal, the Molenkamp’s group made the devices and performed transport

experiments showing the first signature of the quantum spin Hall effect [54].

We remark that the quantum spin Hall effect is a rather academic model of topological

insulator: in general the U(1)S symmetry is explicitly broken by relativistic effects and only

the total angular momentum is conserved [51]. In these systems, however, the TR symmetry

is still present and continues to map the two counter-propagating edge channels one into the

other. We will see that this symmetry is crucial to the existence of the topological phase.

When TR symmetry is present, it forbids some edge interactions that would lead to massive

modes. If the symmetry is absent, as e.g. in presence of magnetic impurities, the edge modes

interact and become massive, leading to a trivial insulating phase at low energies. Due to

this property, these systems are called symmetry protected topological phases [55]. They must

be contrasted with the quantum Hall effect which is absolutely stable, because its chiral edge

states can never interact.
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The main issue of TR symmetric topological phases, such as the topological insulators,

is to establish the conditions of their stability, namely under which conditions TR symmetry

acts to keep low-energy modes massless.

Topological insulators protected by TR symmetry have been first analyzed in free fermion

systems using band theory [51, 52, 56, 57]. These systems were found to be characterized by

a topological bulk quantity equal to the Z2 index (−1)N , where N is the number of fermion

edge modes of each chirality. It was proven that the odd (even) N case corresponds to a

stable (unstable) topological phase.

For a quadratic Hamiltonian, this Z2 classification can be understood by studying the

action of the anti-unitary TR operator T on edge electrons with up and down spin [58]:

T : ψ↑ → ψ↓, ψ↓ → −ψ↑. (2.1)

In the system in Fig. 2.1, made of two copies of ν = 1 Hall effect with opposite spin and

chiralities, the mass term coupling the two chiralities is odd under TR [50], namely

T : Hint. = m

∫
ψ†↑ψ↓ + h.c. → −Hint. . (2.2)

Therefore, a topological insulator with N = 1 is stable because the edge modes cannot

become massive without breaking TR symmetry. In the case of two fermionic modes per

spin, namely N = 2, a TR invariant mass term can be written that lets them interact and

decouple from the low-energy spectrum. In general, in a system with N modes of each

chirality, a single mode remains massless if N is odd [50]. Of course, if TR symmetry is

broken all edge excitations become gapful and the insulator trivial.

2.2 The Fu, Kane and Mele flux argument

The analysis of more general, non-quadratic interactions compatible with TR can be done

in some cases, but we describe here a criterion for stability that follows from a Z2 discrete

symmetry that is valid for any TR invariant interactions [1]. This is the Fu-Kane-Mele flux

insertion argument called the “spin pump” (a cyclic adiabatic process) [52, 56, 57]. We

mostly follow the presentation of Ref.[59, 60].

The Kramers theorem

Here we briefly review the Kramers theorem in quantum mechanics, that is at the heart

of the stability argument. The theorem establishes that states with half-integer spin are

two fold degenerate in interacting systems that are TR symmetric [58]. This is called the

Kramers degeneracy.

The theorem follows by studying the action of the TR transformations T , that are anti-

unitary and whose square turns out to be

T 2 |Ψ〉 = (−1)F |Ψ〉 . (2.3)
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Figure 2.2: Flux insertion in the QSHE: up and down spins are displaced w.r.t. the Fermi

surfaces at L and R edges of the annulus (dashed-dotted lines).

Here F is the fermion number, also equal to twice the spin of the state. The relevant case is

when T 2 = −1. In this case, if we consider the two states |Ψ〉 and its time reversal partner

T |Ψ〉, it turns out that they are independent states, orthogonal and degenerate. The pair

of degenerate states (|Ψ〉 , T |Ψ〉) is called Kramers doublet.

The flux insertion argument

Consider a system made of two copies of the ν = 1 Hall effect having opposite spin and

chiralities, as in Fig. 2.1, in the annulus geometry. The insertion of magnetic flux breaks TR

symmetry, owing to:

T H [Φ] T −1 = H [−Φ] . (2.4)

This relation together with the periodicity H[Φ] = H[Φ + Φ0] (see Section. 1.3.3), implies

that the bulk Hamiltonian is TR invariant for a discrete set of flux values:

Φ = 0,
Φ0

2
,Φ0,

3Φ0

2
, . . . . (2.5)

The Fu-Kane-Mele analysis of band insulators allows to define an index called “TR

invariant polarization”, (−1)Pθ = ±1, that enjoys the following properties [56, 57]:

i) It is a bulk topological quantity, conserved by TR symmetry.

ii) Its value is equal to the spin parity (fermion number) at the edge,

(−1)Pθ = (−1)N↑+N↓ = (−1)2S . (2.6)

iii) In a stable topological insulator, it changes value between TR invariant points (2.5)

separated by half flux ∆Φ = Φ0/2.

The stability argument goes as follows: adding a Φ0/2 flux in the center of the annulus

moves spin-up (see Fig. 1.5) and spin-down electrons in opposite directions with respect to

the Fermi surfaces at each edge (see Fig. 2.2). From the point of view of the theory at one
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Figure 2.3: Kramers degeneracy at half flux quantum.

edge, say the outer one, the effect is to create a neutral excitations with spin one-half, i.e.

∆Q = ∆Q↑ + ∆Q↓ = 0, ∆S =
1

2

(
∆Q↑ −∆Q↓

)
=

1

2
, (2.7)

where ∆Q↑ = −∆Q↓ = ν↑/2 = 1/2 is the chiral charge moved by the flux insertion [61].

This excitation has a TR partner locally at the boundary, the configuration with flipped

spin. Actually, the latter would be obtained with the insertion of the opposite flux −Φ0/2,

(see Fig. 2.2). Upon using the Kramers theorem at the TR invariant point Φ = Φ0/2, it

follows that the two spin one-half edge excitations are degenerate in energy and orthogonal,

this degeneracy being robust to addition of TR symmetric interactions.

The energy change of the edge ground state as the flux is varied from zero to Φ0/2

is shown in Fig. 2.3. At Φ0/2, the evolved ground state |Ω〉 necessarily meets with one

excited state |ex〉 owing to Kramers theorem. Going back to Φ = 0, the excited state must

have an energy O(1/R) equal to the work done by adding a flux quantum in a system of

size R; thus, it cannot have a gap in the thermodynamic limit. It then follows that the

existence of a Kramers (spin one-half) pair at the edge for Φ = Φ0/2 implies the presence

of a gapless excitation at Φ = 0. In the case of two fermion modes, the corresponding

spin one excitation created at the boundary would not be protected by Kramers theorem.

The argument then extend to odd and even numbers of fermion modes, leading to the Z2

classification of topological insulators with ν↑ = n, with n integer. Note that our setting

is that of non-interacting pairs of Hall states but we are discussing properties that remain

valid in presence of interactions.

Let us add some remarks:

i) The existence of a Kramers pair is signaled by the change of spin parity of the ground

state upon adding half flux,

Φ = 0 : (−1)2S = 1 −→ Φ =
Φ0

2
: (−1)2S = −1. (2.8)
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ii) The spin parity is conserved by TR symmetry, being just another way to state the

Kramers theorem. This Z2 invariance is the remnant of the continuous U(1)S symmetry of

the quantum spin Hall effect broken by relativistic effects.

iii) At the two TR symmetric points, Φ = 0,Φ0/2, the spin parity takes different values

while the Hamiltonian remains TR symmetric. Therefore, the quantity (−1)2S is no longer

conserved at the quantum level and the associated Z2 symmetry is anomalous [1, 62].

2.3 Partition functions of topological insulators

The flux insertion argument was generalized by Levin and Stern to systems built from pairs

of fractional Hall states with ν↑ = −ν↓ that are generalizations of Laughlin states with

Abelian fractional statistics of excitations [59] [60]. The Z2 index was show to extend as

follows:

(−1)2∆S , 2∆S =
σSH
e∗

=
ν↑

e∗
, (2.9)

where σSH is the spin Hall conductance, also equal to the filling fraction of the chiral com-

ponent ν↑, and e∗ is the minimal fractional charge, in units of e. Therefore, an odd (even)

ratio correspond to excitations with half-integer (integer) spin, generalizing the number of

fermions of the previous case. Repeating the argument based on the Kramers degeneracy,

one find corresponding stable (unstable) states [59] [60].

Here we will expose the main results of our work [1], that is the generalization of the

stability analysis to any interacting topological insulators through the study of partition

functions of the associated conformal field theory of edge excitations. We will recover the

Levin and Stern index (2.9) for Abelian states. Moreover, we will extend the index to systems

made of pairs of Hall states possessing excitations with non-Abelian fractional statistics.

2.3.1 Partition functions for Laughlin topological insulators

The chiral edge system

We recall from Section 1.3.1 the multiplet Kλ(τ, ζ), λ = 0, · · · , p − 1 of chiral partition

functions of ν = 1/p Laughlin states. These functions are defined on the double periodic

geometry of the torus, see Fig. 1.4, and assume the following form [23]:

Kλ(τ, ζ; p) =
F (τ, ζ)

η(τ)

∑

n∈Z
exp

(
i2π

(
τ

(np+ λ)2

2p
+ ζ

np+ λ

p

))
. (2.10)

They are parameterized by the two complex numbers,

τ =
iβ

2πR
+ t, ζ =

β

2π
(iVo + µ), (2.11)

where τ is the modular parameter and ζ the “coordinate” of the torus. These functions Kλ

have the the periodicity Kλ+p = Kλ, corresponding to the p anyon sectors.
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From the CFT literature it is known that the torus geometry is left invariant by the

modular transformations, that are discrete coordinate changes that respect the double peri-

odicity [21]. These act on τ and ζ as follows [23]:

τ → aτ + b

cτ + d
, ζ → ζ

cτ + d
, a, b, c, d ∈ Z, ad− bc = 1, (2.12)

and span the modular group Γ = SL(2,Z)/Z2. This group is generated by two transfor-

mations, T : τ → τ + 1, ζ → ζ and S : τ → −1/τ, ζ → −ζ/τ , obeying the relations

S2 = (ST )3 = C, where C is the charge conjugation matrix, C2 = 1 [21]. In addition, there

are the two periodicities of the coordinate ζ at τ fixed, respectively the U : ζ → ζ + 1 and

V : ζ → ζ + τ transformations [23].

The modular transformations belong to the group of two-dimensional diffeomorphysms of

the torus, being the global transformations not connected to the identity: they are the “large”

gauge transformations of the theory placed in a gravitational background. In a similar way,

the flux insertions discussed earlier are large gauge transformations of the electromagnetic

background. In a generic system both symmetries are faithfully realized and the partition

function is invariant. As shown in the following, stable topological states correspond to cases

where the partition function transforms non-trivially, signaling the presence of gravitational

and gauge anomalies. Anomaly in quantum field theory do not led to inconsistencies if the

backgrounds are not quantized, as in our case, but actually can be used to characterize the

topological universality classes [63] [64].

The multiplet of Kλ transforms linearly under the modular group; each generator has

physical significance as we now review [23]. The S transformation reads:

S : Kλ

(−1

τ
,
−ζ
τ

)
= eiϕ

p∑

µ=1

SλµKµ(τ, ζ), Sλµ =
1√
p

exp

(
i2π

λµ

p

)
, (2.13)

where Sλµ is the modular S-matrix and ϕ is an overall phase. This transformation of space

and time implies a consistency condition on the spectrum [21].

The T 2 transformation do not change the sector Kλ but is represented by a phase factor

as follows

T 2 : Kλ(τ + 2, ζ) = exp (i4πhλ)Kλ(τ, ζ), hλ =
λ2

2p
. (2.14)

From the expression of the conformal dimensions of the edge excitations (1.39), we see that

this property follows from the fact that each anyon sector contains electron excitations having

odd integer statistics, i.e. half-integer conformal dimension.

Finally, the V transformation,

V : Kλ(τ, ζ + τ) = eiφKλ+1(τ, ζ), ∆Φ = Φ0, (2.15)

(with φ another global phase) realizes the change of the electric potential due to the ad-

dition of one flux quantum Φ0. The change λ → λ + 1 expresses the edge chiral anomaly,

corresponding to the spectral flow Q→ Q+ ν discussed in Section 1.3.3.
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Altogether the single edge is described by a multiplet of partition functions Kλ, that is

not modular invariant but covariant. This means that the chiral anomaly, i.e. the spectral

flow, implies a discrete gravitational anomaly [23].

The non-chiral edge system

In our work [1], we have obtained the partition functions for edge excitations of topological

insulators. We start by considering systems made of pairs of Laughlin states with ν = 1/p,

p odd, having chiral and antichiral sectors for up and down spins, respectively, thus realizing

the quantum spin Hall effect. We found the expressions:

ZNS (τ, ζ) =

p∑

λ=1

K↑λ K
↓
−λ . (2.16)

This partition function is invariant under S, T 2, V . It turns out that this quantity is formally

equal to the QHE partition function for the two edges of the annulus [23]. The physical

interpretation in the case of topological insulators is rather different, since it only describes

a single edge.

The expression ZNS is not fully modular invariant. As already said in Chapter 1, partition

functions of fermionic systems always involve four terms corresponding to the four spins

structures on the torus [29]. These amount to choosing antiperiodic (A) and periodic (P )

boundary conditions for fermion fields in the space and time directions (in general there are

22g terms on a genus g surface). The expression (2.16) is identified with the Neveu-Schwarz

sector since the natural fermionic boundary conditions are antiperiodic:

ZNS = TrA [exp (i2πτL0 + i2πζQ+ h.c.)] . (2.17)

The other expressions are defined as:

ZR = TrP [exp (i2πτL0 + i2πζQ+ h.c.)] ,

ZÑS = TrA
[
(−1)N↑+N↓ exp (i2πτL0 + i2πζQ+ h.c.)

]
,

ZR̃ = TrP
[
(−1)N↑+N↓ exp (i2πτL0 + i2πζQ+ h.c.)

]
, (2.18)

where periodic conditions in time introduce the sign (−1)F = (−1)N↑+N↓ . We note that

for p = 1 these Z-functions become the modulus square of the bosonic functions given in

Chapter 1, i.e. Eq.(1.64). Indeed a massless Dirac fermion is made of a pair of Weyl fermions

with opposite chiralities [21, 22, 29].

The modular transformations among the four terms are depicted in Fig. 2.4(a) and are

explicitly checked in the Appendix B.1. They form a triplet, ZNS , ZÑS , ZR, and a singlet,

ZR̃. Each one of the four spin sectors is made of p “anyonic” sectors:

Zs =

p∑

λ=1

K↑sλ K
↓s
−λ, s = NS, ÑS,R, R̃. (2.19)
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(a)

(b)

(c)

Figure 2.4: Actions on the four spin sectors ZNS , ZÑS , ZR, ZR̃ of (a) modular transforma-

tions, (b) p/2 flux insertions for p odd, (c) for p even.

The ÑS sector is defined as follows,

ZÑS (τ, ζ) = ZNS (τ + 1, ζ) ,

KÑS
λ (τ, ζ) = eiθλ Kλ (τ + 1, ζ) . (2.20)

In this expression, the phase θλ = 2π
(
λ
2 − λ2

2p + 1
24

)
is included for convenience in the

following. We also write KNS
λ ≡ Kλ and omit spin arrows for simplicity.

The Ramond sector is similarly obtained by acting with ST on ZNS and ZR̃ is defined

by inserting the (−1)F sign into the Ramond expression.

2.3.2 Stability analysis

We observe that the addition of p fluxes creates an electron excitation within the same anyon

sector, since it corresponds to a symmetry of each Kλ,

V p : Kλ → Kλ+p = Kλ, ∆Q↑ =
p

p
= 1 . (2.21)

On the other hand, the addition of p/2 fluxes is not a gauge transformation. It corresponds

to a strong perturbation that modifies its spectrum and, in particular, creates a spin one-half

excitation at the edge, ∆S = ∆Q↑ = 1/2 [59, 60]. Under the action of V
p
2 the Neveu-Schwarz
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sector is mapped into the Ramond sector as shown in Fig. 2.4(b):

V
p
2 : Kλ (τ, ζ) → Kλ

(
τ, ζ +

pτ

2

)
∼ Kλ+ p

2
(τ, ζ) ≡ KR

λ (τ, ζ) , (2.22)

ZNS (τ, ζ) → ZNS
(
τ, ζ +

pτ

2

)
= ZR (ζ, τ) . (2.23)

We can understand this kind of behavior looking to the non interacting case with p = 1.

The insertion of one half-flux quantum can be reabsorbed in the Hamiltonian by a gauge

transformation but, at the same time, gives a non trivial phase to the electron wave function

changing the spatial boundary condition from anti-periodic to periodic and vice versa. As

shown in Section 1.3.1, this corresponds to modify the values of α0 from integer to half-

integer, modifying the spectrum of the excitations and changing the spin sector from the

Neveu-Schwarz to the Ramond one and vice versa.

We can now extend the stability analysis discussed in the ν↑ = 1 case. Upon applying

p/2 fluxes, the Neveu-Schwarz ground state |Ω〉NS , the lowest state in K0K0, evolves in the

Ramond ground state |Ω〉R present in KR
0 K

R
0 = Kp/2Kp/2. Inspecting KR

0 K
R
0 to lowest

order in qq, with q = exp(i2πτ), and checking the terms of O(w0w0), w = exp(i2πζ), i.e.

not involving additional particles, it is easy to see the existence of the Kramers pair and the

behavior of the spectrum shown in Fig. 2.3. Indeed, inspecting the Neveu-Schwarz partition

function we find

ZNS ∼ 1

|η(q)|2
(

1 + · · ·
)
, (2.24)

where the first term of the expansion corresponds to the ground state |Ω〉NS . Instead, in the

Ramond case,

ZR ∼ 1

|η(q)|2
(
qp/8w1/2q̄p/8w̄1/2 + qp/8w1/2q̄p/8w̄−1/2

+ qp/8w−1/2q̄p/8w̄1/2 + qp/8w−1/2q̄p/8w̄−1/2 + · · ·
)
. (2.25)

In this expression, the first and fourth term correspond to the neutral and degenerate ground

states |Ω〉R and |Ω〉′R; they are TR partners, i.e. |Ω〉′R = T |Ω〉R, and thus give rise to the

Kramers doublet. We conclude that these models describe stable topological insulators for

odd integer p values.

We remark that the spin parities of the Neveu-Schwarz and Ramond ground states change

as follows:

(−1)2S |Ω〉NS = |Ω〉NS → (−1)2S |Ω〉R = − |Ω〉R , ∆S = ∆Q↑ =
1

2
. (2.26)

The Levin-Stern stability index discussed at the beginning of Section 2.3 is thus reacquired:

2∆S = 2∆Q↑ =
σsH
e∗

= 1 , (−1)2∆S = −1, (2.27)
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with σSH = ν↑ = 1/p and 1/e∗ = p is the number of charge sectors, i.e. the periodicity

of Kλ. The (would-be) spin transport ∆S involved in this index, equal to the Hall current

of one chiral component, is relative to half of the number of fluxes needed for creating an

electron excitation within any given anyon sector.

In conclusion, we have found that the spin parity of the Ramond ground state is different

from that of the Neveu-Schwarz ground state. This is the manifestation of the discrete

Z2 anomaly: different sectors of the path integral (Eq.(2.17) and (2.18)) have associated

different quantum numbers [1].

2.3.3 Stability and modular invariance

In a fermionic non-chiral system composed of the four spin sectors (2.17),(2.18) it is always

possible to find a modular invariant partition function by summing over all sectors,

ZIsing = ZNS + ZÑS + ZR + ZR̃. (2.28)

This is the so-called Ising partition function because it describes conformal field theories

applied to statistical models like the Ising model, its supersymmetric generalizations etc.

[21, 22]. The quantity ZIsing is indeed S, T, V
p
2 invariant.

However, the theory defined by ZIsing is not consistent with TR symmetry, that implies

spin parity conservation. In presence of the Z2 anomaly (2.26), the partition function (2.28)

sums spin sectors with different values of the ground state spin parity and violates TR

symmetry. If we want to preserve it, we should not sum over spin sectors and let the

partition function form a four-dimensional vector,

ZTR =
(
ZNS , ZÑS , ZR, ZR̃

)
. (2.29)

Since the modular group acts non trivially on these components, the path integral will depend

on the coordinates chosen to describe the torus, namely the system possesses a gravitational

anomaly. In this theory, the partition function ZNS represents the unperturbed edge system,

while the other functions, ZÑS , ZR, ZR̃, are excited states of the system in presence of

electromagnetic or gravitational backgrounds. We thus obtain the following result [1]:

TR symmetry + anomaly ↔ no modular invariance ↔ topological insulator,

TR symmetry +modular invariance ↔ no anomaly ↔ trivial insulator. (2.30)

An analogous study of the modular invariance of the partition function was done by Ryu

and Zhang in their analysis of the stability of two dimensional topological superconductors

[64].

We remark that in a physics setting as the annulus geometry, there should not be any

anomaly for the whole system, as in the case of the quantum Hall effect. Thus, the Z2

anomaly should cancel between the two edges by combining the relative partition functions

in a global modular invariant expression.
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2.4 Non-Abelian topological insulators

2.4.1 CFT and non-Abelian anyons

In Chapter 1, we saw that the fractional QHE supports excitations with fractional charge

and fractional statistics; for example the ν = 1/p Laughlin states have Qn = n/p and

θn/π = n2/p. These phases arise in the wave functions Ψ when excitations located at η1, η2

are exchanged in their positions. Thus, under (η1 − η2) → eiθ(η1 − η2) the wave function

transforms as

Ψ(η1, η2; z1, · · · , zn) → eiθΨ(η2, η1; z1, · · · , zn), (2.31)

where {zi} are the electrons coordinates. For n excitations, those exchanges give rise to a

one-dimensional representation of the group of n braids Bn.

Non-Abelian statistics is associated to higher dimensional representations of the braid

group that can occur when there is a degenerate set of g states for the excitations at fixed

positions (η1, · · · , ηn). Let us define an orthonormal basis Ψα, α = 1, 2, · · · , g of these

degenerate states: the element of the braid group σi that exchanges the particles i and i+ 1

is represented by a g × g unitary matrix ρ(σi) acting on these states as

Ψα → [ρ(σi)]αβΨβ. (2.32)

If the matrices ρ(σi) and ρ(σj) do not commute for i 6= j, the particles obey to non-Abelian

braiding statistics (for a review see Ref.[65]).

The CFT literature offers a large number of models that realize this phenomenon [21]

and, starting with the pioneering work of Moore and Read [24], they were applied to the

QHE physics.

Briefly, to describe a CFT we need its conformal data, including the set of primary

fields, each with a conformal dimension h, a table of fusion rules of these fields and a central

charge c. The fusion rules are the selection rules for the Operator Product Expansion of the

fields. Given a primary field φγ and indicating with [φγ ] its representation containing all its

descendant fields, the fusion rules encode the possible channels that can be created when

two fields φα and φβ are brought together to form a composite state, i.e. [21]

[φα]× [φβ] =
∑

γ∈Pk
Nγ
αβ[φγ ], (2.33)

where P k is the set of labels of primary fields and the integer Nγ
αβ counts the number of time

that the representation [φγ ] appears in the OPE between φα and φβ.

The OPE between vertex operators [21],

lim
z1→z2

Vn1(z1)Vn2(z2) = (z1 − z2)n1n2/kVn1+n2(z2), (2.34)

is a fusion with only one term in the r.h.s, i.e. the case of Abelian statistics. In the CFT

language, the edge theory of the compact chiral boson studied in Chapter 1 gives rise to a

rational CFT, i.e. the spectrum of the charges is given by a multiple of a basic fraction, say
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1/p, and the theory has a finite number of (generalized) primary fields Vn, with n = 1, · · · , p
[21]. The OPE between the two vertex operators in (2.34) represents the addition of charges

Qn1 + Qn2 mod p since the theory, being invariant under the U(1) (extended) symmetry,

has to conserve the electric charge. Thus, in this case the fusion rules realized the Abelian

group Zp [65].

The conformal theories of general quantum Hall edge states possess not only charged

excitations but also neutral modes that can be Abelian or non-Abelian. These theories have

the affine symmetry U(1)×G/H, where U(1) is the charge symmetry and G is another (non-

Abelian) symmetry characterizing the neutral part (possibly a coset G/H). The simplest

example giving rise to non-Abelian statistics is for G/H = ŜU(2)2/U(1), that is the Ising

model with central charge c = 1/2 [21, 24].

The primary fields of this model are (I, ψ, σ), respectively the identity with dimension

hI = 0, the Majorana fermion with hψ = 1/2 and the spin field with hσ = 1/16. These fields

satisfy the following fusion rules [21]

ψ × ψ = I, σ × ψ = σ, σ × σ = I + ψ. (2.35)

The non-Abelian statistics is due to the two possible channels in the third fusion rule

and can be exemplified as follows [65]. Suppose to have four quasiparticle excitations of σ

type. The correlator 〈σ(ω1)σ(ω2)σ(ω3)σ(ω4)〉 can be obtained by fusing σ(ω1) with σ(ω2)

and σ(ω3) with σ(ω4), thus obtaining pairs of intermediate channels that should match. In

the present example there are two intermediate channels corresponding to I and ψ. The

correlator is given by the linear combination of the two possible resulting amplitudes, called

conformal blocks. Putting the excitations at w1 = 0, w2 = z, ω3 = 1, and w4 → ∞ for

convenience, this can be written as [21]

lim
w→∞

〈σ(0)σ(z)σ(1)σ(∞)〉 = a+F+(z) + a−F−(z), (2.36)

where F± are the two conformal blocks that are given by two independent Hypergeometric

functions. Now, transporting the coordinate z around 0 or 1 by analytic continuation makes

a rotation within the two dimensional vector space. It acts on the basis of the conformal

blocks through the following non commuting matrices, i.e.

(
F+

F−

)
(ze2πi) =

(
1 0

0 −1

)(
F+

F−

)
(z),

(
F+

F−

)
((z − 1)e2πi) =

(
0 1

1 0

)(
F+

F−

)
(z), (2.37)

hence the term non-Abelian.

2.4.2 General partition functions

In the CFT characterizing the quantum Hall edge states with symmetries U(1)×G/H, the

electron field is represented by the product of a chiral vertex operator for the charge part

and a chiral neutral field ψe of the G/H theory:

Ψe = eiαϕ ψe . (2.38)

31



In any non-Abelian theory, the field ψe should have Abelian fusion rules with all fields in the

theory; this property is needed for the electrons to have integer statistics with all excitations

and non degenerate wavefunctions [66].

The field ψe, called a simple current in the CFT literature [21], can be used to build

a modular invariant that couples neutral and charged parts non-trivially and fulfills the

physical conditions on charge and statistics of the edge spectrum. The general expression of

the partition function for the Hall edge states obtained in this way is determined uniquely

by two inputs: the choice of neutral G/H theory and of the Abelian field ψe that represents

the electron neutral part. These simple-current modular invariant partition functions were

shown to reproduce earlier results obtained by physical insight in many models and to build

new ones [66].

The construction starts from the partition sum of one anyon sector, generalizing the Kλ

of the c = 1 theory introduced in Section 2.3.1 (Eq.(1.40)): this involves again a basic anyon

plus any number of electrons added to it, with charge Q = λ/p+n, n ∈ Z. It is characterized

by λ, and the neutral quantum numbers (m,α). Such partition function takes the form [66]:

Θα
λ(τ, ζ) =

k∑

a=1

Kλ+ap (τ, kζ; kp) χαλ+ap mod k(τ, 0). (2.39)

The Kλ(τ, kζ; kp) are the earlier characters for the charge part (2.10), while the χαm(τ, 0)

are the G/H characters for the neutral part, that are labelled by the Abelian number m

associated to the simple current and other, possibly non-Abelian, quantum numbers collec-

tively denoted by α. The explicit form of the neutral characters χαm is not needed, only their

symmetries and modular transformations are relevant in the following.

Equation (2.39) can be explained as follows. The basic anyon has quantum numbers

(λ,m, α), with m modulo k and λ modulo kp owing to the periodicity:

Kλ(τ, kζ; kp) = Kλ+kp(τ, kζ; kp) . (2.40)

After adding one electron, the quantum numbers changes into (λ+ p,m+ p, α); then, after

adding k electrons these numbers return to those of the basic anyon. This explains the k

terms in the sum (2.39). The difference with respect to the c = 1 case (1.40) is that n-

electron states couple to different neutral parts for n modulo k; actually, each Kλ(τ, kζ; kp)

in (2.39) only sums electrons with Q = λ/p+ kn, owing to the different ζ dependence.

We can use chiral-antichiral pairs of these edge theories to model interacting topological

insulators. The functions Θα
λ(τ, ζ) enjoy similar properties under modular transformations

as the Kλ of Section (2.3.1) and the partition function ZNS can be written accordingly that

couples the up/down spin modes at one edge:

ZNS =
∑

λ,α

Θα
λΘ

α
−λ. (2.41)

In this sum, the allowed range of (λ, α) values gives the value of the Wen topological order.
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Stability argument

The charge part Kλ of the sectors Θα
λ in (2.39) is parameterized by two independent numbers

(k, p), whose meaning can be understood from the expression (1.40):

i) The values of the fractional charge are Q = kλ/kp = λ/p, λ = 1, . . . , p, and the

minimal charge is equal to e∗ = 1/p.

ii) the Hall current (spin current) is obtained by applying the V transformation on (2.39),

that acts on the charge part Kλ, causing the shift of quantum numbers:

V : ζ → ζ + τ, λ→ λ+ k, ∆Q↑ = ν↑ =
k

p
, (2.42)

while the neutral characters in (2.39) are not affected.

As in Section 2.3.2, owing to the periodicity of Kλ in (2.40), the Fu-Kane-Mele flux

argument is obtained by the insertion of p/2 fluxes, that gives rise to a variation of the spin

of excitations as follows

V
p
2 : ∆S = ∆Q↑ =

p

2
ν↑ =

k

2
. (2.43)

Therefore, the Levin-Stern index (2.9) for the spin parity in this case is:

2∆S =
ν↑

e∗
= k. (−1)2∆S = (−1)k. (2.44)

The stability analysis then continues by observing that for odd values of k, the action of V
p
2

creates a Kramers pair at the edge that is protected by TR symmetry; then, the spectrum

cannot be gapped and the topological insulator is stable.

The action on the anyon sectors (2.39) is,

V
p
2 : Θα

λ(τ, ζ) →
k∑

a=1

Kλ+ap+kp/2 (τ, kζ; kp) χαλ+ap mod k(τ, 0) ∼ Θα′
λ′ (τ, ζ), (2.45)

where the values of (λ′, α′) depends on the specific theory considered through the symmetries

of its characters. Looking at the expressions (2.39) and (2.45), it is clear that the neutral

characters χαm do not enter in the stability argument, i.e. in the determination of the index

(2.44). Thus, the result (2.44) holds for topological insulators with TR symmetry having

both Abelian and non-Abelian edge excitations [1].

Stability and modular non-invariance

The stability of general topological insulators, corresponding to the Z2 spin parity anomaly,

is again accompanied by modular non-invariance of the partition function. However, electro-

magnetic and gravitational responses are not always equivalent as in the c = 1 case (neutral

modes are clearly sensible to coordinate changes but not to flux additions).

We should distinguish the following cases, according to the parities of (k, p):

i) For p odd, the action of V
p
2 is not a symmetry of each spin sector and maps them one

into another. The transformations between Neveu-Schwarz and Ramond sectors and among

their tildes are the same as those of the c = 1 theory (see Fig. 2.4(b) and Eq.(2.22)). The
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anyon sector Θ0
0 containing the NS ground state is naturally mapped into ΘR0

0 including

the Ramond ground state. The modular invariant and non-invariant partition functions are

constructed as in the c = 1 case and read:

ZIsing = ZNS+ ZÑS+ ZR+ ZR̃, k even, unstable,

ZTR =
(
ZNS , ZÑS , ZR, ZR̃

)
, k odd, stable. (2.46)

ii) For p even, the action of V
p
2 maps each spin sector into itself and thus differs from the

previous case (see Fig. 2.4(c)). For k odd, the Z2 anomaly manifests itself within each spin

sector, as a difference in spin parity between the ground state and another “anyon” ground

state (actually degenerate). The TR symmetry of the theory then requires to splitting each

spin sector in two sub-sectors, Zσ → (Zσ1 , Z
σ
2 ), σ = NS, ÑS,R, R̃, that are related by V

p
2 :

Zσ2 = V p/2 (Zσ1 ) and collect anyon sectors of same spin parity. These sub-sectors carry a eight-

dimensional representation of the modular group instead of four-dimensional (2.46). Finally,

for k and p both even, there is no anomaly and the ZIsing partition function is consistent with

TR symmetry. Summarizing, in all cases modular non-invariance is associated to stability

and Z2 anomaly.

2.4.3 Pfaffian topological insulators

The Pfaffian state is the simplest example of non-Abelian quantum Hall states [24]. In this

case the Hall conductivity and the minimal charge are

ν↑ =
1

2
, e∗ =

1

4
, 2∆S = 2, (−1)2∆S = 1. (2.47)

Thus the topological insulators made by pairs of these Hall states are unstable. The param-

eters entering the stability analysis are (k, p) = (2, 4). In this model, the neutral and charge

quantum number (λ,m, α) ≡ (λ, a, `) mentioned before are defined as: λ mod 8, a mod 4

and ` = 0, 1, 2. Moreover, the Abelian charge λ and the neutral charge a obey the selection

rule λ = a mod 2, also called Parity Rule.

It turns out that the characters of the charge part are given by Eq.(2.10) and will be

denoted as Kλ = Kλ(τ, 2ζ; 8) with λ = 1, · · · , 8. The neutral system, instead, is described

by the characters of the Ising model, i.e. the Z2 parafermions χ`a, non-vanishing for a = `

modulo 2, and obeying χ`a+2 = χ2−`
2 [66]. The three independent character, denoted as their

corresponding conformal field are χ0
0 = χ2

2 = I, χ1
1 = χ1

3 = σ and χ0
2 = χ2

0 = ψ.

The construction of modular invariants obtained before [66] leads to the following anyon

sectors (NS sector):

Θ`
a = Ka χ

`
a +Ka+4 χ

`
a+2, a = 0, 1, 2, 3, ` = 0, 1, 2, a = ` mod 2. (2.48)

The NS partition function reads [66]:

ZNSPf =
∑

a=0,2

∣∣Ka χ
0
a +Ka+4 χ

0
a+2

∣∣2 +
∣∣Ka χ

0
a+2 +Ka+4 χ

0
a

∣∣2 +

∣∣(K1 +K−3)χ1
1

∣∣2 +
∣∣(K3 +K−1)χ1

1

∣∣2 . (2.49)
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Note that each charge sector appears twice, coupling to two neutral states, and the Wen

topological order is equal to 8. The expressions of the other spin sectors for the Pfaffian

state are given in the Appendix B.2.

As explained earlier, this unstable theory is characterized by (k, p) both even, and flux

insertions and modular transformations act on the four spin sectors as shown in Fig. 2.4

(a) and (c). There is no Z2 anomaly, and the standard modular invariant ZIsing partition

function (2.46) is consistent with TR symmetry.

2.4.4 Read-Rezayi parafermionic topological insulators

In our work [1], we also considered the stability of topological states built by the Read-Rezayi

states [67]. These are generalization of the Pfaffian state involving neutral modes of the Zk
parafermions, that can be described by the coset ŜU(2)k/U(1) [66]. The quantities entering

in the stability index (2.9) are

ν↑ =
k

kM + 2
, e∗ =

1

kM + 2
, 2∆S = k, (−1)2∆S = (−1)k, (2.50)

where k = 3, 4 . . . and M = 1, 3, . . . . In this case, (k, p) = (k, kM + 2), thus the topological

insulators made by pairs of these states are stable (unstable) for k odd (even) [1]. Note that

k and p have the same parity:

i) For k and p odd, the flux insertions and modular transformations follow the same

pattern of the stable, odd p Laughlin states and of the c = 1 theory (Fig. 2.4 (a) and (b)).

The modular non-invariant partition function takes the form ZTR in (2.46).

ii) For k and p even, they have a common factor of 2 and the flux insertions and modular

transformations are the same as those of the Pfaffian case (Fig. 2.4 (a) and (c)). The modular

invariant partition function is ZIsing.

All partition functions and modular transformations are described in Appendix B.3. Let

us briefly discuss their expression in the Neveu-Schwarz sector, taken from Ref.[66]. These

read:

Θ`
a =

k∑

b=1

Ka+bp (τ, kζ; kp)χ`a+2b(τ, 0, 2k), a = ` mod 2, p = 2 + kM. (2.51)

The charge characters Kλ with periodicity kp, are coupled to the Zk parafermion characters

χ`m, that are specified by the SU(2)k quantum number ` = 0, 1, . . . , k, and the Abelian

number m modulo 2k. There is a Zk parity rule between the two Abelian numbers, that

is λ = m modulo k (note that p = 2 modulo k). The parafermion characters obey the

periodicities χ`m = χ`m+2k = χk−`m+k and vanish for m+ ` = 1 modulo 2. Taking into account

these properties, one finds the periodicity Θ`
a+p = Θk−`

a , implying p(k + 1)/2 independent

anyon sectors, the value of the topological order.

The Read-Rezayi parafermion theory with k = 3 is, then, the first non trivial stable

topological insulator supporting non-Abelian excitations, owing to the fusion rules of the

parafermionic field ε with itself, i.e. ε×ε = I+ε. The non-Abelian anyons are called Fibonacci
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anyons, since the dimension of the braiding matrices grows as the Fibonacci number Fn for

the correlator of n ε excitations [67].

The system of Fibonacci anyons is very important: it realizes the simplest unitary trans-

formations that can model universal quantum gates, the building blocks of quantum compu-

tation algorithms [68] [69]. An advantage of using topological insulators for the realization

of a quantum computer is given by the fact that topological excitations do not decay due to

the local interactions with the environment and thus they are coherent for long time. This

field of research is called “topological quantum computation” [68]. The challenge of finding

experimental realizations of non-Abelian topological insulators is very important; these sys-

tems could actually be simpler to realize than the corresponding quantum Hall states, owing

to the larger gaps and the absence of strong magnetic fields [65].
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Chapter 3

Edge interactions of non-Abelian

topological insulators

In Chapter 2 we extended the validity of the Levin-Stern index (2.9) to non-Abelian topo-

logical phases through the study of their partition functions [1]. We found that the stability

of the topological phases is associated to the presence of a Z2 anomaly and depends on the

Z2 index (2.39)

(−1)2∆S , 2∆S =
σsH
e∗

=
ν↑

e∗
= k. (3.1)

For k odd the index (−1)2∆S = −1 indicates the presence of degenerate Kramers pairs at

half-integer fluxes, implying a gapless spectrum. For k even, instead, an open question of the

previous analysis is whether a non-anomalous system with index (−1)2∆S = 1 does become

fully gapped.

In a series of papers, two different groups answered this question. Levin and Stern in

Ref.[59, 60], and Neupert at al. in Ref.[70, 71], analyzed the possible TR invariant electron

interactions of the general multicomponent Abelian topological insulators discussed in Sec-

tion 2.3.1. They found that the stability is based again on the index (3.1): when this is

positive, that is k even, there are enough interactions for gapping all edge modes; otherwise

one mode remains gapless.

In this chapter we present the corresponding analysis of interactions for non-Abelian

topological insulators that we derived in Ref.[2]. We have not found a general result valid

for all non-Abelian topological phases, but analyzing some well-known non-Abelian models,

we were able to find a sufficient set of interactions satisfying all physical tests, that gap all

edge excitations of topological insulators characterized by the index (−1)k = 1.

Before explaining our result, we will review the study of interactions that gap the mul-

ticomponent Abelian topological insulators [59, 60, 70, 71]. After that, we shall introduce a

“projection” that maps Abelian to non-Abelian states and use it to obtain the corresponding

gapping interactions [2].
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3.1 Time-reversal invariant interactions in Abelian theories

In Chapter 2 we modeled the fractional topological insulators with ν↑ = 1/p by pairs of

Laughlin Hall states carrying opposite spin and chirality. These states can be generalized to

2N layers with chiral central charge c↑ = N and their interactions can be described by using

the so called K-matrix formalism [59, 60]. To this end we introduce the 2N ×2N symmetric

invertible matrix K with integer entries, that has the following form

K =

(
K W

W T −K

)
, (3.2)

where K is a N ×N matrix and W T = −W . This matrix parametrizes the couplings of the

N components chiral-antichiral bosonic theory that is TR symmetric [70]. The spectrum of

the excitations is characterized by a 2N -dimensional Lorentian lattice of conformal weights

and charges whose Gram matrix is given by (3.2). The electron excitations are specified by

vectors Λ with 2N integer components, such that their exchange statistics and charges, given

by θ/π = ΛTKΛ and Q = ΛTρ respectively, are integer valued. Note that ρ is the so-called

charge vector, made of two N -dimensional vectors, ρ = (ρ↑, ρ↓), ρ↑ = ρ↓ = (1, . . . , 1) within

our conventions of lattice coordinates. The elementary electron excitations correspond to

the basis vectors Λ = ei, that are equal to one in the i-th position and zero elsewhere,

i = 1, . . . , 2N . The electron fields are given by normal ordered vertex operators of the

2N -component bosonic field Φ(t, x) = (φ1(x, t), · · · , φ2N (x, t)), as follows:

Ψ†i (t, x) =: exp
(
−ieTi KΦ(t, x)

)
:, i = 1, · · · , 2N. (3.3)

If W = 0 in (3.2), the first N operators, i = 1, · · · , N , represent chiral spin-up electrons

and the second N ones antichiral spin-down electrons; if W 6= 0, the first (resp. second) N

operators describe electrons with spin up (down) with mixed chiralities.

The time-reversal T transformations act on the bosonic field as follows [60]:

T Φ(t, x) T −1 = Σ1Φ(−t, x) + πK−1Σ↓ρ, (3.4)

where

Σ1 =

(
0 1

1 0

)
, Σ↓ =

(
0 0

0 1

)
, (3.5)

are 2N × 2N block matrices. Time-reversal symmetry implies K = −Σ1 K Σ1, and ρ = Σ1ρ.

From (3.4) we derive the following TR transformation of the basic fermionic fields (3.3) [60]

T : Ψ†i → Ψ†i+N , Ψ†i+N → −Ψ†i , i = 1, . . . , N, (3.6)

generalizing the one-component case of Eq.(2.1).

The Hamiltonian Hint of electronic edge interactions is expressed in terms of vertex

operators UΛi as follows:

Hint =

∫
dt
∑

i

gi UΛi + h.c.,

UΛi(t, x) =: exp
(
− iΛTi KΦ(t, x)

)
:, (3.7)
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where Λi are integer vectors subjected to the conditions specified below. The coupling

constant gi can be complex and space dependent to account for interactions at impurities,

possibly leading to gi → ∞, such that both relevant and irrelevant interactions, in the

renormalization group sense, should be considered.

The condition on Λi for realizing admissible TR symmetric interactions are [60, 70]:

i) charge neutrality,

Q = ΛTi ρ = 0; (3.8)

ii) mutual locality of interactions (Haldane null vector criterion [72]),

θ

π
= ΛTi KΛj = 0, ∀i, j; (3.9)

iii) time-reversal invariance of Hint [60],

Σ1Λi = ±Λi, ΛTi Σ↓ ρ = even, ∀i; (3.10)

iv) linear independence of the Λi and, more strongly, the following minimality, or “prim-

itivity”, condition, requiring that products of interactions are not polynomials of simpler

interactions [60]:

n1Λ1 + · · ·+ nkΛk 6= mΛ, with m > 1. (3.11)

Actually, solutions to this equation with integer Λ vector and m > 1 could imply spontaneous

symmetry breaking of TR symmetry. For example, in the one component case, the square

of the mass term U = (Ψ
†
Ψ)2 is TR invariant, but it would also induce an expectation value

for the more primitive interactions 〈Ψ†Ψ〉 6= 0 that is TR breaking. Since we do not allowed

explicit and spontaneous breaking of TR symmetry, these kinds of interactions are discarded.

The stability analysis of Refs.[60, 70] showed that for the general non-anomalous Abelian

theory, there always exist N interactions that obey the previous conditions and gap all N

edge modes. Let us recall the main steps of this proof.

First, observe that (N − 1) gapping interactions can always be found for any matrix K,

such that only one massless mode is possible, at most. These (N −1) solutions to conditions

(3.8)-(3.11) are the eigenvectors of the Σ1 matrix (3.5) with eigenvalue one, that can be

taken of the form:

Λ1 =
(
Λ↑1,Λ

↓
1

)
=
(

1,−1, 0, · · · , 0︸ ︷︷ ︸
N

, 1,−1, 0, · · · , 0︸ ︷︷ ︸
N

)
, (3.12)

...

ΛN−1 =
(
Λ↑N−1,Λ

↓
N−1

)
=
(

1, 0, · · · , 0,−1︸ ︷︷ ︸
N

, 1, 0, · · · , 0,−1︸ ︷︷ ︸
N

)
. (3.13)

These vectors are globally neutral, Qi = ΛTi ρ = 0, but they also have neutral chiral compo-

nents, Λ↑Ti ρ↑ = Λ↓Ti ρ↓ = 0.

The N -th solution for the gapping interactions depends on the form of K. We consider,

for simplicity, the diagonal case, i.e. with W = 0, and define the vector [70]

Λ = r

(
K−1ρ↑

−K−1ρ↓

)
, (3.14)
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where r is the smallest integer such that all components of Λ are integers. It turns out

that (3.14) is a eigenvector of Σ1 with eigenvalue −1 obeying the conditions (3.8), (3.9) and

(3.11). There remains the condition (3.10), that is actually related to the Levin-Stern index

(3.1) [70]

2∆S = −Λ
T

Σ↓ ρ = r ρ↓TK−1ρ↓ = even. (3.15)

Namely, the condition for the remaining N−th interaction to be TR invariant is the same

as that coming from the flux insertion argument. It then follows that the Z2 anomalous

topological insulators ((−1)2∆S = −1) posses a massless edge spectrum due to the flux in-

sertion argument, while the non-anomalous systems ((−1)2∆S = 1) have enough interactions

to become gapful.

3.2 Invariant interactions in the Pfaffian topological insulator

In this section we review the analysis of TR interactions in non-Abelian topological insulators

[2]. Our approach uses the known result that some non-Abelian Hall states can be obtained

from certain Abelian systems, called “parent states”, by a projection of degrees of freedom

[73]. Since this projection does not spoil the TR symmetry, one can use it to export the

general analysis of interactions in the Abelian states to the non-Abelian models. Let us start

from recalling the relation between the Pfaffian state and its Abelian parent state, the so

called Halperin (331) state. We shall describe the map of fields and interactions between the

two theories.

3.2.1 From the (331) to the Pfaffian state

The (331) and the Pfaffian states have the same filling fraction, minimal electric charge and

Levin-Stern index, i.e.

ν↑ =
1

2
, e∗ =

1

4
, 2∆S = 2. (−1)2∆S = 1, (3.16)

from which follows that both are expected to be unstable topological states. Let us show

how the Pfaffian state can be described as the projection from its “parent” Abelian (331)

state [73].

The (331) ground state wavefunction is

Ψ(331)(zi;wj) =
N∏

i<j

z3
ij

N∏

i<j

w3
ij

N∏

i,j

(zi − wj), (3.17)

where zij = zi − zj , wij = wi − wj and it corresponds to the following K-matrix

K =

(
3 1

1 3

)
. (3.18)
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The two sets of coordinates zi and wi, i = 1, . . . , N , pertain to electrons that are distinct by

an additional quantum number, say isospin up and down, and thus the wavefunction is only

antisymmetric for exchanges of coordinates of the same kind [73, 74].

The Abelian theory possesses two kinds of electrons (3.3). We shall use the basis where

neutral and charged components are separated [73, 74]; both parts are expressed by vertex

operators of chiral bosonic fields, ϕ and φ, that are linear combinations of earlier field Φ in

(3.3):

V = exp (iαϕ) , F = exp (iφ) , (3.19)

with α =
√

2. The dimensions of the fields are hV = α2/2 = 1 and hF = 1/2. The field

F is actually a Weyl fermion whose charge does not contribute to the electric charge but

accounts for the isospin [73]. The two edge electrons with spin up, can be written in the

decomposition as follows

Ψ1 = V F, Ψ2 = V F †. (3.20)

The corresponding topological insulators are obtained as usual by doubling the edge

modes; thus the two antichiral electrons with spin-down are represented by the following

vertex operators

Ψ3 = V F , Ψ4 = V F
†
, (3.21)

where V = exp(−iαϕ) and F = exp(−iαφ). Note that in our notation the bar denotes

antichirality, e.g. ϕ = ϕ(z), ϕ = ϕ(z̄), while the dagger refers to Fock space operators.

The two TR invariant interactions of the (331) Abelian theory are obtained by the methods

described in Section 3.1; the first one is associated to the lattice vector Λ1 (3.12) and the

second one is obtained by specializing the expression of the vector Λ (3.14) for the K matrix

(3.18). They read:

Λ1 = (1,−1, 1,−1), Λ = (1, 1,−1,−1). (3.22)

These vectors determine the edge interactions (3.7) that can written in terms of normal-

ordered product of fermionic fields:

UN =: Ψ†1 Ψ2 Ψ†3 Ψ4 : +h.c., (3.23)

UC =: Ψ†1 Ψ†2 Ψ3 Ψ4 : +h.c.. (3.24)

The labels N and C in (3.24) refer to the fact that UN exchanges a particle and an antiparticle

(Q,Q) = (0, 0) in each chirality (chiral neutral), while UC exchanges two chiral particles

and two antichiral antiparticles (Q,Q) = (2,−2) (chiral charged). According to the earlier

discussion, the two TR invariant interactions UN and UC are sufficient to completely gap

the (331) state.

We now introduce the projection that leads to the Pfaffian state [24]. The wavefunction of

the Pfaffian theory can be obtained from the (331) wavefunction (3.17) by antisymmetrizing

with respect to all 2N electron coordinates, such that the isospin quantum number is washed
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out. Indeed, the following relation holds [73]:

ΨPfaff(zi, zi+n) = A
[
Ψ(331)(zi;wj)

]
=

2N∏

i<j

z2
ij Pf

(
1

zi − zj

)
, (3.25)

where A [..] denotes antisymmetrization over all the 2N coordinates (zi, wj = zN+j , i, j =

1, · · · , N).

At the operator level, the projection from the Abelian to the Pfaffian states is obtained

by identifying the two species of Abelian fermions Ψ1 ∼ Ψ2 [73]. This amounts to projecting

the Weyl fermion to a neutral Majorana fermion, F → ψ and F † → ψ:

Ψ1 → V ψ, Ψ2 → V ψ. (3.26)

The corresponding map between conformal theories relates the Abelian U(1)× U(1) to the

non-Abelian U(1) × Ising theory, with central charges c = 2 and c = 3/2, respectively [24].

The analogous map between the Abelian and Pfaffian topological insulators is done remem-

bering that, besides the chiral spin-up Hall states discussed so far, there are corresponding

antichiral spin-down states, whose electrons fields Ψi+2, i = 1, 2 are similarly projected into

antichiral Pfaffian fields: Ψ3,4 → V ψ. Summarizing, we have the following map between

electrons in the two theories [2],

Ψ†i → : exp (−iαϕ) : ψ = V † ψ, i = 1, 2, (3.27)

Ψi → : exp (iαϕ) : ψ = V ψ,

Ψ†i+2 → : exp (iαϕ) : ψ = V
†
ψ,

Ψi+2 → : exp (−iαϕ) : ψ = V ψ.

The TR transformations of the electron fields (3.6) are left invariant by the projection (3.26),

and act on the fields of the Pfaffian theory as follows:

T : Ψ†i = V † χ → Ψ†i+2 = V
†
χ, i = 1, 2,

Ψ†i+2 = V
†
χ → −Ψ†i = −V † χ. (3.28)

These correspond to the following transformations of the charged V and neutral ψ fields [2]

T : V † → V
†
, V

† → −V †,
ψ → ψ, ψ → ψ. (3.29)

3.2.2 Projected interactions

The projection (3.27) does not affect the TR symmetry of states and operators, then, follow-

ing our work [2], it will be employed to find the gapping interactions for the Pfaffian state

from the known expressions for the Abelian (331) state, i.e. (3.23) and (3.24).

Since the maps (3.27) apply to individual fermion fields, we should first undo the normal

ordering in (3.24) by point splitting, then apply the projection and finally re-normal order
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the result in the Pfaffian theory. Let us consider the two interactions UN and UC in turn.

Upon using the normal-ordering (2.34), the point splitting of UN reads:

UN = lim
z1→z2

zM12 z
M
12 Ψ†1(z1) Ψ2(z2) Ψ†3(z1) Ψ4(z2) + h.c.. (3.30)

Applying the projection (3.27) to each field in this expression and using once again (2.34)

to normal-order the vertex operators V V †, we obtain:

UN → UPfaff
N = lim

z1→z2

[
1

z12
: V †(z1)V (z2) : ψ(z1)ψ(z2)

]

reg.

×
[
z → z̄

]
. (3.31)

We now consider the expansions of the two vertex operators and the Majorana fields for

z1 → z2. They are (omitting constants),

: V †(ε)V (0) := 1 + ε∂ϕ+ ε2
(
(∂ϕ)2 + ∂2ϕ

)
+O(ε3), (3.32)

and

χ(ε)χ(0) =
1

ε
+ ε : χ∂χ : +O(ε3). (3.33)

Owing to the fusion rules V † · V ∼ I and ψ · ψ = I, taking the first finite terms in UPfaff
N

for z1 → z2 correspond to take descendant fields in the conformal representation (sector) of

the identity field I of both the charged c = 1 and neutral Majorana c = 1/2 theories [21]:

schematically, UPfaff
Λ1

= [I]c=1 [I]c=1/2.

The final expression of UPfaff
Λ1

is obtained by selecting the finite terms for ε → 0 in

the product of (3.32) and (3.33), that is the normal-ordering procedure for general CFT.

Neglecting total derivatives, we finally obtain [2]:

UPfaff
N =

(
2Tn + α2 Tc)

(
2Tn + α2 T c

)
, (3.34)

where Tn = −ψ∂ψ/2 and Tc = −(∂ϕ)2/2 are the stress tensors of the Majorana fermion and

bosonic theory, respectively [21].

Following similar steps, for the interaction UC in (3.24) we find the expression:

UC → UPfaff
C = lim

z1→z2

[
z12 : V (z1)† V (z2)† : ψ(z1)ψ(z2)

]

reg.

×
[
z → z̄

]
+ h.c.. (3.35)

The conformal sectors now involved are UPfaff
C =

[
V †2

]
c=1

[I]c=1/2, since the original Abelian

interaction had charged chiral/antichiral parts, i.e. Q = (2,−2). After re-normal ordering,

we finally obtain [2]:

UPfaff
C =:

(
V †
)2 (

V
)2

: +h.c.. (3.36)

3.2.3 Properties of non-Abelian interactions

Using Eq.(3.29) we can verify that both UPfaff
N and UPfaff

C are TR invariant expressions.

Actually, they cannot break TR symmetry spontaneously either. As discussed in Section

3.1, the quartic interaction
(
Ψ†Ψ

)2
must be discarded, because it would imply the symmetry
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breaking expectation value of the “square-root” 〈Ψ†Ψ〉 6= 0 [59, 60, 70]. Note that UPfaff
N

is quartic in the Majorana field, but it is the minimal or “primitive” interaction, since the

simpler quadratic interaction in the (331) theory [59], U = Ψ†1 Ψ4 − Ψ†2 Ψ3 + h.c., vanishes

when projected to the Pfaffian. UPfaff
C is quartic as well, but the corresponding TR breaking

quantity V † V cannot acquire an expectation value owing to the non locality with respect to

some excitations. For example, we consider the chiral quasiparticle Vσσ of minimal charge

Q = 1/4. The operator product expansion between the charge part Vσ = exp(i1/
√

8ϕ) and

V † V is given by Vσ V
† ∼ z−1/2. Therefore, the following correlator involving two σ has a

square-root branch-cut and nontrivial monodromy:

〈
V †(0)V (0)Vσ

(
zei2π

)
Vσ(w)

〉
= −

〈
V †(0)V (0)Vσ(z)Vσ(w)

〉

6=
〈
V †(0)V (0)

〉
〈Vσ(z)Vσ(w)〉 . (3.37)

Equation (3.37) implies 〈V † V 〉 = 0.

The interaction UPfaff
C , with chiral and antichiral charges (Q,Q) = (2, 2), is non-vanishing

for the correlator that describes scattering with charge transfer between the two chiralities,

as e.g.

〈χ†(z1)χ†(z2)χ(z3)χ(z4)UPfaff
N 〉 6= 0. (3.38)

The excitations χ realizing this process must be charged electrons or quasiparticles. It follows

that all them acquire mass.

The Pfaffian theory further possesses neutral quasiparticle excitations that do not couple

to UPfaff
C . Indeed, their scattering processes do not involve charge transfer and correspond

to vanishing chiral correlators, as e.g. 〈χ†(z1)χ(z2)UPfaff
Λ
〉 = 0. Neutral excitations couple

to the other interaction UPfaff
N with (Q, Q̄) = (0, 0), since 〈χ†(z1)χ(z2)UPfaff

Λ 〉 6= 0. However,

this coupling cannot give mass to neutral excitations; this is an established fact in the

literature of perturbations of the Ising model [75]. Actually the interaction gUPfaff
N = gTnTn,

with Tn ∼ ψ∂ψ, describes the renormalization group flow from the tricritical to the critical

Ising model, as viewed from the low-energy end point. All along this flow, the Majorana

field ψ stays massless, thus this interaction breaks conformal invariance but leave a massless

neutral state at low-energy. Therefore UPfaff
N cannot cause the instability of the Pfaffian

topological insulators.

In Section 2.4.3, we described the partition function of the Pfaffian topological insulator;

after summation of the Neveu-Schwarz and Ramond sectors (B.13), it takes the form

ZPf TI = ZNS + Z
ÑS

+ ZR + Z
R̃

= 2

4∑

a=−3

(∣∣KaI
∣∣2 +

∣∣Kaψ
∣∣2 +

∣∣Kaσ
∣∣2
)
. (3.39)

In this expression, theKa are characters of U(1) representations corresponding to the Abelian

parts of excitations, carrying charge Q = a/4 + 2Z, while the characters I, ψ and σ describe

the neutral non-Abelian parts, being the identity, fermion and spin of the Ising model,

respectively [21].
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In presence of the charged interaction UPfaff
C with large coupling, all charged excitations

become highly massive, such that Ka → δa,0 in (3.39) (up to an irrelevant factor). Therefore,

there remain the neutral excitations of the Ising model,

ZPf TI → ZIsing =
∣∣I
∣∣2 +

∣∣ψ
∣∣2 +

∣∣σ
∣∣2, (3.40)

that are time-reversal invariant and non-chiral.

We now remark that the Ising model (3.40) possesses another relevant interaction,

Uqp = mψψ, (3.41)

that generically gives mass to the theory. This corresponds to a quasiparticle interaction in

the original Pfaffian topological insulator that was not considered before. Actually, earlier

discussions were limited to electron interactions, because they are local with respect to all

chiral excitations of topological insulators and can easily implemented in microscopic models.

Quasiparticle interactions, such as (3.41), were discarded because they can be non-local with

some chiral quasiparticles. However, in the reduced theory (3.40), electrons and charged

chiral quasiparticles have disappeared, thus Uqp is local with respect to the remaining neutral

(non-chiral) excitations and is acceptable.

In conclusion, in the Pfaffian topological insulator we introduced a quasiparticle interac-

tion for gapping the neutral non-Abelian modes that is allowed when the charged excitations

are infinitely massive. This argument requires a separation of scales between heavy charged

excitations and light neutral excitations, that is not required in the corresponding analysis

of Abelian systems. Moreover, such quasiparticle interaction is generically unavoidable, but

its microscopic origin is yet unclear.

3.3 Invariant interactions in the Read-Rezayi topological in-

sulators

3.3.1 Projected interactions

The Read-Rezayi Hall states describe the binding of identical electrons in clusters of k

elements, extending the k = 2 case of the Pfaffian [67]. In the conformal field theory

description, the electrons are represented by the Zk parafermion field χ1, whose k-th fusion

with itself yields the identity, (χ1)k ∼ I, leading to a non-vanishing correlator at coincident

points. The parafermion conformal field theory can be realized by the coset ŜU(2)k/U(1)

[66]. As usual, excitations also have a charge part expressed by vertex operators, leading to

a theory with central charge c = 1 + ck, ck = 2(k− 1)/(k+ 2). The fusion of n parafermions

χ1 define the parafermion field χn; these fields obey Abelian fusion rules among themselves:

χi · χj ∼ χ`, ` = i+ j mod k, (3.42)

that conserve a Zk quantum number. Moreover, they obey χ†n = χk−n.
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The parent Abelian theory of the Read-Rezayi state is a k-fluid generalization of the

(331) state with the following K matrix [67, 73]:

Kij =

{
M + 2 i = j = 1, · · · , k,
M i 6= j .

(3.43)

The Abelian and non-Abelian systems share the same spectrum of charges: the filling fraction

and minimal charge are,

ν↑ =
k

kM + 2
, e∗ =

1

kM + 2
, 2∆S = k, (−1)2∆S = (−1)k. (3.44)

Thus, the Levin-Stern index tells us that the topological insulators made by pairs of Read-

Rezayi states, as well as their parent states, are stable (unstable) for k odd (even).

The general study of interactions of the Abelian theory described earlier yields k TR

invariant gapping interactions specified by (k−1) vectors Λi and by Λ, given in (3.12)-(3.13)

and (3.14), respectively. In particular, the interaction corresponding to Λ is TR invariant

only for k even, in agreement with the Levin-Stern index.

We now proceed to describe the projection to the non-Abelian state by studying its action

on the conformal fields. In the present case the projection maps k different chiral species

into a single one and the corresponding electron fields Ψi, i = 1, . . . , k in (3.3) go into the

Read-Rezayi electron ψ = V χ1, where V is the charged vertex operator and χ1 the first

parafermion. More precisely, the correspondence is as follows:

Ψ†i → : exp
(
− iαϕ

)
: χ1 = V † χ1, i = 1, . . . , k

Ψi → : exp
(
iαϕ

)
: χ†1 = V χk−1,

Ψ†i+k → : exp
(
iαϕ

)
: χ1 = V

†
χ1,

Ψi+k → : exp
(
− iαϕ

)
: χ†1 = V χk−1, (3.45)

where α2 = (2 + kM)/k and ϕ = ϕ(z), ϕ = ϕ(z̄).

From the map of the fields we obtain the expressions of the non-Abelian interactions as

follows. The UΛi are quartic in the fermion fields as in the k = 2 case, Eq. (3.24), and their

projection follows similar steps. After point splitting and projection, one obtains:

UΛi → URR
Λ = lim

z1→z2

[
z
−2/k
12 : V †(z1)V (z2) : χ1(z1)χk−1(z2)

]

reg.

×
[
z → z̄

]
. (3.46)

These interactions, for i = 1, . . . , k − 1, are all projected into the same expression URR
Λ ,

that involves the identity sectors for both the charged and neutral Zk parafermion theories,

owing to the fusion rules V † · V ∼ I and χ1 · χk−1 ∼ I, respectively. The normal ordering of

vertex operators is the same as in the Pfaffian case. For the parafermions we use the general

operator expansion of descendant fields in the identity sector [21],

χ1(ε)χk−1(0) = ε−2+2/k +
2h1

ck
ε2/k Tn(0)+ : χ1(0)χk−1(0) : + · · · , (3.47)
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where Tn is the stress tensor of the parafermion theory, ck its central charge and h1 = (k−1)/k

the conformal dimension of χ1. Combining all together, we obtain:

URRΛ =

(
2h1

ck
Tn + α2 Tc

)(
2h1

ck
Tn + α2 T c

)
. (3.48)

This interaction takes the same TT form of descendent of the identity already found in the

Pfaffian case, and fulfills the same properties. In particular, it cannot provide a mass for

neutral excitations of these topological insulators.

The projection of the Abelian interaction corresponding to Λ is slightly more difficult,

because it involves 2k fermionic fields:

UΛ = :
k∏

i=1

Ψ†i : :
k∏

i=1

Ψk+i : +h.c.

= :
k∏

i=1

exp

(
− ieiKΦ(z)

)
: :

k∏

i=1

exp

(
iēiKΦ(z)

)
: +h.c.. (3.49)

The operators in each chiral part should be split in k different points {z1, . . . , zk}, with

|zi − zj | = ε ∀i, j, and later brought back to a common point, ε → 0. We use the formula

for the normal ordering of k vertex operators [21],

k∏

i=1

: exp (−ieiKΦ(zi)) :=

k∏

i<j

(zi − zj)M : exp

[
−i
(

k∑

i=1

ei

)
KΦ(zi)

]
:, (3.50)

where the exponent M is given by the K-matrix element. Upon performing the projection

(3.45) on individual fermion fields, we re-normal order the k vertex operators V †, and obtain:

UΛ → URR
Λ

= lim
ε→0




k∏

i<j

z
2/k
ij :

(
V †(z)

)k
:

k∏

i=1

χi(zi)


×

[
z → z̄

]
+ h.c.. (3.51)

The normal ordering of parafermion fields uses the operator product expansions [21],

χ`(z)χ`′(0) ∼ z−2``′/k χ`+`′(0) + · · · , (`+ `′ < k), (3.52)

χ`(z)χk−`(0) ∼ z−2`(k−`)/k
(

1 + z2 2h`
ck
Tn(0) + · · ·

)
, (3.53)

where h` = `(k − `)/k is the dimension of χ`. The coincidence limit of the first (k − 1)

coordinates zi − z = ε→ 0, creates the parafermion field χk−1 with singular behavior given

by the sum of exponents in (3.52); for the k-th limit we use (3.53) involving the stress tensor,

and obtain,

lim
ε→0

k∏

i=1

χi(zi) = ε1−k
(

1 + ε2 2h1

ck
Tn(z)

)
. (3.54)

This singularity exactly cancels that coming from the product of vertex operators in (3.51),

leading to final result:

URR
Λ

=: V †k(z)V
k
(z̄) + h.c.. (3.55)
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3.3.2 Properties of interactions

The TR transformations of Read-Rezayi fields is again inherited from the Abelian fields (3.6)

through the projection (3.45) and read:

T : V † → V
†
, V

† → −V †,
χi → χi, χi → χi, (3.56)

in complete analogy with (3.29). It follows that the neutral interaction URRΛ ∼ TT is time-

reversal invariant for any k, while the charged interaction URR
Λ

is only invariant for k even,

as in the parent Abelian theory. We stress that this result is in agreement with the Levin-

Stern index (3.44) [1]: for k odd, URR
Λ

is forbidden by TR symmetry and some charged edge

excitations remain massless.

For k even, the Read-Rezayi topological insulators are unstable according to the flux

argument [1]. The charged interaction URR
Λ

is allowed and gaps all charged excitations. We

should again consider the possibility that URR
Λ

breaks spontaneously the symmetry, but this

cannot happen because V †V is non-local, for example, with respect the field operator of the

smallest charge e∗ in (3.44). Regarding the neutral modes, URRΛ ∼ TT it is not sufficient

to give them mass, owing to the arguments discussed in Section 3.2.3 for k = 2. We then

consider a quasiparticle interaction that is allowed in the reduced neutral theory where

all charged states have acquired very large masses. In this limit, the single-edge partition

function of Read-Rezayi topological insulators becomes the following expression [1]:

ZRR →
k∑

`=0, even

∣∣∣χ`0
∣∣∣
2

+

k∑

`=0, `− k
2

even

∣∣∣χ`k
2

∣∣∣
2
, (3.57)

that contains a subset of the excitations of the Zk parafermion statistical model [66]. The

parafermionic characters χ`m describe neutral excitations with quantum numbers (`,m) ≡
(`,m+ 2k) ≡ (k − `,m+ k) and m = ` mod 2.

The quasiparticle interaction,

URRqp = χ2
0χ

2
0 + h.c., (3.58)

with dimension 2h2
0 = 4/(k + 2) < 2, is relevant and couples to all sectors, since the fusion

rules χ2
0χ

`
0 and χ2

0χ
`
k
2

are different from zero for any allowed value of ` [21]. It turns out that

this interaction drives the systems with k even into a completely massive phase.

In our paper, the analysis of gapping interactions was also extended to the non-Abelian

spin singlet states (NASS) [76]. Applying the same procedure of projection from their parents

Abelian states, we found that there exists enough interactions to completely gap the edge of

these systems [2]. It follows that these topological insulators are all unstable.
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Chapter 4

Three-dimensional fermionic

topological insulators

In this chapter we will discuss three dimensional topological band insulators, namely gapped

systems of non-interacting fermions that are characterized by massless Dirac fermions at

their boundaries. We can divide this chapter in three parts.

In the first part we will analyze the effective field theory description of these TR invari-

ant topological phases. We will show the dimensional reduction argument that gives rise

to massless boundary degrees of freedom and explain the anomaly cancellation occurring

between bulk and boundary.

In the second part we shall discuss the stability of the fermionic topological phases using

the partition functions of the surface fermions and the generalization of the flux insertion

argument discussed in the previous chapter.

In the third part we shall study the 3D modular transformations of the partition func-

tions. Once again, we will associate the stability of the topological insulators to the impossi-

bility of writing a modular invariant partition function that is consistent with TR symmetry.

4.1 Ten-fold way classification

In the above chapters we discussed two different topological phases of matter, the quantum

Hall effect and TR invariant topological insulators. In literature, the analysis of these phases

was first developed in the case of non-interacting electrons through the use of band theory

[11]. The analysis showed the existence of topological quantum number characterizing each

phase. Indeed, the integer quantum Hall effect is classified by the first Chern number, namely

the Hall conductivity, that is an integer number [77]; TR invariant topological insulators,

instead, are characterized by the Z2 TR invariant polarization [56].

In Chapter 1 and Chapter 2 we discussed the generalization of these two-dimensional

phases to the interacting case. In presence of interactions, band theory is not longer valid;

thus, using effective field theory methods [10, 11, 59, 78], we found that both systems continue

to be classified by the same Z and Z2 topological numbers.
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Figure 4.1: Periodic Table of topological insulators and superconductors. The ten symmetry

classes are labeled in the first column using the notation by Atland and Zirnbauer [83]; the

following three column specify the T symmetry, C symmetry and S chiral symmetry: (±1)

and (0) denote the presence and absence of the symmetry, respectively, with (±) specifying

the values of T 2 and C2 equal to ±1.

In nature there are many other topological phases of matter beyond the quantum Hall

effect and topological insulators in two dimensions; all together fit into an elegant mathe-

matical structure called ten-fold way classification of topological insulators and superconduc-

tors[79, 80, 81, 82]. The symmetry class depends on the presence (“± 1”) or absence (“0”)

of time-reversal symmetry T with T 2 = ±1, and/or charge conjugation C with C2 = ±1 and

chirality S = T C, that can be present (“1”) or absent (“0”). There are ten distinct classes of

gapped non-interacting fermionic systems; their classification, shown into the Periodic Table

in Fig. 4.1, is closely related to the classification of random matrices by Atland and Zirn-

bauer [83] and is periodic in the space dimension d for d→ d+ 8. The symbols in the table

“Z”, “Z2”, “2Z” and “0” represent whether or not the phase exists for a given symmetry

class in a given dimension, and if exists, what kind of topological invariant characterizes the

topological phases. For example, “2Z” means the topological phase is characterized by an

even integral topological invariant, and “0” means the topological phase is absent.

The quantum Hall effect belongs to the class A in two space dimension and is character-

ized by Z, namely by the first Chern number [77]. TR invariants topological insulators have

T 2 = −1, belong to the class AII and in d = 2 are classified by a topological Z2 number

[56]. As shown in Chapter 2 and Chapter 3 the Z2 classification continues to be valid also

in presence of interactions.

In this chapter we will discuss TR invariants topological insulators of class AII in d = 3

that, as shown in Fig. 4.1, are classified by a Z2 number. In the last chapter of this thesis

we will show that this classification remains valid in presence of interactions.
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(a) (b)

Figure 4.2: (a): Dirac cone between the valence and conduction bands in Bi2Se3 found by

using ARPES technology [89]. (b): Spin texture of the conduction band of the surface states

in momentum space. The arrow represent the x−y planar spin polarizations while the color

indicates the z component of the spin polarization [91].

4.2 Massless surface fermions

In 2006 three groups independently found that the characterization of topological insulators

state has a natural generalization in three dimensions [84, 85, 86]. They showed that the

stability is described in 3D by four Z2 invariants (ν0; ν1, ν2, ν3) = ±1, which are determined

by the topology of the band structure.

The three indices ν1, ν2, ν3 = ±1 characterize the weak topological insulators; these

phases are not particularly relevant in the following because they can be represented by

stacks of 2D topological insulators, whose surface states interact in pairs and are usually

gapped in presence of disorder.

The index ν0 = ±1 characterizes the strong topological insulators that correspond to the

novel 3D topological states. These systems have a gap in the bulk and gapless surface states,

that are protected by TR symmetry and consisting of an odd number of (2 + 1) dimensional

massless Dirac fermions, or Dirac cones. The case where there is only one of such cones is

the simplest non trivial surface state, see Fig. 4.2(a). The existence of an odd number of

stable massless Dirac cones on the surface is ensured by the Z2 topological invariant of the

bulk, introduced by Fu, Kane and Mele extending their flux insertion argument to the 3D

case [84]. In the same work, the authors show that the surface state is an helical fermion,

namely the spin is located on the surface and is orthogonal to the momentum direction, see

Fig. 4.2(b).

Kane and coworkers also indicated a candidate system of 3D topological insulators as the

crystal BixSb1−x; its Dirac cone and spin texture were observed experimentally by the use of

the ARPES technology (angle-resolved photoemission spectroscopy) [87, 88]. The BixSb1−x

system is however too complicated to study, both theoretically and experimentally. For
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these reasons other crystals have been then considered, such as Bi2Se3, Sb2Te3 [89, 90, 91].

In particular, the Bi2Se3 has a large band gap of ∼ 0.3 eV (3600 K), and can exhibit the

topological behavior at room temperature, greatly increasing the potential for applications

[51].

4.3 Effective field theory of fermionic topological insulators

The Z2 classification of 3D topological insulators can be understood by means of the field

theory of massless fermions at the surface. In this theory a mass term breaks explicitly

the TR symmetry [92]. We can have a TR invariant massive theory for pairs of fermions

for which an invariant mass term can be written. In the odd case, at least one excitations

remains massless.

A well understood result is that the massless surface fermion interacting with the elec-

tromagnetic field generates a Chern-Simons induced action in (2 + 1) dimensions that is odd

under TR transformations [93, 94, 95]. This TR (and parity) Z2 anomaly is cancelled by the

bulk theory by a mechanism that is different from the anomaly inflow of Chapter 1, and will

be explained in the following [3].

4.3.1 Jackiw-Rebbi dimensional reduction

The bulk states of 3D topological insulators can be described by a continuous field theory of

a massive (3 + 1) Dirac fermion at low energies with respect to the bulk energy gap, whose

mass m vanishes near the boundary. If the surface is given by the plane z = 0, separating

the bulk of the material (z < 0) from empty space (z > 0), we can take a mass profile of the

form M(z) = −M0 tanh(z/`), where M0 is of the order of the bulk gap and ` of the lattice

spacing (see the blue line in Fig. 4.3).

The Dirac theory with this mass profile possesses massless fermionic surface excitations

that are obtained by the so-called Jackiw-Rebbi dimensional reduction [96]. To show how

the method works, we consider the following representation of the Dirac γ matrices in in

(3 + 1) dimensions

γ0 =

(
0 σ3

σ3 0

)
, γ1 = i

(
0 σ1

σ1 0

)
, γ2 = i

(
0 σ2

σ2 0

)
, γ3 = i

(
1 0

0 −1

)
, (4.1)

where the σ’s are the Pauli matrices. The Dirac hamiltonian takes the form

H = −iγ0γ1∂x − iγ0γ2∂y − iγ0γ3∂z + γ0M(z) ≡ H0 +Hz. (4.2)

The surface fermion corresponds to a low-energy solutions localized near z = 0. These are

the zero-energy eigenstates of Hz, obeying the equation

(
i∂z + γ3M(z)

)
ψ = 0. (4.3)

We look for a solution of the type

ψ(x, y, z) = f±(z)u±(x, y). (4.4)
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z

M(z)

Figure 4.3: (blue line): Mass profile M = M(z); (red line): amplitude probability of the

zero modes of the Hamiltonian Hz.

If u± is such that γ3u± = ±iu±, then Eq. (4.3) becomes

(∂z ±M(z)) f±(z) = 0. (4.5)

The normalizable solution to Eq.(4.3) and (4.5) are those corresponding to the (−) negative

eigenvalue of γ3, i.e.

ψ(x, y, z) = exp

(
−
∫ z

0
dz′ M(z′)

)
u−(x, y). (4.6)

This zero mode is localized to the surface, where the mass m(z) changes sign, i.e. the red

line in Fig. 4.3, thus realizing the dimensional reduction.

The surface dynamics is governed by the hamiltonian H0 acting on spinors of the form

(u−)T = (0, χ−), with the lowest component χ− a bi-component spinor. Projecting H0 in

the subspace of χ− through the projector operator

P− =
1 + iγ3

2
=

(
0 0

0 1

)
, (4.7)

we find the massless Dirac Hamiltonian in (2 + 1) dimensions.

(kyσ1 − kxσ2)χ− = Eχ−. (4.8)

This is the expected Hamiltonian of a massless Dirac excitation in (2 + 1) dimensions. Of

course, this results holds for low energies E �M0.

In a physical setup, the system will have two boundaries along the z axis, with the second

surface described by the inverted mass profile M(z) → −M(z + z0). Performing the same

steps as before, the normalizable zero mode is now given by the positive eigenvector in (4.6),

i.e. (u+)T = (χ+, 0). It turns out that the bi-spinor χ+ obeys the same Dirac equation (4.8).

The Jackiw and Rebbi method does not allow to determine the helical texture of the

spin of the boundary fermions. It results, indeed, that the (3 + 1) spin operators given
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by the Clifford algebra, i.e. Si = i/4εijk[γj , γk] with i, j, k = 1, 2, 3, have non-vanishing

projection only for S3. Actually, in the study of the microscopic model of band topological

insulators, the authors of Ref.[91] considered the expansion of the Hamiltonian for momenta

near the band crossing point and obtained the result (4.8) at low-energy. In that approach,

the spin of the surface states was also discussed, involving the electron spin as well as a

L = 1 contribution coming from the p-wave orbitals near the surface. It turns out that the

low-energy surface excitations have spin one-half given by Si ∼ σi, where the σi are the same

Pauli matrices occurring in (4.1). Therefore, the surface excitations solutions of (4.8) have

associated the values:

〈S3〉 = 0, 〈Sxkx + Syky〉 = 0. (4.9)

Namely, the spin lies on the surface and is orthogonal to momentum (helical spin excitation).

4.3.2 One loop corrections and parity anomaly

In this section we consider the fermion at the boundary of 3D topological insulators inter-

acting with an external electromagnetic gauge potential Aµ and analyze the induced action

[92, 93, 95].

In Minkowski space, the Dirac Lagrangian of a two-components spinor field in (2 + 1)

dimensions is

L = ψ
(
i/∂ + e /A−m

)
ψ, (4.10)

where the mass m can be positive or negative and the 2× 2 Dirac matrices are [92]

γ0 = σ3, γ1 = iσ1, γ2 = iσ2, with {γµ, γν} = 2gµν . (4.11)

The classical Lagrangian (4.10) is parity and TR symmetric when the fermion mass vanishes

[92]. We will restore the massless limit at the end of the calculations.

The analytical continuation to the Euclidean time is performed by the substitutions

x0 → ix0, A0 → −iA0, γk → −iγk, k = 1, 2, (4.12)

in such a way that the Euclidean γ matrices coincide with the σ Pauli matrices. Integrating

out the fermion degrees of freedom we find the induced effective action, that it is given by

the fermionic determinant [97]

e−Sind[A] =

∫
DψDψ exp

(
−
∫
d3xψ

(
/∂ − ie /A+m

)
ψ

)
=

det
(
/∂ − ie /A+m

)

det
(
/∂ +m

) . (4.13)

The induced action at the second order in Aµ is simply obtained by the one-loop Feynman

diagram of the vacuum polarization of Fig. 4.4, which gives [92, 93]

S
(2)
ind[A] = −e

2

2

∫
d3k

(2π)3
Aµ(k)Πµν(k,m)Aν(−k), (4.14)

where

Π(2)
µν (k,m) =

∫
d3q

(2π)3
Tr

[
γµ

i
(
/k + /q

)
+m

(k + q)2 +m2
γν

i/q +m

q2 +m2

]
. (4.15)
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Figure 4.4: One loop vacuum polarization diagram

The calculation use dimensional regularization formulas to eliminate the linear divergence

in (4.15) [97] and should be further regularized by a Pauli-Villars subtraction. Thus, the

regularized vacuum polarization is defined as

Π(2)REG
µν (k,m) = Π(2)

µν (k2,m)−Π(2)
µν (k2,M →∞), (4.16)

where M is the mass of the Pauli-Villars regulator with sign(M)=sign(m). Finally, the result

takes the following form

Π(2)REG
µν (k,m) =

1

4π
kαε

αµν m

|m|

(
arctan(x)

x
− 1

)

−
(
k2δµν − kµkν

) 1

8π|k|

(
1

x
− 1− x2

x2
arctan(x)

)
, x =

|k|
2|m| . (4.17)

Inserting Π
(2)REG
µν (k,m) in Eq (4.14), the second order induced action takes the following

forms for different regimes of the mass m:

• |m| → 0, i.e. x→∞:

S
(2)
ind[A] =

ie2

8π

m

|m|

∫
d3xεµνρAµ∂νAρ +

e2

64

∫
d3xFµν

1

(−�)1/2
Fµν . (4.18)

The first term is imaginary and amounts to the topological Chern-Simons term breaking

both parity and TR symmetry; it gives rise to the parity anomaly in (2+1) dimensions

[93, 94]. The second term, instead, is dynamical and non-local in the external potential

[92].

• |k| � |m|, i.e. x→ 0:

S
(2)
ind[A] =

e2

48|m|

∫
d3xFµνFµν . (4.19)

In the limit of large mass m→∞, the anomalous term cancels. The induced action is

left with a subleading local term of order O(1/|m|).

55



We will see later how these regimes are relevant for the physics of 3D topological insula-

tors.

4.3.3 Bulk θ-term and parity anomaly cancellation

Our first problem is to solve the apparent contradiction between TR invariance and the

presence of a massless fermion at the boundary of a 3D topological insulator; as shown

above, the induced action acquires a Chern-Simons term breaking TR symmetry. In what

follow we explain how the anomaly is cancelled between bulk and boundary [3].

Our argument uses the Jackiw and Rebbi model discussed in Sec. 4.3.1. We focus on a

topological insulator with two boundaries placed at the planes z = ±z0, and introduce the

following TR breaking term in the bulk Hamiltonian (4.2)

H(m̃) = iγ0γ5m̃. (4.20)

Once projected at the two boundaries z = ±z0, this term behaves as a mass for the surface

fermions, leading to two Dirac Lagrangians in (2 + 1) dimensions

L− = χ−(i/∂ − m̃)χ−, L+ = χ+(i/∂ + m̃)χ+. (4.21)

Owing to the coupling with the vector potential Aµ, according to (4.18), the limit m̃ → 0

leads to the corresponding Chern-Simons actions with opposite couplings ±1/2 on the two

boundaries, namely

S
(2)+
ind [A] = +

e2

8π

∫
d3x εµνρAµ∂νAρ, S

(2)−
ind [A] = − e

2

8π

∫
d3x εµνρAµ∂νAρ. (4.22)

Here we disregarded the non-topological terms and worked in Minkowski space-time.

The second step of our argument takes into account the results of Ref.[98], where it is

carried out an interesting analysis on the effective topological field theories of TR invariant

topological insulators in various dimensions. The authors show that the induced bulk effec-

tive action is given by the so called Abelian θ-term or magneto-electric term, that is:

Sθ[A] = − θe2

32π2

∫
d4x εµνλρFµνFλρ =

θe2

4π2

∫
d4x E ·B = θ C2. (4.23)

C2 is the integral of the second Chern class of the electromagnetic gauge field, which is

quantized to integer values for closed space-time manifolds. Since C2 is integer-valued, the

path-integral is invariant under θ → θ+ 2π. Moreover, C2 is odd under TR. Thus, in a TR

invariant theory, θ must equal 0 or π (equivalent to −π) [98] [99].

In our previous discussion of the topological insulator the manifold has two boundary

surfaces. In this case C2 is not quantized and Sθ[A], being a total derivative, it reduces on

the boundary ∂M to the Chern-Simons term

Sθ[A] = ± e
2

8π

∫

∂M
d3x εµνρAµ∂νAρ, θ = π. (4.24)
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Therefore, Sθ[A] with θ = π assumes at the boundaries z = ±z0 the same form, but with

opposite coupling with respect to the fermionic induced actions S
(2)±
ind [A] in (4.22). The

complete effective action of the topological phase is obtained by the sum of the bulk and

boundary actions, that is

STOT [A] = Sθ[A] + S
(2)+
ind [A] + S

(2)−
ind [A] = 0, θ = π. (4.25)

Since the full action is vanishing, we obtain the desired parity and TR anomaly cancellation.

We remark that similar arguments were discussed in [99, 100, 101].

This argument is generalized to the case of Nf surface fermions; in this case the cancel-

lation is realized by choosing θ = Nfπ in Eq.(4.23). However, for Nf > 1 pairs of fermions

can interact by a TR invariant mass term and disappear from the low-energy theory. The

significative cases are the trivial insulator θ = 0 and the topological insulator θ = π, leading

to the Z2 classification.

We remark that the anomaly cancellation between the 3D bulk and the 2D boundary

is different from the anomaly inflow mechanism of the QHE of Section 1.3.3. Here the

anomaly cancellation is not accompanied by current flow from the bulk to the surface and

no observable bulk effects are generated.

4.3.4 Bulk θ-term and surface QHE

The effective action (4.23) gives another interesting phenomenon when the boundary of a

topological insulator is connected to a magnetic material with local magnetization [98]. In

this case TR symmetry is explicitly broken at the boundary but is still present in the bulk.

The interaction between the boundary fermion and the magnetic field is given by the

usual Zeeman term, that corresponds to a mass term for the fermion: more intense is the

magnetic field greater is the mass of the fermion. In this regime, the induced action at one

of the two boundaries is once again the sum of the bulk effective action Sθ[A] with θ = π,

written as a surface integral, and the boundary induced action (4.19) in the limit of large

mass, i.e.

STOT [A] =
e2

8π

∫
d3x εµνρAµ∂νAρ +

e2

48|m|

∫
d3xFµνFµν . (4.26)

In this case, there is no longer a cancellation of the Chern-Simons terms and the second term

can also be neglected for large masses. The remaining Chern-Simons term with coupling 1/2

gives rise to a surface Hall effect with quantized Hall conductivity σH = 1/2 (in units

on e2/h). In the physical setup where the system have two boundaries, the global Hall

conductivity is σH = 1.

The discovery of the surface Hall effect at the boundaries of a 3D topological insulator

it is a recent experimental result [102]. The topological material was made in contact to a

topological superconductor and a global quantized Hall conductivity σH = 1 was measured.

The experiment also showed that each surface carries a quantized Hall conductivity σH =

1/2.
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4.4 Free fermion partition functions

In this section, we derive the partition functions of the massless fermion at the surface of

3D topological insulators [3]. Extending our earlier analysis, we use the partition functions

to reformulate the Fu-Kane-Mele stability argument for the existence of massless fermionic

surface states in presence of TR invariant interactions (the ‘strong topological insulators’ of

Ref.[57, 84]). The advantage of this formulation of the stability argument is that it can be

extended to any interacting system for which the partition function is known, as we shall see

in next chapter where we discuss interacting 3D topological insulators [3]. We remark that

the same argument has been applied also to exactly soluble lattice models of non interacting

and interacting 3D phases [101, 103].

We consider the spatial geometry of a ‘Corbino donut’ (see Fig. 4.6), whose internal and

external surfaces are two-torii. The space-time three-torus T3 is obtained by considering

one surface and the Euclidean time with period the temperature T . The partition functions

for periodic (P ) and anti-periodic (A) boundary conditions in space and time form a eight-

dimensional multiplet, corresponding to the eight spin sectors. Our derivation of the partition

functions uses results of Ref.[104].

The torus geometry

The T 3 torus is the quotient of the flat space R3 by the lattice Λ3 generated by the vector

moduli ωµ, µ = 0, 1, 2, see (Fig. 4.5), where the vectors ωi, i = 1, 2 belong to the (x1, x2)

plane. We define the matrix ω whose rows are the components of the vector moduli in R3,

ω =



ω0

ω1

ω2


 =



ω00 ω01 ω02

0 ω11 ω12

0 ω21 ω22


 , (4.27)

and also introduce the dual matrix k defined as

kµων = δµν =⇒ k = (ω−1)T . (4.28)

The spatial components of the ω and k vectors are also written as

~ωi = (ωi1, ωi2), ~ki = (ki1, ki2), i = 1, 2. (4.29)

The volumes of the 3D space-time cell and 2D space cell are given by, respectively,

V (3) = det(ω), V (2) = det ~ω = ω11ω22 − ω12ω21 = |ω1 × ω2|. (4.30)

The relations between the components of ~k and ~ω are

k11 =
ω22

V (2)
, k12 = − ω21

V (2)
, k21 = − ω12

V (2)
, k22 =

ω11

V (2)
, (4.31)

moreover

ω00 =
V (3)

|ω1 × ω2|
,

ω00

V (2)
=

V (3)

|ω1 × ω2|2
. (4.32)
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Figure 4.5: Vector moduli of T3 torus in the flat space R3

The fermionic spectrum

The partition function is given in terms of the on-shell data of the free fermion, namely

its spectrum of energy, momentum, charge and fermion number. The usual creation and

annihilation operators of particles (a†n, an) and antiparticles (b†n, bn) , where n = (n1, n2) ∈
Z2, obey the following anti-commutation relations

{
an, a

†
n′

}
= δnn′ ,

{
bn, b

†
n′

}
= δnn′ , (4.33)

and satisfy the vacuum conditions [97]

an |Ω〉 = bn |Ω〉 = 0, n1, n2 ∈ Z. (4.34)

In the torus geometry, the energy and momentum of the excitations are given by the

following normal ordered expressions:

E =
∑

n

En

(
a†nan + b†nbn

)
−
∑

n

En, (4.35)

Pi =
∑

n

pn

(
a†nan + b†nbn

)
, i = 1, 2, (4.36)

where

En = 2π
∣∣(n1 + α1)~k1 + (n2 + α2)~k2

∣∣, (4.37)

pn = 2π ((n1 + α1)k1i + (n2 + α2)k2i) , i = 1, 2. (4.38)

In the expression of the energy (4.35), the infinite sum (−∑nEn) represents the contribution
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Figure 4.6: 3D “Corbino donut”. The fluxes Φ1 and Φ2 play the role of the kx and ky

momenta, respectively.

of the Casimir vacuum energy and the parameters αi specify the boundary conditions along

the i = 1, 2 spatial directions: αi = 0, 1/2 means, respectively, periodic (P) and anti-periodic

(A) boundary conditions.

The charge operator is given by the following normal ordered expression [97]

Q =
∑

n

(
a†nan − b†nbn

)
, (4.39)

where the renormalization condition has been chosen such that the ground state |Ω〉 is

electrically neutral, namely Q |Ω〉 = 0. Finally, the fermion number is defined as

(−1)F = (−1)
∑

n a
†
nan+b†nbn , (4.40)

also equal to the parity of the number of particles and antiparticles.

The partition functions

It is useful to find the partition functions with general boundary conditions because the

insertion of fluxes Φ1 and Φ2 across the spatial circles of the torus modifies the quantization

of the momenta kx and ky, as pictorially reported in Fig. 4.6. As happens in 2D, when

Φi = Φ0/2 the spatial boundary condition along the orthogonal direction is changed from

periodic to anti-periodic and vice versa.

The Euclidean partition function of a massless Dirac fermion with (A) boundary condition

along the time direction and interacting with a constant scalar potential A0 is given by the

following expression

ZFA,α1,α2
= Tr

[
exp

(
− T (E +QA0) + iω01P1 + iω02P2

)]
. (4.41)

As usual, one implements the (P ) temporal boundary condition by inserting the fermion

number operator (−1)F . This gives
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ZFP,α1,α2
= Tr

[
(−1)F exp

(
− T (E +QA0) + iω01P1 + iω02P2

)]
. (4.42)

The trace over the fermionic Fock space is evaluated using the anti-commutation relations

(4.33). The final result, once we substituted the ki vectors in terms of the ωi, introduced

the phase α0 = 0, 1/2 for the (P ) or (A) temporal boundary conditions and relabeled for the

antiparticles case ni → −ni and αi → −αi, gives

ZFα0,α1α2
= e−V

(3)F0
∏

n1,n2∈Z

{
1− exp

(
−2πEα1,α2

n1,n2
+ 2πiPα1,α2

n1,n2
− 2πiA

)}

×
{

1− exp
(
−2πEα1,α2

n1,n2
− 2πiPα1,α2

n1,n2
+ 2πiA

)}
.

(4.43)

In this formula

A = α0 − i
V (3)A0

2π|ω1 × ω2|
, (4.44)

Eα1,α2
n1,n2

=
V (3)

|ω1 × ω2|2
|(n1 + α1)ω2 − (n2 + α2)ω1|, (4.45)

Pα1,α2
n1,n2

=
(ω1 × ω2)

|ω1 × ω2|2
[(n1 + α1)(ω0 × ω2)− (n2 + α2)(ω0 × ω1)] , (4.46)

F0 =
1

2π

∑

n∈Z2

′ e
−2πi(α2n1−α1n2)

|n1ω2 − n2ω1|3
, (4.47)

where in the sum
∑ ′ are excluded the values (n1, n2) = (0, 0). In this expression F0 is

the regularized vacuum energy obtained with the Epstein’s analytical continuation formula

[105, 106], see Appendix (C.1).

4.5 Stability criteria

In this section we reformulate the 3D version of the flux insertion argument discussed by Kane

and coworkers [57, 84] using the fermionic partition functions derived above [3]. We shall

show how the ground state of the system is adiabatically deformed by adding half magnetic

fluxes and a neutral spin one-half excitation is created at the boundary. Thus, the Kramers

theorem is invoked, saying that this excitation is part of a doublet that remains degenerate in

presence of any TR invariant interaction. Finally, the partner state of the doublet is evolved

back to zero flux, where it is found to be an excited state with energy O(1/R), where R is

the size of the system, thus proving that there is no gap in the thermodynamic limit.

The Neveu-Schwarz sector

In the unperturbed configuration without fluxes, the natural boundary conditions for the

fermion field are antiperiodic both in space and time, i.e we take (α0, α1, α2) = (1/2, 1/2, 1/2)
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Figure 4.7: Low-lying surface states of the Neveu-Schwarz sector as a function of n1 (cf.(4.49)). In

(a) the ground state |Ω〉 1
2

1
2

without excitations over or below the Fermi energy µ. In (b) and (c)

examples of particle and hole excitations.

in the general partition function (4.43). In analogy with (1+1) dimensions, this can be called

Neveu-Schwarz sector.

The stability of the surface excitations can be discussed in the simpler geometry of a

rectangular torus where ω1 and ω2 are displaced respectively along the x1 and x2 Cartesian

axes (see Fig. 4.5), that is taking ω12 = ω21 = 0. In this case the energies of the excitations

in (4.45), (neglecting the global Casimir energy (4.47)), assume the form

E
1
2
, 1
2

n1,n2 = ω00

√(
n1 +

1

2

)2 1

ω2
11

+

(
n2 +

1

2

)2 1

ω2
22

. (4.48)

There are four low-lying degenerate energy levels, for (n1, n2) = (0, 0), (0,−1), (−1, 0),

(−1,−1). The expansion of the partition function gives

ZF1
2
, 1
2

1
2

∼ 1 +
∑

(n1,n2)=(0,0),(0,−1),(−1,0),(−1,−1)

e−2πEn+2πiPn−ω00A0 + e−2πEn−2πiPn+ω00A0 . (4.49)

Therefore, the low-lying states are the ground state |Ω〉 1
2

1
2

plus four particle and four an-

tiparticle excitations. The ground state corresponds to a completely filled Dirac see, without

excitations over or below the Fermi energy (see Fig. 4.7); its charge and fermion number

assignment can be read from the definition (4.40); they are

Q |Ω〉 1
2

1
2

= 0, (−1)F |Ω〉 1
2

1
2

= |Ω〉 1
2

1
2
. (4.50)

In order to discuss the stability argument, we need to distinguish between surface excitations

with integer and half-integer spin, thus we shall introduce the ‘spin parity’ index (−1)2S that,
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2 on the eight partition functions ZFα0,α1α2

, where αµ = 0 (1/2)

corresponds to periodic (antiperiodic) boundary conditions.

as discussed in Appendix A, is equal to the fermion number of the (2+1)-dimensional theory

[3], namely

(−1)2S = (−1)F , (−1)2S |Ω〉 1
2

1
2

= |Ω〉 1
2

1
2
. (4.51)

Our conclusions are in agreement with recent discussions on condensed matter fermionic

systems in (2+1) dimensions [107, 108]. In these works, indeed, the fermionic path integrals

are defined on particular manifolds, called spinc manifolds, in order to capture the spin-

charge relation satisfied by the unperturbed ground state of a gapped fermionic system,

namely the fact that states with odd electric charge have half integral spin and states of

even electric charge have integral spin.

The Ramond sector

The first step of the stability argument consists on the adiabatic insertion of a Φ0/2 flux

through the holes of the torus. We call V
1/2
i , with i = 1, 2, the corresponding transformations.

The result of the insertion is to change the spatial boundary conditions αi → αi+1/2. Fig. 4.8

shows the transformations of the partition functions under V
1/2

1 and V
1/2

2 . Starting from the

Neveu-Schwarz sector ZF1
2
, 1
2

1
2

and applying V
1/2

1 and V
1/2

2 as follows

V
1/2

1 : Φ1 → Φ1 + Φ0/2, then ZF1
2
, 1
2

1
2

−→ ZF1
2
,0 1

2

, (4.52)

V
1/2

2 : Φ2 → Φ2 + Φ0/2, then ZF1
2
,0 1

2

−→ ZF1
2
,00
, (4.53)

we reach the periodic-periodic sector that can be called the (2 + 1) dimensional Ramond

sector, with partition function ZF1
2
,00

. In a rectangular torus the spectrum of the Ramond
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Figure 4.9: Degenerate ground states of the Ramond sector. In (a) the particle excitation with

charge Q = 1 corresponding to |Ω〉(2)
00 . In (b) the hole excitation with charge Q = −1 corresponding

to |Ω〉(3)
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Figure 4.10: Degenerate ground states of the Ramond sector. (a) and (b) represent the neutral

excitations corresponding to |Ω〉(0)
00 and |Ω〉(4)

00 , respectively. They have negative spin-parity index,

i.e. (−1)2∆S = −1, and give rise to the Kramers doublet.

sector has the following energy

E0,0
n1,n2

= ω00

√
n2

1

ω2
11

+
n2

2

ω2
22

. (4.54)

In this sector, the energy spectrum (4.54), as well as the momentum spectrum, possesses

one vanishing value for (n1, n2) = (0, 0), i.e E0,0
0,0 = P0,0

0,0 = 0, up to an overall ground state

energy. Upon expanding the Ramond partition function, we find four degenerated states

exactly located at the Fermi level (see Fig. 4.9 and Fig. 4.10),

ZF1
2
,00
∝ 1 + e−ω00A0 + eω00A0 + e−ω00A0eω00A0 + . . . , (4.55)

that we call |Ω〉(i)00 , i = 1, · · · , 4. Let us analyze their quantum numbers. Two of them have

charge Q = ±1 (see Fig. 4.9),

e−ω00A0 ↔ |Ω〉(2)
00 , eω00A0 ↔ |Ω〉(3)

00 , (4.56)
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the other states, instead, are neutral (see Fig. 4.10),

1↔ |Ω〉(1)
00 , e−ω00A0eω00A0 ↔ |Ω〉(4)

00 , Q |Ω〉(1)
00 = Q |Ω〉(4)

00 = 0. (4.57)

Upon following the evolution of the spectrum while adding the fluxes, i.e. αi : 1/2→ 0, we

can see that the Neveu-Schwarz ground state is mapped into the following Ramond state:

|Ω〉 1
2

1
2
→ |Ω〉(1)

00 . Being neutral, we are led to identify the state |Ω〉(4)
00 as the expected partner

of the Kramers pair, i.e. |Ω〉(4)
00 = T |Ω〉(1)

00 . As shown in Fig. 4.9, in the Ramond sector there

is an ambiguity on the identification of the particles and antiparticles characterizing the

ground state because two charged excitations are exactly located at the Fermi level. Assum-

ing particle-hole symmetry, as discussed in Appendix A, we obtain the following assignments

for the spin parity and fermion number indices on the Ramond sector [3]:

(−1)2S = (−1)F = −1 on |Ω〉(1)
00 , |Ω〉

(4)
00 , (4.58)

(−1)2S = (−1)F = 1 on |Ω〉(2)
00 , |Ω〉

(4)
00 . (4.59)

Actually, the neutral states |Ω〉(1)
00 and |Ω〉(4)

00 are identified with the Kramers doublet that

we are looking for. Since the Ramond sector corresponds to a TR invariant point for the

Hamiltonian, this degeneracy is protected from any TR invariant perturbations. To conclude

the stability argument we return to the zero flux configuration: while the Ramond ground

state |Ω〉(1)
00 goes back to the Neveu-Schwarz one |Ω〉 1

2
1
2
, its Kramers partner flows into the

following neutral excited state

|ex〉 1
2

1
2
↔ e−2πE−1,−1+ω00A0e−2πE−1,−1−ω00A0 . (4.60)

The energy of this excitation is O(1/R), where R is the typical dimension of the system;

being vanishing in the thermodynamic limit, this proves that the spectrum is gapless for any

TR invariant interaction [3].

We remark that the neutral S = 1/2 excitation created by adding half fluxes is a non-

perturbative excitation in the fermionic theory with respect to the Neveu-Schwarz ground

state,

|Ω〉R = σ(0) |Ω〉 1
2

1
2
. (4.61)

In the (1 + 1)-dimensional theory, this is know as the ‘spin field’ and its properties are well

understood, e.g. within the fermionic description of the Ising model [22, 21].

Z2 spin parity anomaly

The stability of the surface excitations can be related to a Z2 anomaly, as discussed in 2D

(see Chapter 2). Indeed, the Neveu-Schwarz and Ramond ground states are eigenstates of a

TR invariant Hamiltonian, but possess different spin-parity index, i.e.

(−1)2S |Ω〉 1
2

1
2

= |Ω〉 1
2

1
2
, (−1)2S |Ω〉(1)

00 = − |Ω〉(1)
00 . (4.62)
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The spin-parity is conserved by TR symmetry, but changes between two invariant ground

states, without any breaking of the symmetry either explicit or spontaneous. Therefore, we

interpret this change as a discrete Z2 anomaly, which is equivalent to the Z2 index of stability

[3].

4.6 Stability and modular invariance

In this section we study the behavior of the eight partition functions under the discrete

changes of coordinates that map the three-torus into itself. The pattern of transformations

will further characterize the different sectors [3]. We note that a similar study was done

in Ref.[104]. Moreover, we shall associate the stability of the topological insulators to the

impossibility of writing a modular invariant partition function that is consistent with all

physical requirements: that is the same result for 2D systems discussed in Chapter 2.

In what follows we will take for simplicity A0 = 0, then the partition function (4.43)

takes the form

ZFα0,α1α2
= e−V F0

∏

n1,n2∈Z

∣∣∣∣1− exp (−2πEn1,n2 + 2πiPn1,n2 − 2πiα0)

∣∣∣∣
2

. (4.63)

The generators

The modular group SL(3,Z) is generated by T1 and U1 = S1P12. With (T1, S1) we indi-

cate the generators of the subgroup SL(2,Z) acting on the subspace (x0, x1); P12 is the

permutation of the spatial vectors ω1 and ω2. On the basis (ω0,ω1,ω2), their action is

T1 :



ω0

ω1

ω2


 −→



ω0 + ω1

ω1

ω2


 , S1 :



ω0

ω1

ω2


 −→



−ω1

ω0

ω2


 , P12 :



ω0

ω1

ω2


 −→



ω0

−ω2

ω1


 .

(4.64)

The generators (T2, S2) of the subgroup SL(2,Z) acting on the subspace (x0, x2) are clearly

found from T1 and S1 as follows:

T2 = P12T1P12, S2 = P12S1P12. (4.65)

P12 transformation

The action of P12 on the partition functions (4.63) is manifest. ZF
α0,

1
2

1
2

and ZFα0,00 are left

invariant, while the others are exchanged: ZF
α0,

1
2

0
↔ ZF

α0,0
1
2

. This result implies that it is

sufficient to study the modular transformations given by T1 and S1 and then apply (4.65) to

find the action of the entire group.
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T1 transformation

Also the action of T1 is simple to find. If α1 = 0 the partition functions are left invariant,

i.e. ZFα0,0α2
↔ ZFα0,0α2

. If α1 = 1/2, T1 changes the temporal boundary conditions from (A)

to (P ) and vice versa, i.e ZF1
2
, 1
2
α2
↔ ZF

0, 1
2
α2

.

S1 transformation

The action of the transformation S1 requires some calculations. Following [104], it is useful

to choose the particular geometry in which the ω matrix assumes the following form

ω =



ω00 ω01 ω02

0 ω11 ω12

0 0 ω22


 =




2πR0 −2παR1 −2πγR2

0 2πR1 −2πβR2

0 0 2πR2


 . (4.66)

With this choice, the fermionic partition functions (4.41) and (4.42), before making the

regularization of the vacuum energy, takes the following form

ZFα0;α1α2
=
∏

n2

{∏

n1

∣∣∣∣1− exp
(
−2πr01

√
[(n1 + α1) + β(n2 + α2)]2 + [r12(n2 + α2)]2

+ 2πi [α(n1 + α1) + (n2 + α2)(αβ + γ)]− 2πiα0

) ∣∣∣∣
2

×

× exp

[
2πr01

∑

n1

√
[(n1 + α1) + β(n2 + α2)]2 + [r12(n2 + α2)]2

]}
,

(4.67)

where we splitted the products on n1 and n2 and introduced the two quantities r01 = R0/R1

e r12 = R1/R2. In Appendix C.2 is shown how to regularize the last exponent through the

Mellin transform. For convenience, we introduce the “massive Θ functions” of Ref.[104, 109]

Θ[a,b](τ ;m) =
∏

n∈Z

∣∣∣1− exp
[
−2πIm(τ)

√
(n+ a)2 +m2 + 2πiRe(τ)(n+ a) + 2πib

]∣∣∣
2
×

× exp [4πIm(τ)∆(m; a)] ,

(4.68)

where a, b,m ∈ R, τ ∈ C, and ∆ is the following function

∆(m; a) = − 1

2π2

∑

l>0

∫ +∞

0
dt e−

π2m2

t
−tl2 cos(2πla). (4.69)

Identifying a = α1 + β(n2 + α2), b = γ(n2 + α2) + α0, m = r12(n2 + α2) and τ =

−ω01/ω11 + iω00/ω11 = α+ ir01, the fermionic partition function (4.67) becomes

ZFα0,α1,α2
=
∏

n2∈Z
Θ[α1+β(n2+α2),γ(n2+α2)+α0] (α+ ir01; r12(n2 + α2)) . (4.70)

We observe that the boundary conditions αµ appear in the partition function through the

parameters of the Θ and ∆ functions.

67



!0

!1

!2

!1
0

!0
0

!1
0

!0
0

x0

x0

x1

x1

x2

Figure 4.11: Projection of the parallelogram between ω0 and ω1 on the plane (x0, x1).

On the basis (4.66), the action (4.64) of S1 becomes

S1 : ω0 = 2π




R0

−αR1

−γR2


 −→ −ω1 = 2π




0

−R1

βR2


 , (4.71)

S1 : ω1 = 2π




0

R1

−βR2


 −→ ω0 = 2π




R0

−αR1

−γR2


 . (4.72)

from which follows that

S1 : γ → −β, β → γ, R2 → R2. (4.73)

Moreover, since the first two components of ω0 and ω1 do not mix to the third, without

loss of generality, we can analyze the reduced vectors ω′0 and ω′1 made of the first two

components. This coincides to projecting the parallelogram between ω0 and ω1 on the plane

(x0, x1) as shown in Fig. 4.11.

We define the modular parameter

τ ′ = −α+ ir01, S1 : τ ′ → − 1

τ ′
. (4.74)

Since the partition function (4.70) depends on τ = α+ ir01, then

S1 : α −→ − α

α2 + r2
01

, r01 −→
r01

α2 + r2
01

. (4.75)

Finally, imposing that S1 exchanges the moduli |ω′0| ↔ |ω′1|, we obtain its action on the two

radii R0 and R1:

S1 : R1 −→ R1|τ |, R0 −→
R0

|τ | . (4.76)

In Appendix D it is shown that the massive Θ function satisfies the relation:

Θ[a,b](τ,m) = Θ[b,−a]

(
−1

τ
,m|τ |

)
. (4.77)
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Figure 4.12: Action of the modular transformations T1, T2, S1 and S2 on the eight partition

functions ZFα0,α1,α2
. Recall that αµ = 0(1/2) for periodic (antiperiodic) boundary conditions.

Acting with S1 on the partition function (4.70), and making use of the main relation (4.77),

we obtain

S1 : Θ[α1+β(n2+α2),γ(n2+α2)+α0](τ ; r12(n2 + α2)) −→

Θ[α1+γ(n2+α2),−β(n2+α2)+α0]

(
−1

τ
; r12(n2 + α2)|τ |

)
=

Θ[−α0+β(n2+α2),γ(n2+α2)+α1](τ ; r12(n2 + α2)),

(4.78)

from which, finally it follows the transformation

S1 : ZFα0,α1α2
(ω0,ω1,ω2) → ZFα0,α1α2

(−ω1,ω0,ω2) = ZFα1,α0α2
(ω0,ω1,ω2). (4.79)

that verifies the expectations. All together, the transformations T1, T2, S1 and S2 acts on

the set of partition functions ZFα0,α1,α2
as shown in Fig. 4.12.

Stability and modular invariance

By the use of the maps in Fig. 4.8 and Fig. 4.12, the sum over the eight spin sectors

ZFIsing =
∑

α0,α1,α2=0, 1
2

ZFα0,α1,α2
, (4.80)

is invariant under V
1/2

1 , V
1/2

2 and the group SL(3,Z). We call it ZFIsing being the 3D gen-

eralization of the 2D modular invariant partition function (2.28). The 3D Ising partition

function, as its 2D version, is not consistent with TR symmetry because the single free
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fermion theory suffers of the Z2 spin parity anomaly. The function (4.80) sums spin sectors

with different values of the ground state spin parity, e.g. (1
2 , 00) and (1

2 ,
1
2

1
2), thus explicitly

violating TR symmetry.

As we did in two dimensions, we should not sum over the different spin sectors if we insist

on preserving TR symmetry. In the theory described by this set of eight partition functions,

ZF1
2
, 1
2

1
2

represents the unperturbed TR invariant surface system, while the other functions

contain excited states due to changes of electromagnetic and gravitational backgrounds.

Again, the stability of 3D free topological insulators is related to the Z2 spin parity anomaly

which is accompanied by the modular non-invariance of the surface partition function, that

is a discrete gravitational Z2 anomaly [3].

We mentions that, recently, also other authors, see for example [64, 110], related the

modular non-invariance of the boundary partition function to the existence of a non trivial

topological phase in the system.

4.7 Dimensionally reduced partition functions

In this section we further characterize the eight fermionic partition functions by performing

a dimensional reduction from two to one spatial dimension, where we recover well-known

formulas [3].

Let us consider the partition functions for a rectangular torus, i.e. ω12 = ω21 = 0, and

vanishing scalar potential A0 = 0, for simplicity. We perform a dimensional reduction of

the Kaluza-Klein type, namely take the limit R2 → 0 of the Corbino donut, such that the

modes of energy O(n2/R2) are never excited, corresponding to n2 → 0. The remaining

geometry is that of two-torus in the plane (x0, x1); about the energy spectrum (4.35), there

are two possibilities: i) for periodic boundary condition along x2, i.e. α2 = 0, the spectrum

becomes exactly that of a massless fermion in a two-dimensional torus; ii) for antiperiodic

conditions, i.e. α2 = 1/2, there remains the constant 1/(4πR2)2 that plays the role of a mass

in (1 + 1)-dimensions.

We start from the expressions (4.41) and (4.42) before regularization of the ground state

energy, and rewrite them as follows:

ZFα0,α1,α2
=
∏

n2

{∏

n1

∣∣∣∣1− exp

(
−2πω00

ω11

√
(n1 + α1)2 + (n2 + α2)2

ω2
11

ω2
22

+
2πiω01

ω11
(n1 + α1) +

2πiω02

ω22
(n2 + α2) + 2πiα0

) ∣∣∣∣
2

×

× exp

[
2πω00

ω11

∑

n1

√
(n1 + α1)2 + (n2 + α2)2

ω2
11

ω2
22

]}
.

(4.81)

The regularized form of the sum on the integer n1 in second exponent is written again in

terms of the ∆ function (4.69)(see Appendix C.2) :

2πω00

ω11

∑

n1

√
(n1 + α1)2 + (n2 + α2)2

ω2
11

ω2
22

=
4πω00

ω11
∆

[
ω11

ω22
(n2 + α2);α1

]
. (4.82)
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The remaining two-torus is specified by the modular parameter

τ = τ1 + iτ2 = −ω01

ω11
+ i

ω00

ω11
. (4.83)

A further convenient simplification is setting ω02 = 0, i.e. no bending of this torus in three

dimensions. In the limit ω22 → 0, the leading behavior of (4.81) is given by the factor with

n2 = 0, that reads

ZFα0α1α2
−→ ZF

α0α1

∣∣α2

= Θ[α1,α0]

(
τ ;

ω11

ω22
α2

)
, (4.84)

where the massive Θ function is defined in (4.68).

Massless case α2 = 0

In this case

∆(0;α1 = 0) = − 1

12
, ∆(0;α1 =

1

2
) =

1

24
, (4.85)

and thus the ground state energy pre-factor becomes

exp (4πIm(τ)∆(0;α1)) =





(
1
qq̄

)−1/12
, α1 = 0,

(
1
qq̄

)1/24
, α1 = 1

2 ,

(4.86)

where q = exp 2πiτ . Remembering that η(τ) = q1/24
∏∞
n=1(1− qn) is the Dedekind function,

the reduced partition functions (4.84) assume the following expressions:

ZF
1
2
, 1
2

∣∣0 =

∣∣∣∣∣
1

η(τ)

∏

n=1

(1− qn)(1 + qn−1/2)2

∣∣∣∣∣

2

=

∣∣∣∣∣
1

η(τ)

∑

m∈Z
qm

2/2

∣∣∣∣∣

2

= ZNS , (4.87)

ZF
0, 1

2

∣∣0 =

∣∣∣∣∣
1

η(τ)

∏

n=1

(1− qn)(1− qn−1/2)2

∣∣∣∣∣

2

=

∣∣∣∣∣
1

η(τ)

∑

m∈Z
(−1)mqm

2/2

∣∣∣∣∣

2

= ZÑS , (4.88)

ZF
1
2
,0
∣∣0 =

∣∣∣∣∣
1

η(τ)
2q1/8

∏

n=1

(1− qn)(1 + qn)2

∣∣∣∣∣

2

=

∣∣∣∣∣
1

η(τ)

∑

m∈Z
q(m+1/2)2/2

∣∣∣∣∣

2

= ZR, (4.89)

ZF
0,0
∣∣0 =

∣∣∣∣∣
1

η(τ)
q1/8

∏

n=1

(1− qn)(1− qn)(1− qn−1)

∣∣∣∣∣

2

= ZR̃ = 0. (4.90)

These are the well-known partition functions of the (1 + 1)-dimensional Dirac fermion that

describes the edge of the two-dimensional ν = 1 topological insulator (see Section 2.3.1).
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Figure 4.13: Action of the modular group SL(2,Z) over of the eight fermionic partition functions

(4.63) reduced on the (x0, x1) plane.

In these formulas, we identify the sectors (AA), (PA), (AP ), (PP ) as NS, ÑS,R, R̃, re-

spectively. Applying the bosonization formulas obtained in Section 1.3.2, we also wrote the

bosonic version of these expressions for later use. The SL(2,Z) modular transformations of

these partition functions is denoted as the ‘massless subgroup’ shown in Fig. 4.13.

Massive case α2 = 1/2

As anticipated, in this case a mass term M = ω11/2ω22 →∞ remains in the energy spectrum

in (1+1) dimensions. Therefore, the reduction leads to the following four partition functions

of a massive fermion, that read

ZF
1
2
, 1
2

∣∣ 1
2

= Θ[ 1
2
, 1
2

](τ ;M), ZF
0, 1

2

∣∣ 1
2

= Θ[ 1
2
,0](τ ;M),

ZF
1
2
,0
∣∣ 1
2

= Θ[0, 1
2

](τ ;M), ZF
0,0
∣∣ 1
2

= Θ[0,0](τ ;M). (4.91)

These functions transform under the subgroup SL(2,Z) in the same way as the massless

ones, and are indicated as the ‘massive subgroup’ in Fig. 4.13.
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Chapter 5

Three-dimensional bosonic

topological insulators

In this Chapter we will discuss the effective field theory description of topological insulators in

(3 + 1) dimensions provided by the topological BF gauge theory and the associated bosonic

surface theory. We shall recall some known facts, derive the action at the boundary, its

quantization and the partition function on the three-torus. We shall then compare these

results with those found in the previous section for the fermionic theory and discuss the

insight they provide on the issue of bosonization in (2 + 1) dimensions.

5.1 Hydrodynamic BF effective field theory

In Chapter 1 we introduced bosonic degrees of freedom to explain interacting topological

states in (2 + 1) dimensions. The effective Chern-Simons theory (1.11) allows to describe

universal long range features of the fractional quantum Hall effect, providing a complemen-

tary view to wavefunction approaches [10, 11]. Moreover, the canonical quantization of the

compactified free boson theory in (1+1) dimensions of Section 1.3.1 gives an exact description

of interacting Hall edge states with Abelian fractional statistics [20].

In Chapter 2 we generalized this approach to topological insulators by taking pairs of

quantum Hall effect systems with opposite spin and chirality [59]. Actually, two coupled

Chern-Simons theories with opposite chiralities are equivalent to a TR invariant theory, the

Abelian BF theory, whose action takes the form

S
(2D)
BF [a, b] =

k

2π

∫
d3x

(
εµνρaµ∂νbρ − J µa aµ − J µb bµ

)
, (5.1)

where J µa and J µb are the sources of the two fields a and b. It turns out that (5.1) captures

the main properties of 2D Abelian topological insulators [70] [71], namely those properties

that we discussed in Chapter 2 and Chapter 3 by means of partition functions.

In Chapter 4 we discussed the main features of 3D topological band insulators. These are

gapped phases of matter made of non-interacting fermions whose surface states consist of an

odd number of massless Dirac fermions. Furthermore, we showed that when TR symmetry is
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explicitly broken at the boundary owing to the presence of magnetic fields, the surface states

become massive and a surface quantum Hall effect is generated with conductivity σH = 1/2.

Recently, the study on 3D topological insulators went beyond the band insulators involv-

ing non-interacting electrons, and other TR invariant interacting 3D phases with fractionally

charged excitations were introduced and theoretically analyzed [103, 111]. Band theory can-

not capture the consequences coming from strong electronic interactions, and other methods

have been introduced.

In their paper [112], Cho and Moore proposed the Abelian BF theory in (3+1) dimensions

as the effective hydrodynamic theory of 3D topological insulators. Although this theory is

less obvious with respect to its 2D counterpart, it allows to recover some features of non-

interacting topological phases discussed before, such as the surface quantum Hall effect with

conductivity σH = 1/2.

This theory, as shown by other research groups [113, 114, 115, 116], gives an effective

description of interacting electron systems. In a similar way as the Chern-Simons theory for

the fractional quantum Hall effect, the BF theory in (3 + 1) dimensions allows to describe

interacting 3D topological insulators having a richer spectrum of excitations with fractionally

charged particles and vortices [112, 117].

5.1.1 Basics of BF theory in (3 + 1) dimensions

In a (3+1)-dimensional manifoldM, we consider a theory with matter fluctuations that are

described by conserved currents for quasiparticles and vortices, respectively:

Jµ =
1

2π
εµνρσ∂νbρσ, Jµν =

1

2π
εµνρσ∂ρaσ, (5.2)

defining two hydrodynamic gauge fields, the two-form b = 1/2 bµν dx
µ∧dxν and the one-form

a = aµdx
µ. The topological effects between static sources in TR invariant topological states

at energies below the bulk gap can be described by the following BF action [112]

SBF [a, b, A] =

∫

M

K

2π
b da+

1

2π
b dA+

θ

8π2
da dA− aµJ µ −

1

2
bµνJ µν , (5.3)

where A = Aµdx
µ is the electromagnetic background, J µ and J µν are, respectively, the

particles and vortex sources of the fields aµ and bµν , and the coupling K is an odd integer

for fermionic systems [111]. The canonical dimensions of the fields are [a] = 1 and [b] = 2

in units of mass, and the invariance of the action under TR symmetry, apart from the term

proportional to θ, follows from the field transformations

T : (a0,~a) → (a0,−~a), (5.4)

T : (A0, ~A) → (A0,− ~A), (5.5)

T : (b0i, bij) → (−b0i, bij). (5.6)

Finally, for a compact manifoldM the BF action (5.3) is invariant under the following gauge

transformations

a→ a+ dλ, b→ b+ dξ, (5.7)
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where λ and ξ are, respectively, a scalar function and a one-form.

The current J µ represents a quasiparticle source, namely

J µ(x) = N0

∫

L
dτ
dXµ

dτ
δ(4)[x−X(τ)], (5.8)

where Xµ(τ) is the the world-line L of a particle with charge N0. Similarly, the current J µν
is a vortex source, i.e.

J µν(x) = N1

∫

Σ
d2σεαβ

dXµ

dσα
dXν

dσβ
δ(4)[x−X(σα)], (5.9)

where Xµ(σ1, σ2) is the world-sheet Σ of the string with “electromagnetic” flux N1.

For Aµ = 0, the action (5.3) gives the following equations of motion

J µν =
k

2π
εµνλρ∂λaρ, (5.10)

J µ =
k

4π
εµλρν∂λbρν . (5.11)

A non-trivial effect of the BF theory is the particle-string holonomy, the analog of fractional

statistics in (3+1) dimensions [117]. In three space dimensions point-like particles can braid

with vortex lines. When a particle of charge N0 encircles a vortex of flux N1 once, the wave

function of the system acquires the phase factor [117]

ΨBF → exp

(
−2πi

K
N0N1

)
ΨBF . (5.12)

It follows that the wavefunctions carry a one-dimensional unitary representation of the frac-

tional particle-vortex linking.

5.1.2 Abelian θ-term and surface QHE

Integrating out the matter fields a and b of the BF action (5.3) with J µ = J µν = 0, we

obtain the induced action for the electromagnetic background

Sind[A] = − θ

8π2K

∫

M
dAdA = − θ

32π2K

∫
d4x εµνλρFµνFλρ. (5.13)

This is the Abelian θ-term or magnetoelectric term [98] [112], already discussed in the fermion

case for K = 1 in Section 4.3.3. The case θ = 0 corresponds to TR invariant systems, where

bulk and boundary contributions cancel each other. For θ = π, TR symmetry is broken at

the surface, leading to the induced Chern-Simons term,

Sind[A] = − 1

8πK

∫

∂M
AdA (5.14)
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implying a surface quantum Hall effect with filling fraction ν = 1/2K. In particular, for

K = 1 the fermion result (4.26) is recovered. This is the first indication that the bosonic

theory for K = 1 matches the fermionic description of 3D topological insulators, at least for

the topological properties [112]. Therefore, other values of K should describe, in the low en-

ergy approximation, interacting fermionic theories with quasiparticle and vortex excitations

possessing non-trivial braiding statistics (5.12) [111, 112].

5.1.3 Surface BF theory and fermion-boson duality

In this section we will discuss the surface massless excitations provided by the bulk BF theory

and introduce a dynamics for them that respects TR symmetry [3].

Several times in this thesis we encountered the problem of bosonization, namely the map-

ping of quantum field theories of interacting fermions onto an equivalent theory of interacting

bosons. These mappings, as shown in Chapter 1, are well established in the context of (1+1)

dimensional theories, and are powerful tools to study the non-perturbative behavior of both

quantum field theories and condensed matter systems. However, in dimensions higher then

(1 + 1), much less is known.

The first attempts to understanding a possible bosonization approach to fermionic models

were done in the past by Luther and Aratyn Ref.[118, 119]. The authors constructed Fermi

fields out of Bose operators via the so called tomographic transformation [119]. Later, Marino

[120], based in an order-disorder duality, was able to express a (2 + 1) massless fermion field

in terms of a bosonic vector field [120]. In the last case, the resulting induced action,

expanded at the quadratic order in the electromagnetic background field, is equivalent to

the fermionic result in (4.18): it contains the parity violating Chern-Simons term and the

non-local Maxwell term.

In the recent literature, the problem of bosonization has been reconsidered in three space-

time dimensions and new relations have been proposed [114, 115, 121, 122, 123, 124]. Among

these new results, the particle-vortex duality plays an important role in describing the surface

states of interacting topological insulators as shown in Ref.[125, 126]. Further dualities

between bosonic and fermionic field theories are suggested by flux attachment [127, 128, 129],

an idea that was first developed for non-relativistic particles in order to transmute their

statistics from fermionic to bosonic and vice versa [13, 130].

In our work [3] we recall that the surface BF theory allows to reproduce the duality

relations proposed by Aratyn in Ref.[119]. Moreover, introducing a non-local dynamics,

we show that BF theory with K = 1 is able to reproduce the induced effective action for

the external electromagnetic field of the massless fermion to quadratic order. These results

highlight the possibility that the 3D BF theory is the hydrodynamic effective field theory

of TR invariant topological insulators in three space dimensions as suggested by Cho and

Moore [112].
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Gauge invariance and boundary degrees of freedom

In a manifoldM with boundary the BF action (5.3) is not longer invariant under the gauge

transformations (5.7). The symmetry can be recovered by introducing degrees of freedom

living at the boundary ∂M that compensate the gauge non-invariance of the bulk. As

shown in Ref.[112], these degrees of freedom can be viewed as pure gauge configurations

reproducing the bulk loop observables, namely b = dζ with ζ a vector field. Therefore, we

introduce surface terms as follows

SBulk+Boundary
BF [a, b, ζ, A, θ] =

∫

M

K

2π
bda+

1

2π
bdA+

θ

8π2
dadA (5.15)

−
∫

∂M

K

2π
ζda+

1

2π
ζdA,

whose combined gauge transformations are

a→ a+ dλ, b→ b+ dξ, (5.16)

A→ A+ dΛ, ζ → ζ + ξ. (5.17)

Surface theory in absence of electromagnetic coupling

Let us focus our attention to the boundary terms of the gauge invariant BF action (5.15) in

absence of the electromagnetic background, that is putting Aµ = 0. The topological theory

has vanishing Hamiltonian: in the gauge ζ0 = a0 = 0, the boundary action becomes

Ssurf [ζ, φ] =
K

2π

∫
d3x εij∂iζj φ̇, (5.18)

where we also take a = dφ, a pure gauge configuration at the boundary. The transformations

under TR symmetry of the surface fields are inferred from those of the bulk fields (5.4); they

are

T : φ → −φ, (5.19)

T : ζi → ζi, (5.20)

from which follows the invariance of the boundary action (5.18).

The action (5.18) shows the symplectic structure made by two scalar degrees of freedom

that are canonically conjugate, φ and χ, being the longitudinal part ai = ∂iφ, and the trans-

verse part ζi = εik∂kχ, respectively. Therefore Eq.(5.18) becomes

Ssurf [ζ, φ] =

∫
d3xπ φ̇, π =

K

2π
εij∂iζj = −K

2π
∆χ. (5.21)

As suggested for example in [112, 113, 131], we can introduce a relativistic dynamics by

77



adding the Hamiltonian of the free scalar field in (2 + 1) dimensions, as follows

Ssurf →
∫
d3x

(
πφ̇−H(π, φ)

)
=

∫
d3x

(
πφ̇− 1

2m
π2 − m

2
(∂iφ)2

)
. (5.22)

In this equation, we introduced a mass parameter for adjusting the mismatch of dimensions

between bulk and boundary: indeed, the bulk gauge fields imply the mass dimensions [φ] = 0

and [π] = 2, which are different from those of the three-dimensional theory, i.e. 1/2 and 3/2,

respectively. A dimensionless coupling could also be introduced for the third term in the

action (5.22), that would determine the Fermi velocity of excitations; we fix it conventionally

to one. The equations of motion following the action (5.22) are

π = mφ̇, π̇ = m∆φ (5.23)

and the Lagrangian form of the action is clearly

Ssurf [φ] =
m

2

∫
d3x (∂µφ)2 . (5.24)

The Hamiltonian equations of motion (5.23) can be recast into a duality relation between

the boundary scalar and vector fields, that can be written in covariant form (with ζ0 = 0):

K

2π
εµνρ∂νζρ = m∂µφ. (5.25)

This relation is just the electric-magnetic duality in (2+1) dimensions. It plays an important

role in the bosonization by Aratyn using the tomographic representation [112, 113, 119], and

in the functional bosonization approach [114, 115, 123]. We remark that in our context

this is just the first-order Hamiltonian description of the relativistic wave equation, that is

inherited from the first-order bulk theory. We also stress that the main motivation for the

quadratic Hamiltonian (5.22) is its simplicity: we know that the surface fermion discussed

in Chapter 4 cannot be exactly matched to a free boson (for K = 1).

Surface theory with electromagnetic coupling

Restoring the electromagnetic coupling at the boundary, we can infer other interesting con-

clusions to test the correspondence between the bosonic and fermionic theories. The coupling

inherited from the bulk theory is shown in (5.15) and it amounts to the shift aµ → aµ+Aµ/K.

This can be implemented in the symplectic form (5.21) in the gauge ∂iAi = 0, and in the

Hamiltonian (5.22) by enforcing gauge invariance, namely by means of the Higgs-like substi-

tution ∂µφ→ ∂µφ−Aµ/K. We thus obtain the following action

Ssurf [ζ, φ,A] =

∫
d3x

[
π

(
φ̇− A0

K

)
− 1

2m
π2 − m

2

(
∂iφ−

Ai
K

)2
]
, (5.26)

Upon integrating the scalar fields, we obtain the induced action

SBind[A] = − m

4K2

∫
d3x Fµν

1

�
Fµν . (5.27)
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This result should be compared for K = 1 with the fermionic induced action computed

in Section 4.3.2, Eq.(4.18); this contains the parity violating Chern-Simons term that is

cancelled by the bulk contribution and should not be reproduced by the bosonic theory. The

other non-local Maxwell term in the fermionic action is different from (5.27) owing to the

mass scale m of the bosonic theory. Note that this parameter could be eliminated by the

field redefinition

φ̃ =
√
mφ, ζ̃i =

ζi√
m
, π̃ =

1√
m
π, (5.28)

but this would not change the induced action (5.27).

Nonetheless, the fermionic induced action can be reproduced by introducing another

dynamics for the bosonic theory [3]. Let us reconsider the duality relation between vector

and scalar fields (5.25) and modify it as follows

K

2π
εµνρ∂νζρ = �1/2 ∂µφ, (5.29)

namely by replacing the mass with a Lorentz invariant non-local operator. This modified

duality corresponds to the following Hamiltonian equations of motion

π =
K

2π
εij∂iζj = �1/2φ̇, π̇ = �1/2∆φ, (5.30)

that follow from the action (in absence of electromagnetic coupling)

S′surf [ζ, φ] =

∫
d3x

(
πφ̇− 1

2
π

1

�1/2
π − 1

2
∂iφ�

1/2∂iφ

)
. (5.31)

Integrating (5.31) on ζ, we find that the Lagrangian formulation reads

S′surf [φ] = −1

2

∫
φ�3/2φ =

1

2

∫ (
∂µφ̃

)2
, with φ = �1/4φ̃, (5.32)

that is again the free bosonic theory in the rescaled variable φ̃. The coupling to the elec-

tromagnetic field implied by the bulk theory is still given by the Higgs-like substitution,

∂µφ→ ∂µφ−Aµ/K, leading to the action

S′surf [φ,A] =
1

2

∫
d3x

(
∂µφ−

Aµ
K

)
�1/2

(
∂µφ−

Aµ
K

)
. (5.33)

Upon integrating in the φ field, for K = 1 we obtain the following induced action

SBind[A] = −1

4

∫
d3xFµν

1

�1/2
Fµν . (5.34)

Up to coefficient, this action coincides with the non-local TR invariant Maxwell term in (4.18)

responsible for non-topological but universal subleading effects [3]. Although possible for a

massless theory, a non-local effective action usually means that further massless excitations

have been integrated out. Thus, the present analysis may not be a complete description of

bosonization in (2 + 1) dimensions.
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In conclusion, we have shown that the surface degrees of freedom of (3 + 1) dimensional

topological insulators amount to a Hamiltonian conjugate pair of scalar fields. The simpler

quadratic Hamiltonian for them is not able to reproduce the fermionic theory to leading

order, while a modified non-local dynamics does work. The two bosonic theories are identical

on-shell, since both imply the free wave equation for a suitably rescaled field variable, but

may differ in the solitonic excitations, to be discussed later.

We also remark that the simple action (5.22) with coupling to electromagnetic field given

by (5.26) is equivalent to the Abelian Higgs model in (2 + 1) dimensions in the deep infrared

limit of the spontaneously broken phase [3]. Namely, the scalar field φ can be interpreted as

the Goldstone mode of a complex scalar

Φ = ρ eiφ, 〈ρ2〉 = m, (5.35)

where the mass parameter m fixes the vacuum expectation value, and the Higgs field is frozen.

We conclude that in cases where the electromagnetic field could be considered dynamical,

we would have a surface superconducting phase. On the other hand, the nonlocal dynamics

(5.33) would keep the photon massless as in the fermionic theory. These issues are left for

further investigations. Before proceeding, we remark that the following analysis will deal

with properties that are independent of the specific dynamics and that the topological data

in (3 + 1) dimensions given by the BF action (5.3) do not determine a unique dynamics for

the surface states, contrary to the (2 + 1)-dimensional case.

5.2 Canonical quantization of the surface theory

In this section we consider the canonical quantization of the surface BF theory (5.22) with

compactified boson field. Following Ref.[116, 131] and our work [3], in the quantization of

the action (5.22) we shall pay particular attention to the properties of solitonic modes of the

φ and ζi fields, in such a way that they consistently reproduce the topological properties of

the bulk BF theory.

Bulk topological sectors and boundary observables

The quantization of the bulk BF theory (5.3) on the spatial three-torus M = T3 × R, leads

to the topological order of K3 ‘anyon’ sectors, for odd integer values of the coupling K. The

proof of this results is very simple [11, 117]: one considers the integrals of the gauge fields

on the surfaces and cycles of the torus

πij =

∫

Σij

b, i 6= j, qi =

∫

γi

a, i, j, k = 1, 2, 3 (5.36)

Once inserted into the BF action, these global quantities become three pairs of canonically

conjugate variables (πij(t), qk(t)), leading to the following commutation relations

[πij(t), qk(t)] = i
2π

K
εijk (5.37)
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Figure 5.1: The thick two-torus V = D2×S1 is represented as a filled cylinder with identified faces.

(a): The bulk quasiparticle with charge N0 creates a flux of the b field across the boundary surface

∂V . (b): In blue the bulk vortex of charge N2 along the non-trivial cycle x1, in red the closed line

Γ2 encircling on the surface the vortex excitation, in grey the branch cut surface from the vortex

excitation to the boundary surface ∂V .

A basis of holonomies on the torus is given by the operators Ui = exp(iqi) and Vij = exp(iπij),

that form three pairs of K-dimensional clock and shift matrices [11], thus leading to the

topological order K3. In the following, we find a corresponding symplectic structure among

the solitonic modes of the boundary fields φ and ζµ, that are defined on the space-time

three-torus.

The relation between bulk and boundary observables can be studied on the spatial geom-

etry of the thick two-torus V = D2 × S1 shown in Fig. 5.1, whose boundary is the two-torus

∂V = S1×S1. We first consider a bulk quasiparticle with charge N0 at rest in ~x = ~x0, whose

current is J 0(~x) = N0δ
(3)(~x− ~x0). The solution of the equations of motion (5.11) leads to a

flux of the b field across the surface enclosing the charge (see Fig. 5.1(a)), that becomes the

following expression on the boundary surface

2πN0

K
=

∫

∂V
d2x εij∂iζj . (5.38)

Next, a static vortex in the bulk stretched along the non-trivial cycle as shown in Fig. 5.1(b)

with magnetic charge N2 corresponds to the current J 01(~x) = N2δ
(2)(~x− ~x0). The presence

of the vortex propagates from the bulk V to the boundary surface ∂V as a branch cut surface.

The equations of motion (5.10) imply a non-vanishing integral of the a field along a closed

path encircling the vortex; for the path Γ2 on the boundary surface it reads (see Fig. 5.1(b))

2π

K
N2 =

∮

Γ2

dx2∂2φ, (5.39)

An analogous relation holds for the vortex stretched along the other non-trivial cycle of the
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boundary, i.e.
2π

K
N1 =

∮

Γ1

dx1∂1φ. (5.40)

The bulk-boundary relations (5.38) and (5.39) together with the TR transformations of the

boundary fields (5.19) and (5.20) provide the following transformations for the bulk charges

under TR symmetry

T : N0 → N0, (5.41)

T : Ni → −Ni, i = 1, 2, (5.42)

that are consistent with the usual transformation rules of an electric charge for N0 and a

magnetic flux for Ni.

Canonical quantization

The simpler surface bosonic action (5.22)

Ssurf [ζ, φ] =

∫

∂M
d3x

(
πφ̇− 1

2m
π2 − m

2
(∂iφ)2

)
, (5.43)

is considered on the spatial two-torus, i.e. ∂M = S1×S1×R. The conjugate momentum π

is

π =
K

2π
εij∂iζj . (5.44)

and the Hamiltonian equations of motion are

K

2π
εij∂iζj = mφ̇,

K

2π
εij∂iζ̇j = m∆φ. (5.45)

The canonical quantization proceeds by expanding the fields in terms of solutions of the

equations of motion, with boundary conditions of the spatial two-torus specified by the pe-

riods ~ωi (4.29) and dual vectors ~ki (4.28), i = 1, 2 discussed in Section 4.4. Let us write the

field expansions and then explain them [116]:

φ(~x, t) = φ0 + 2πΛi~ki · ~x+
KΛ0t

mV (2)

+
1√

mV (2)

∑

~n6=~0

1√
2E{~n}

[
a~n e−iE{~n}t+2πi~k{~n}·~x + a†~n eiE{~n}t−2πi~k{~n}·~x

]
, (5.46)

ζj(~x, t) =
εji

V (2)
(ω2iγ1 − ω1jγ2 − πΛ0xi)

+
8π2

K

√
m

V (2)

∑

~n6=~0

εjm (n1k1m + n2k2m)
(
2E{~n}

)3/2
[
a~n e−iE{~n}t+2πi~k{~n}·~x + a†~n eiE{~n}t−2πi~k{~n}·~x

]
.

(5.47)
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These expressions involve oscillating functions specified by energies and momenta

E{~n} = 2π
∣∣∣n1

~k1 + n2
~k2

∣∣∣ =
2π

V (2)
|n1~ω2 − n2~ω1| , (5.48)

k1{~n} =
1

V (2)
(n1ω22 − n2ω12) , (5.49)

k2{~n} =
1

V (2)
(−n1ω21 + n2ω11) , ~n = (n1, n2) ∈ Z2. (5.50)

The field expansions (5.46),(5.47) also contain constant and linear terms, almost uncon-

strained by the equations of motion, that are needed for specifying the solitonic modes.

Actually, upon inserting these expressions in the boundary observables (5.38)-(5.39), we find

the following values of the ζi flux and ∂iφ circulations

Λα =
Nα

K
, α = 0, 1, 2 (5.51)

that explain the normalizations adopted for such terms.

The commutation relations between the fields φ and π,

[
φ(~x, t), εij∂iζj(~y, t)

]
= i

2π

K
δ(2)(~x− ~y), (5.52)

imply the following non-vanishing commutators

[
a~n, a

†
~k

]
= δ

~n,~k
, [φ0,Λ0] =

i

K
. (5.53)

Moreover, integrating by parts the symplectic term in the action (5.43), we can also consider

ζi and εij∂iφ, for i = 1, 2, as two pairs of coordinates and momenta, leading to two further

commutation relations

[ζi(~x, t), εij∂jφ(~y, t), ] = −2πi

k
δ(2)(~x− ~y), i = 1, 2. (5.54)

These should be consider as independent relations for the solitonic modes only; they imply

the earlier quantizations plus the following ones

[γ1,Λ2] = − i

K
, [γ2,Λ1] =

i

K
. (5.55)

These two commutation relations together with that of Λ0 in (5.53) represent the bulk degrees

of freedom (5.36) within the boundary theory: one quantity in each pair is actually the same

bulk observable evaluated at the boundary, while the conjugate variable is a field zero mode.

After quantization, the eigenvalues of Λµ can be identified with the spectra (5.51), that are

consistent with the periodicities of the field zero modes

φ0 ≡ φ0 + 2πr, γi ≡ γi + 2πri, i = 1, 2, (5.56)

with compactification radii r = r1 = r2 = 1. It is also immediate to see that these period-

icities are commensurate with those of the fields φ(~x) and ζi(~x) winding around the cycles

of the torus. In conclusion, the Λµ spectra given by (5.51) are both suggested by the bulk
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theory and consistently obtained by quantization of the boundary theory. The same conclu-

sion follows from the better-known study of the bosonic edge theory in (1 + 1) dimensions

discussed in Section 1.3.2 [20]. In both cases, there could be more general consistent quan-

tizations of the bosonic theories and solitonic spectra, but they would not relate to the bulk

topological data.

The Hamiltonian and momenta obtained by the surface bosonic theory (5.43) are, re-

spectively,

H =
m

2

∫
d2x

(
φ̇+ (∂1φ)2 + (∂2φ)2

)
. (5.57)

and

P i = −m
∫
d2xφ̇∂iφ, i = 1, 2, (5.58)

We substitute the field expansions (5.46) and (5.47), and use the Fock ground state |Ω〉
definition

a~n |Ω〉 = 0, n1, n2 ∈ Z, (5.59)

to obtain the following expressions in terms of Fock and solitonic operators

H =
K2Λ2

0

2mV (2)
+

(2π)2m

2V (2)

[
(Λ1ω22 − Λ2ω12)2 + (Λ1ω21 − Λ2ω11)2

]

+
∑

~n6=~0

E{~n}

(
a†~na~n +

1

2

)
, (5.60)

P 1 =
2πkΛ0

V (2)
(−Λ1ω22 + Λ2ω12) + 2π

∑

~n6=~0

k1{~n} a
†
~na~n, (5.61)

P 2 =
2πkΛ0

V (2)
(Λ1ω21 − Λ2ω11) + 2π

∑

~n6=~0

k2{~n} a
†
~na~n, (5.62)

where the energies E{~n} are momenta ki{~n} are given, respectively, in (5.48) and (5.49)-(5.50).

5.3 Torus partition functions

In this section we will compute the partition functions of the surface BF theory by compacti-

fying the time direction. In the first part, following the canonical quantization studied above,

we will separate the contributions to the partition functions coming from the oscillating and

the solitonic modes. In the second part, in order to perform the flux insertion argument and

obtain the stability criteria of fermionic topological insulators, will require to enlarge the

spectrum of the solitonic modes to half-integer values, leading to eight partition functions

and spin sectors for the bosonic theory [3].
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The BF partition function

In the T3 space-time torus described by the ω-matrix in (4.27) of periods ω0,ω1,ω2, the

Euclidean partition function is defined as

ZB =
∑

Λµ∈Z3/K

Tr exp (−ω00H + iω01P1 + iω02P2) , (5.63)

where ω00 is the Euclidean time period, equal to the inverse temperature β.

In the trace over the states, the sums over the Fock space and solitonic modes can be done

independently, because their contributions add up in the expressions of Hamiltonian (5.60)

and momentum (5.61)-(5.62). Thus, the partition function can be factorized into oscillator

and solitonic parts ZHO and Z(0), respectively

ZB = ZHOZ
(0). (5.64)

Performing the trace over the states of the Fock space, the oscillator part reads

ZHO =
∏

n1n2 6=(0,0)

(
1− exp

(
−ω00E{~n} + iω012πk1{~n} + iω022πk2{~n}

))−1

× exp


−ω00

2

∑

n1,n2 6=(0,0)

E{~n}


 , (5.65)

where the second exponential factor involves the infinite vacuum energy. For the solitonic

part we obtain

Z(0) =
∑

Λµ∈Z3/K

exp

[
− ω00

V (2)

(
K2Λ2

0

2m
+ 2π2m

[
(Λ1ω22 − Λ2ω12)2 + (−Λ1ω21 + Λ2ω11)2

])

− iω01
2πkΛ0

V (2)
(Λ1ω22 − Λ2ω12)− iω02

2πkΛ0

V (2)
(−Λ1ω21 + Λ2ω11)

]
.

(5.66)

We can recast these expressions in covariant (2 + 1)-dimensional notation as functions of the

moduli ωµ by means of (4.32). We obtain

ZHO = exp(F )
∏

(n1,n2) 6=(0,0)

(
1− exp

(
−2πE{~n} + 2πiK{~n}

))−1

, (5.67)

where

E{~n} = V (3) |n1ω2 − n2ω1|
|ω1 × ω2|2

, (5.68)

K{~n} =
(ω1 × ω2)

|ω1 × ω2|2
(n1ω0 × ω2 − n2ω0 × ω1) , (5.69)

F =
V (3)

4π

∑

n1,n1 6=(0,0)

1

|n1ω2 − n2ω1|3
, (5.70)
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with the vacuum energy F regularized by analytical continuation as in the fermionic case

(see Appendix C.1) [105, 106]; and

Z(0) =
∑

Λµ∈Z3/K

exp

[
− V (3)

|ω1 × ω2|2
(
K2Λ2

0

2m
+ 2π2m|Λ1ω2 − Λ2ω1|2

)

− i2πKΛ0

|ω1 × ω2|2
(ω1 × ω2) · (Λ1ω0 × ω2 − Λ2ω0 × ω1)

]
(5.71)

The spin sectors of the bosonic theory

The experience with fermionic topological insulators in (2 + 1) dimensions and bosonization

suggests some properties regarding the results (5.67) and (5.71) just found:

• The partition function should split into the sum over K3 terms, each one pertaining

to an anyon sector with given fractional values of the charges of the theory.

• Further partition functions should be found that are associated to the eight fermionic

spin sectors of the three-torus.

• Similar to the fermionic cases discussed in Sections 2.3 and (4.4), they can be related

one to another by adding half-flux quanta and by performing modular transformations.

Let us gradually derive these results in the (3+1)-dimensional theory [3]. The anyon sectors

can be identified by splitting the summations over the charge lattice Λµ ∈ Z3/K in Z(0) into

integer and fractional values, by substituting

Λµ = Mµ +
mµ

K
, Mµ ∈ Z, mµ = 0, 1, · · · , k − 1, µ = 0, 1, 2. (5.72)

In this way we get the K3 terms, each one involving summations over integer-spaced charges

Z(0) =
∑

Λµ∈Z3/K

· · · =
k−1∑

m0,m1,m2=0

∑

M0,M1,M2∈Z
· · · =

k−1∑

m0,m1,m2=0

Z(0)m0,m1,m2 . (5.73)

In Chapter 4, we formulated the flux insertion argument for the stability of fermionic topo-

logical insulators in terms of fermionic partition functions. Starting from the Neveu-Schwarz

sector, we added half fluxes through the donut and obtained the other spin sectors of the

theory. In the bosonic theory, adding fluxes clearly modify the values of the loop observable

(5.39) and (5.40), such that one flux Φ0 adds one unit of magnetic charge to the corresponding

vortex, causing Ni → Ni + 1.

For K = 1 adding one flux is clearly a symmetry of the Hamiltonian and of the partition

function (5.71), owing to the summation over Λi ∈ Z; thus, we should consider adding half

fluxes by the transformations [3]

V
1/2
i : Φi → Φi +

Φ0

2
Λi → Λi +

1

2
, i = 1, 2, (5.74)

changing the summation values. For K > 1 odd, guided by the experience in (2 + 1) di-

mensions, we should add fluxes without changing the anyon sectors, and thus consider the
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transformations

V
K/2
i : Λi = Mi +

mi

2
→ Λi +

1

2
, i = 1, 2. (5.75)

We shall introduce three labels αµ = 0, 1/2, µ = 0, 1, 2 for the partition function (5.71), as

follows

ZBα0,α1α2
= ZHO Z

(0)
α0,α1α2

, α0, α1, α2 = 0,
1

2
. (5.76)

Two of them, α1, α2, specify the half-integer values taken by the variables M1,M2 after

half-flux insertions, while α0 = 1/2 amounts to adding the sign (−1)KΛ0 to the summand for

reasons that will be clear in the following. Note that the oscillator part ZHO stays invariant

under the changes (5.74)-(5.75). In conclusion, we have the following eight partition functions

ZBα0,α1α2
= ZHO

∑

mµ∈Z3
K

∑

Mµ∈Z3

(−1)2α0KΛ0 (5.77)

exp

[
− V (3)

|ω1 × ω2|2
(
K2Λ2

0

2m
− 2π2m|Λ1ω2 − Λ2ω1|2

)

− i2πKΛ0

|ω1 × ω2|2
(ω1 × ω2) · (Λ1ω0 × ω2 − Λ2ω0 × ω1)

]

Λ0 = M0 +
m0

K
, Λ1 = M1 +

m1

K
+ α1, Λ2 = M2 +

m2

K
+ α2,

α0, α1, α2 = 0,
1

2
. (5.78)

These partition functions are mapped one into another by the flux insertions V
K/2
i , i = 1, 2

as shown in Fig.5.2. A characterization of these functions as the bosonic analogues of the

fermionic spin sectors will become clear in the following discussion.

5.4 Bosonization in (2 + 1) dimensions

In this section we focus on the set of eight bosonic partition functions ZBα0,α1α2
for K = 1.

We show that they have the same modular transformations and other properties of the

fermionic functions ZFα0,α1α2
. We then argue that these quantities are actually describing a

fermionic theory, although different from the free theory of Chapter 4. Our results provide an

exact instance of bosonization in (2 + 1) dimensions, namely on the correspondence between

(interacting) fermionic and bosonic theories. It concerns the transformation properties of

the spectrum under changes of backgrounds, that are actually independent of the dynamics

and thus can be studied in the free limits of the two theories.

The fermionic nature of the bosonic partition functions will be based on the following

properties [3]:

• The bosonic ZBα0,α1α2
and fermionic ZFα0,α1α2

behave in the same way under modular

transformations and flux insertions.
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2 transformations on the bosonic partition functions ZBα0,α1α2

.

• For each sector, they become equal under dimensional reduction to (1 + 1) dimensions,

where the free bosonic and fermionic theories match exactly.

• The fermion number is associated to the states of the bosonic theory, and checked

under dimensional reduction.

• The stability argument for fermionic topological states of Section 4.12 is formulated in

the bosonic theory; it reproduce the results for K = 1, and also proves the stability of

K > 1 topological states, for K odd integer.

5.4.1 Modular transformation

We recall from Section 4.6 that the action of the modular group SL(3,Z) is described by the

generators T1, S1 and P12. Their action on the oscillator ZHO and solitonic Z
(0)
α0,α1,α2 factors

of the partition functions will be described in turn.

P12 transformation

Since

P12 : ω0 → ω0, ω1 → −ω2, ω2 → ω1, (5.79)

we find that ZHO (5.67) is manifestly invariant, as can be checked by relabelling (m1 →
−m2, m2 → m1). The action on the solitonic part Z(0) (5.77) is equivalent to the relabeling

of the variables (M1 → −M2, M2 →M1), whose values are integer or half integer depending

on the values of α1, α2. Thus, we find

P12 : ZBα0,α1α2
→ ZBα0,α2,α1

, α1, α2 = 0,
1

2
(5.80)
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T1 transformation

Since

T1 : ω0 → ω0 + ω1, (5.81)

the oscillating function ZHO is left invariant. The solitonic function do not change under T1

if M1 takes integer values; for half-integer values, the sums acquire the factor (−1)M0 , thus

changing the value of the index α0 from zero to 1/2 in ZBα0,α1α2
.

S1 transformation

The action of the transformation S1 is obtained by following the same strategy of the

fermionic case in Section 4.6 as well as explained in Ref.[116]. First we choose the refer-

ence frame given by Eq.(4.66). Before applying S1, we find the expressions of the solitonic

and oscillating partition functions in this frame. We find that the solitonic partition function

(5.77) with K = 1 and indices α0 = α1 = α2 = 0 acquires the following form

Z
(0)
0,00(τ,R0, R1, R2, β, γ) =

∑

Mµ∈Z3

exp

(
− τ2M

2
0

4πmR2
− τ2m(2π)3

2R2

[
R2

2 (M1 + βM2)2 +R2
1M

2
2

]

+ 2πiαM0 (M1 + βM2) + 2πiγM0M2

)
, (5.82)

where the parameters are defined as

τ = τ1 + iτ2 = −ω01

ω11
+ i

ω00

ω11
= α+ ir01,

ω12

ω22
= −β, ω02

ω22
= −γ, (5.83)

with r01 = R0/R1. All the other solitonic functions are recovered taking M1 → M1 + 1/2,

M2 →M2 + 1/2 and inserting the factor (−1)M0 .

To find the expression of the oscillating partition functions in the same frame we need

some calculations. We start from (5.65) without performing regularizations of the vacuum

energy; introducing the “mass” parameter r12 = R1/R2, we find

ZHO =
∏

m1m2 6=(0,0)

[(
1− exp

(
−2πτ2

√
(m1 + βm2)2 + (m2r12)2 − 2πi(αm1 +m2(γ + τ1β))

))−1

× exp
(
−πτ2

√
(m1 + βm2)2 + (m2r12)2

)]
. (5.84)

The double product over (m1,m2) can be separated in two products; the first with ranges

(m1 ∈ Z 6= 0,m2 = 0), the second with (m1 ∈ Z,m2 ∈ Z 6= 0). The first product, once

introduced the parameter q = exp(2πiτ) and regularized the infinite sum at the exponent
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using the ζ-function regularization, gives the modulus square of the Dedekind function, i.e.

∣∣∣∣
1

q1/24
∏
n>0(1− qn)

∣∣∣∣
2

=

∣∣∣∣
1

η(τ)

∣∣∣∣
2

. (5.85)

The second product, instead, can be rewritten in the following way

∏

m2∈Z 6=0

( ∏

m1∈Z

[
1− exp

(
−2πτ2

√
(m1 + βm2)2 + (m2r12)2 − 2πi (τ1m1 +m2(γ + τ1β))

)]−1

exp

(
− πτ2

∑

m1∈Z

√
(m1 + βm2)2 + (m2r12)2

))
. (5.86)

Once regularized the infinite sum at the second exponent (see Appendix. C.2), and intro-

duced the function ∆(m; a)

∆(m; a) = − 1

2π2

∑

`

∫ ∞

0
dt exp

(−π2m2

t
− t`2

)
cos(2π`a), (5.87)

and the so called “massive” theta function [109]

Θ[a,b](τ,m) = e4πτ2∆(m,a)
∏

n∈Z

∣∣∣1− exp
(
−2πτ2

√
m2 + (n+ a)2 + 2πiτ1(n+ a) + 2πib

)∣∣∣
2
,

(5.88)

we finally find the partition function of the oscillating modes in the frame (4.66), i.e.

ZHO(τ,R0, R1, R2, β, γ) =

∣∣∣∣
1

η(q)

∣∣∣∣
2 ∏

m2∈Z+

Θ−1
[βm2,m2γ](τ, r12m2). (5.89)

We are now ready to discuss the S1 transformation. As found in the fermionic case of

Section 4.6, S1 acts on the parameters in the following way

τ → −1

τ
; α→ − α

α2 + r2
02

; r01 →
r01

α2 + r2
01

;

R0 →
R0

|τ | ; R1 → R1|τ |; R2 → R2; γ → −β; β → γ. (5.90)

Therefore, the solitonic function Z
(0)
0,00 transforms as follows

S1 : Z
(0)
0,00 (τ,R0, R1, R2, β, γ) → Z

(0)
0,00

(
−1

τ
,
R0

|τ | , R1|τ |, R2, γ,−β
)
. (5.91)

The first step is to apply the Poisson formula on M0, i.e.

∑

M0∈Z
exp

(
−πAM2

0 + 2πiM0B
)

=
1√
A

∑

M ′0∈Z

exp
(
− π
A

(
M ′0 −B

)2)
. (5.92)
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Figure 5.3: Action of SL(3,Z) over the bosonic partition functions ZBα0,α1α2
.

Another resummation (5.92) is done on the M1 index and, once made the relabelling M ′0 →
M1 and M ′1 →M0, we finally reconstruct the starting function Z

(0)
0,00 up to a factor |τ |, i.e.

S1 : Z
(0)
0,00 (τ,R0, R1, R2, β, γ) → |τ |Z(0)

0,00 (τ,R0, R1, R2, β, γ) . (5.93)

Regarding the oscillating partition function (5.89), we use the identity

η(−1/τ) =
√
−iτη(τ), (5.94)

and the “massive” theta function transformation (see Appendix D) [109]

Θ[a,b](τ,m) = Θ[b,−a]

(
−1

τ
,m|τ |

)
. (5.95)

Putting all results together, we find

S1 : ZHO(τ,R0, R1, R2, β, γ) → ZHO

(
−1

τ
,
R0

|τ | , R1|τ |, R2, γ,−β
)

=

∣∣∣∣
1

η (−1/τ)

∣∣∣∣
2 ∏

m2∈Z+

Θ[γm2,−βn2]

(
−1

τ
; r12m2|τ |

)

=
1

|τ |

∣∣∣∣
1

η(q)

∣∣∣∣
2 ∏

m2∈Z+

Θ[βm2,γm2](τ ; r12m2)

=
1

|τ |ZHO(τ,R0, R1, R2, β, γ). (5.96)

Combining the solitonic (5.93) and the oscillating functions (5.96), we obtain the final result

S1 : ZB0, 00 → ZB0, 00. (5.97)
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Following similar steps, we find the transformations of the other partition functions that lead

to the expected results

S1 : ZBα0,α1α2
(ω0,ω1,ω2) → ZBα0,α1α2

(−ω1,ω0,ω2) = ZBα1,α0α2
(ω0,ω1,ω2). (5.98)

Finally, all the modular transformations are shown in Fig. 5.3 [3]. This pattern as well as

that given by flux insertions in Fig. 5.2 is identical to those of the fermionic theory given in

Fig. 4.12 and Fig. 4.8, once the ZBα0,α1α2
are put in suitable positions. Before establishing a

correspondence term to term we still need two steps: the dimensional reduction and a change

of basis [3].

5.4.2 Dimensional reduction

In a similar way as done for the fermionic case in Section 4.7, we further characterize the

eight bosonic partition functions by performing a dimensional reduction from two to one

spatial dimension. The mapping to well know relations of two-dimensional bosonization will

give useful informations on the nature of the (2 + 1)-dimensional bosonic sectors and their

ability to describe (interacting) fermionic systems.

Kaluza-Klein dimensional reduction

Let us consider the bosonic partition functions (5.77) with K = 1 for a rectangular torus in

the spatial directions, i.e. ω12 = ω21 = 0, for simplicity. We perform again the Kaluza-Klein

dimensional reduction, namely take the limit R2 → 0 of the Corbino donut, such that the

oscillating and solitonic modes of energy, respectively, O(m2/R2) and O(M2/R2), are never

excited, corresponding to m2,M2 → 0. Upon setting ω02 = 0, the remaining geometry is

that of two-torus in the plane (x0, x1) with modular parameter

τ = τ1 + iτ2 = −ω01

ω11
+ i

ω00

ω11
. (5.99)

Applying this reduction to the oscillating partition functions ZHO (5.65) before having

regularized the infinite vacuum energy, we obtain

ZHO(ω00, ω01, ω11, ω22 → 0)

∣∣∣∣
m2=0

=
∏

m1∈Z6=0

(
1− exp

(
−2π

ω00

ω11
|m1|+ 2πm1

ω01

ω11

))−1

× exp


−πω00

ω11

∑

m1∈Z6=0

|m1|


 . (5.100)

Once introduced the modular parameter (5.99) and regularized the infinite sum at the ex-

ponent of (5.100) through the Riemann ζ-function, we obtain

ZHO(τ)

∣∣∣∣
m2=0

=

∣∣∣∣
1

q1/24
∏
m>0(1− qm)

∣∣∣∣
2

=

∣∣∣∣
1

η(τ)

∣∣∣∣
2

, (5.101)

where q = exp(2πiτ).
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The solitonic factors Z
(0)
α0;α1α2 are similarly expanded for ω22 → 0, fixing the summand

M2 = 0. Since the classical action (5.43) would vanish in this limit, we should also let the

mass m→∞ so that their product stay finite

mω22 = r2/π, finite. (5.102)

We find the (1 + 1)-dimensional limit

Z
(0)
00|0 =

∑

M0M1∈Z
q

1
2

(
M0
2r

+rM1

)2
q

1
2

(
M0
2r
−rM1

)2
. (5.103)

Thus r becomes the compactification radius of the scalar field in two dimensions, that we fix

to r = 1 for mapping to the free fermion as well known in CFT literature [21, 22]. Similar

expressions are obtained for the reductions of the other functions Z
(0)
α0α1|0; once fixed r = 1

they read

ZB
1
2

1
2

∣∣0 =

∣∣∣∣
1

η(τ)

∣∣∣∣
2 ∑

M0M1∈Z
(−1)M0q

1
2

(
M0
2

+(M1+ 1
2)
)2
q

1
2

(
M0
2
−(M1+ 1

2)
)2

(5.104)

ZB
0 1
2

∣∣0 =

∣∣∣∣
1

η(τ)

∣∣∣∣
2 ∑

M0M1∈Z
q

1
2

(
M0
2

+(M1+ 1
2)
)2
q

1
2

(
M0
2
−(M1+ 1

2)
)2

(5.105)

ZB
1
2

0
∣∣0 =

∣∣∣∣
1

η(τ)

∣∣∣∣
2 ∑

M0M1∈Z
(−1)M0q

1
2

(
M0
2

+M1

)2
q

1
2

(
M0
2
−M1

)2
(5.106)

ZB
00
∣∣0 =

∣∣∣∣
1

η(τ)

∣∣∣∣
2 ∑

M0M1∈Z
q

1
2

(
M0
2

+M1

)2
q

1
2

(
M0
2
−M1

)2
. (5.107)

The reduction of the bosonic partition function with α2 = 1/2 leads to the results

ZB
1
2

1
2

∣∣ 1
2

= (qq)ω
2
11/8ω

2
22

∣∣∣∣
1

η(τ)

∣∣∣∣
2 ∑

M0M1∈Z
(−1)N0q

1
2

(
M0
2

+(M1+ 1
2)
)2
q

1
2

(
M0
2
−(M1+ 1

2)
)2

(5.108)

ZB
0 1
2

∣∣ 1
2

= (qq)ω
2
11/8ω

2
22

∣∣∣∣
1

η(τ)

∣∣∣∣
2 ∑

M0M1∈Z
q

1
2

(
M0
2

+(M1+ 1
2)
)2
q

1
2

(
M0
2
−(M1+ 1

2)
)2

(5.109)

ZB
1
2

0
∣∣ 1
2

= (qq)ω
2
11/8ω

2
22

∣∣∣∣
1

η(τ)

∣∣∣∣
2 ∑

M0M1∈Z
(−1)M0q

1
2

(
M0
2

+M1

)2
q

1
2

(
M0
2
−M1

)2
(5.110)

ZB
00
∣∣ 1
2

= (qq)ω
2
11/8ω

2
22

∣∣∣∣
1

η(τ)

∣∣∣∣
2 ∑

M0M1∈Z
q

1
2

(
M0
2

+M1

)2
q

1
2

(
M0
2
−M1

)2
. (5.111)
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These expressions differ from (5.104)-(5.107) for an overall ground state energy E0 = O(1/R2)→
∞, that should be subtracted for a finite limit. Note that this shift in the spectrum due

to the minimal energy of waves with twisted boundary conditions actually corresponded to

a mass in the dispersion relation of reduced fermions (4.91). In both cases, the modular

transformations split into two SL(2,Z) subgroups, as shown in Fig. 5.4.
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Figure 5.4: Action of the two-dimensional modular group SL(2,Z) over of the eight bosonic partition

functions ZB
α0α1

∣∣α2

reduced on the (x0, x1) plane.

Bosonization in (1 + 1) dimensions and fermionic spin sectors

For later use, it is convenient to rewrite the expressions (5.104)-(5.107) and (5.108)-(5.111)

in terms of the fermionic spin sectors ZNS , ZÑS , ZR and ZR̃ in (4.87)-(4.90) by using the

bosonization formulae discussed in Section 1.3.2. The rewriting of ZB
00
∣∣0 requires the follow-

ing standard manipulations. First we split it in two equal part as follows

ZB
00
∣∣0 =

1

2

∣∣∣∣
1

η

∣∣∣∣
2 ∑

M0M1∈Z
q

1
2

(
M0
2

+M1

)2
q

1
2

(
M0
2
−M1

)2
+

1

2

∣∣∣∣
1

η

∣∣∣∣
2 ∑

M0M1∈Z
q

1
2

(
M0
2

+M1

)2
q

1
2

(
M0
2
−M1

)2
.

(5.112)

In the first term we replace

2` = M0, n = M1, (5.113)

while in the second part

2`− 1 = M0, n = M1, (5.114)

thus obtaining

ZB
00
∣∣0 =

∣∣∣∣
1

η

∣∣∣∣
2 ∑

`,n∈Z

[
q

1
2

(`+n)2 q̄
1
2

(`−n)2 + q
1
2(`+n− 1

2)
2

q̄
1
2(`−n− 1

2)
2]
. (5.115)
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Making the further replacement

`+ n = α0, `− n = −α0, (5.116)

the constraint α0 − α0 = 2` can be enforced by inserting the projector (1 + (−1)α0+ᾱ0) /2

into the sum, finally obtaining

ZB
00
∣∣0 =

1

2

∣∣∣∣
1

η

∣∣∣∣
2 ∑

α0,α0 ∈Z

(
q

1
2
α2
0 q̄

1
2
α2
0 + (−1)α0+α0q

1
2
α2
0 q̄

1
2
α2
0

+ q
1
2(α0+ 1

2)
2

q̄
1
2(α0+ 1

2)
2

+ (−1)α0+α0q
1
2(α0+ 1

2)
2

q̄
1
2(α0+ 1

2)
2
)
, (5.117)

namely

ZB
00
∣∣0 =

1

2

(
ZNS + ZÑS + ZR + ZR̃

)
= ZDirac. (5.118)

The other one-dimensional limits of the partition functions become, following similar steps

ZB
1
2

0
∣∣0 =

1

2

(
ZNS + ZÑS − ZR − ZR̃

)
∼ ZB

1
2
,0
∣∣ 1
2

, (5.119)

ZB
0 1
2

∣∣0 =
1

2

(
ZNS − ZÑS + ZR − ZR̃

)
∼ ZB

0, 1
2

∣∣ 1
2

, (5.120)

ZB
1
2

1
2

∣∣0 =
1

2

(
−ZNS + ZÑS + ZR − ZR̃

)
∼ ZB

1
2
, 1
2

∣∣ 1
2

. (5.121)

In these formulae, we removed the zero-point energies from the partition functions with

α2 = 1/2.

Therefore, exact bosonization in (1+1) dimensions establishes the existence of two differ-

ent bases, the bosonic ZB
α0α1

∣∣0 =

(
ZB

1
2

1
2

∣∣0, Z
B

0 1
2

∣∣0, Z
B
1
2

0
∣∣0, Z

B

00
∣∣0

)
∼ ZB

α0α1

∣∣ 1
2

and the fermionic

one ZF =
(
ZNS , ZÑS , ZR, ZR̃

)
. They are related by the following matrix

ZB
α0α1

∣∣0 = OZF , with O =
1

2




−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1



, (5.122)

which leaves invariant the patterns of modular transformations SL(2,Z), namely the change

of basis represented by the matrix O (5.122) is an isometry with respect to the action of the

modular group, see Fig. 2.4 and Fig. 5.4.

Fermion number in the bosonic theory

Equation (5.122) shows that under dimensional reduction the eight bosonic partition func-

tions ZBα0,α1α2
become sums of fermionic functions of the sectors NS, ÑS,R, R̃. The linear
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combinations (5.118)-(5.121) are characterized by having definite fermion number (−1)F in

(1 + 1) dimensions: the relative sum (difference) between NS and ÑS as well as R and R̃

involves a projector over even (odd) number of fermionic excitations, thus over states with

positive (negative) definite fermion number. The results are listed in Table 5.1, where we

also specify partition functions that possess coefficients with positive and indefinite sign,

corresponding to values α0 = 0 (resp. α0 = 1/2), owing to the signs (−1)M0 in the definition

(5.117).

NS R positive Z indefinite Z

(−1)F 1 1 ZB00|0 , Z
B
00| 1

2

ZB1
2
,0|0 , Z

B
1
2
,0| 1

2

(−1)F −1 −1 ZB
0, 1

2
|0 , Z

B
0, 1

2
| 1
2

ZB1
2
, 1
2
|0 , Z

B
1
2
, 1
2
| 1
2

Table 5.1: Fermion number of reduced bosonic partition functions in (1 + 1) dimensions

From these results, we can assign a (2 + 1)-dimensional fermion number (−1)F to the

bosonic partition functions ZBα0,α1α2
, that is consistent with dimensional reduction. As shown

(−1)F

ZB000 , ZB1
2
,00

1

ZB
0, 1

2
1
2

, ZB1
2
, 1
2

1
2

−1

ZB
0, 1

2
0
, ZB

0,0 1
2

/

ZB1
2
, 1
2

0
, ZB1

2
,0 1

2

/

Table 5.2: Fermion number of bosonic partition functions in (2 + 1) dimensions

in Table 5.2, four partition functions have states with definite fermion number, while four

others have no assignment, that is denoted by (/). For example, ZB
0 1
2

0
would have fermionic

states according to the dimensional reduction x2 → 0, i.e. ZB
0 1
2
|0 in Table 5.1, and bosonic

states in the reduction x1 → 0, i.e. ZB
00| 1

2

in the same Table 5.1. The nature of the solitonic

bosonic states in the latter four sectors is not clear at the moment: they might correspond to

non-local degrees of freedom in the fermionic theory [3]. On the other hand, as we shall see

in the following, only the states with definite fermionic number participate in the discussion

on the stability and characterization of interacting topological insulators.

5.4.3 Bosonic Neveu-Schwarz and Ramond sectors in (2 + 1) dimensions

In the analysis of the fermionic theory of Section 4.5, we were able to identify (2 + 1)-

dimensional analogs of the partition functions for Neveu-Schwarz and Ramond sectors, that

are sums of positive terms and possess the low-energy expansions

NS : ZF1
2
, 1
2

1
2

∼ 1 + · · · ; R : ZF1
2
,00
∼ 2 + · · · . (5.123)
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The first state in the Neveu-Schwarz sector is the ground state and is bosonic, namely with

positive fermion and spin parity indices, while the doublet of the Ramond sector is fermionic.

These sectors are mapped one into another by half flux insertions according to Fig.4.8, and

they occupy a definite position in the pattern of modular transformations, as shown in

Fig.4.12.

In the following, we want to identify bosonic functions that possess these same character-

istics and, moreover, became equal to the corresponding fermionic functions under reduction

to (1 + 1) dimensions.

According to the pattern of bosonic modular transformations shown in Fig. 5.3, one would

be led to the identification ZBα0,α1α2
∼ ZFα0,α1α2

; however, the bosonic functions go into

sums of fermionic sectors under dimensional reduction, and moreover, the would-be Neveu-

Schwarz sector ZB1
2
, 1
2

1
2

would not be a sum of positive terms because to the factor (−1)M0 .

Note also that dimensional reduction and fermion number assignment would favor ZB0,00 as

the candidate Neveu-Schwarz sector; but, unfortunately, being a singlet under SL(3,Z), its

modular properties do not mach those of ZF1
2
, 1
2

1
2

.

The solution to this puzzle is found by considering a change of basis among the bosonic

functions that is an isometry with respect to the action of the modular group in Fig. 5.3 and

the V
1/2
i transformations for i = 1, 2 in Fig. 5.2 [3]. Let us first write this transformation

and then discuss its features. The map between the original eight-dimensional basis

ZB = (ZB1
2
, 1

2
1
2

, ZB
0, 1

2
1
2

, ZB1
2
, 1
2

0
, ZB

0, 1
2

0
, ZB1

2
,0 1

2

, ZB
0,0 1

2

, ZB1
2
,00
, ZB0,00). (5.124)

and the new basis Z ′B = MZB is given by the following matrix

M =
1

2




−1 1 1 1 1 1 1 1

1 −1 1 1 1 1 1 1

1 1 −1 1 1 1 1 1

1 1 1 −1 1 1 1 1

1 1 1 1 −1 1 1 1

1 1 1 1 1 −1 1 1

1 1 1 1 1 1 −1 1

1 1 1 1 1 1 1 −1




. (5.125)

This transformation leaves invariant the patterns of modular transformations and flux inser-

tions given in Fig. 5.3 and Fig. 5.2, respectively; namely, M commutes with Ti, Si, V
1/2
i , for

i = 1, 2. Furthermore, it is unique up to exchange of space coordinates x1 ↔ x2, that is the

up-down reflection of the patterns of transformations.

The idea behind the derivation of (5.125) is very simple [3]: the action of the modular

group in Fig. 5.3 shows that there are two invariants given by the sum of the first seven

elements of the multiplet in (5.124) and by the last element ZB0,00. In the new basis, the

eighth component, namely the new singlet, should be either the sum or the difference of the

two previous invariants; the second choice is correct and then the other components of the

matrix M follow by the action of flux and modular transformations on Z ′B0,00.
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The bosonic Neveu-Schwarz sector

In the new basis, we are ready to identify the bosonic analogue of the fermionic Neveu-

Schwarz sector of Section 4.5, that is

Z ′B1
2
, 1
2

1
2

↔ ZF1
2
, 1
2

1
2

, (5.126)

as suggested by the position occupied in the patterns of transformations. According to

(5.125), the superposition of bosonic functions is given by

Z ′B1
2
, 1
2

1
2

=
1

2

(
−ZB1

2
, 1
2

1
2

+ ZB
0, 1

2
1
2

+ ZB1
2
, 1
2

0
+ ZB

0, 1
2

0
+ ZB1

2
,0 1

2

+ ZB
0,0 1

2

+ ZB1
2
,00

+ ZB0,00

)
. (5.127)

This expression involves sums of terms with positive integer coefficients, owing to the presence

of the projectors (−(−1)M0 + 1)/2 in the first pair of functions and ((−1)M0 + 1)/2 in the

other pairs.

The low-energy expansion of the partition functions is done by inspecting the energy

spectrum of solitonic modes (5.60)

Eα1,α2

M0,M1,M2
=

M2
0

2mV (2)
+

(2π)2m

2V (2)
|(M1 + α1)ω2 − (M2 + α2)ω1|2 . (5.128)

This vanishes for α1 = α2 = 0 and M0 = M1 = M2 = 0 and the corresponding state is found

in the term (ZB1
2
,00

+ ZB0,00)/2 in (5.127). It gives

Z ′B1
2
, 1

2
1
2

∼ 1 + · · · . (5.129)

The first term can be identified with the Neveu-Schwarz, i.e. unperturbed, ground state of

the fermionic system. This state is neutral, since M0 = 0, and bosonic owing to the fermion

number assignments in Table (5.2) to the functions ZB1
2
,00

and ZB0,00. The identification of

the ground state is further confirmed by dimensional reduction. Applying the limits (5.118)-

(5.121) to the linear combination in (5.127), we see that the reductions for x2 → 0 or x1 → 0

gives the same result by construction. We find

Z ′B1
2

1
2

1
2

→ 1

2

(
ZNS + ZÑS + ZR − ZR̃

)
+ (exp(−E0))ZNS , (5.130)

where E0 is the energy shift for αi = 1/2 in the i-th dimension going to zero. In summary,

we found the following properties of the bosonic Neveu-Schwarz ground state in (2 + 1)

dimensions,

1 ↔ |Ω〉NS , (5.131)

H |Ω〉NS = Q |Ω〉NS = 0, (5.132)

(−1)F |Ω〉NS = (−1)2S |Ω〉NS = |Ω〉NS . (5.133)
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The bosonic Ramond sector

According to the analysis of the fermionic theory of Section 4.5, the (2 + 1)-dimensional

Ramond sector is found for half-flux insertions V
1/2
i , i = 1, 2, that map

V
1/2

1 · V 1/2
2 : Z ′B1

2
, 1
2

1
2

→ Z ′B1
2
,00
. (5.134)

In agreement with (5.125), the corresponding linear combination of bosonic partition func-

tions is given by

Z ′B1
2
,00

=
1

2

(
ZB1

2
, 1
2

1
2

+ ZB
0, 1

2
1
2

+ ZB1
2
, 1
2

0
+ ZB

0, 1
2

0
+ ZB1

2
,0 1

2

+ ZB
0,0 1

2

− ZB1
2
,00

+ ZB0,00

)
. (5.135)

We make the following observations:

• This expression is again a sum of terms with positive integer coefficients.

• Owing to the projector (−ZB1
2
,00

+ ZB0,00)/2, the previous Neveu-Schwarz ground state

is cancelled.

• Under flux insertion, the Neveu-Schwarz ground state has flowed in the term (ZB1
2
, 1
2

1
2

+

ZB
0, 1

2
1
2

)/2. The corresponding energy is obtained choosing α1 = α2 = 1/2 and M0 =

M1 = M2 = 0 in (5.128). This is a degenerate state, indeed E
1
2

1
2

000 = E
1
2

1
2

0−1−1.

• From the above assignments of fermion number in Table (5.2), the functions ZB1
2
, 1
2

1
2

and ZB
0, 1

2
1
2

possess fermionic states with (−1)F = (−1)2S = −1. Thus, the two degen-

erate states in the partition function (5.135) form a Kramers pair under time reversal

transformations,

Z ′B1
2
,00
∼ · · ·+ exp

(
−E

1
2

1
2

000

)
+ exp

(
−E

1
2

1
2

0−1−1

)
+ · · · . (5.136)

• The lowest energy states in Z ′B1
2
,00

are found in the terms (ZB1
2
, 1
2

0
+ZB

0, 1
2

0
)/2 or (ZB1

2
,0 1

2

+

ZB
0,0 1

2

)/2, depending on the torus geometry. This can be checked taking a rectangular

torus with ω12 = ω21 = 0 for simplicity.

• The lowest energy states have not definite fermion number as it follows from the Ta-

ble 5.2. Thus, although they appear degenerate in energy, they do not correspond to a

Kramers pair under TR transformations.

• The two dimensional reductions of Z ′B1
2
,00

are again equivalent by construction and gives

the result

Z ′B1
2
,00
→ ZR + (exp(−E0))

1

2

(
ZNS + ZÑS + ZR − ZR̃

)
. (5.137)
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Summarizing, the properties of the two degenerate ground states in (5.136), obtained by the

evolution of the Neveu-Schwarz ground state under the insertion of two fluxes, are

exp(−E
1
2

1
2

000)↔ |Ω〉R , exp(−E
1
2

1
2

0−1−1)↔ |Ω〉′R , E
1
2

1
2

000 = E
1
2

1
2

0−1−1, (5.138)

Q |Ω〉R = Q |Ω〉′R = 0, (−1)2S |Ω〉R = (−1)2S |Ω〉′R = −1, T |Ω〉R = |Ω〉′R .

Therefore, since the fermionic Ramond sector ZF1
2
,00

satisfies exactly these properties (see

Section 4.5), we can identify Z ′B1
2
,00

as the bosonic analogue, namely

Z ′B1
2
,00
∼ ZF1

2
,00
. (5.139)

This correspondence is valid although the Kramers pair (|Ω〉R , |Ω〉′R) does not coincide with

the lowest energy states of the corresponding Ramond sector and, thus, there is not a cor-

respondence between Kramers pairs in two and three dimensions. Nevertheless, as we shall

see in the following, the stability argument continues to be hold.

5.4.4 Stability of bosonic topological insulators

The previous analysis has shown that the surface theory with coupling constant K = 1

possesses fermionic degrees of freedom: these are not free particles, owing to the differences

in the bosonic and free fermionic spectra, but nonetheless their partition functions show the

characteristic eight spin sectors, that are mapped one into the other by the addition of half

fluxes through the two loops of the Corbino geometry and by modular transformations [3].

The entire analysis regarding modular transformations, dimensional reductions, change

of basis and fermion number assignments can be extended to the bosonic theory with odd

integer values of K > 1. A few clarifications are needed:

• The maps between sectors are found by adding K/2 fluxes instead of half fluxes, as

shown in Fig. 5.2.

• Each partition function splits into K3 anyon sectors for mµ = 0, 1, . . . ,K − 1 and

µ = 0, 1, 2, as shown in Eq.(5.77)

ZBα0,α1α2
=

∑

mµ∈Z3
K

ZBm0,m1,m2
α0,α1α2

, (5.140)

where the indices mµ are the fractional parts of solitonic numbers, Mµ →Mµ+mµ/K.

• The analysis of states and energies for K = 1 is also valid for K > 1, since it applies

to the electron spectrum that is contained in the sub-partition function (5.140) with

mµ = 0 for each spin sector.
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• The pattern of modular transformations is again given by Fig. 5.3; there appears phase

factors among the anyonic sectors that do not affect the results and will specified later.

The strategy to prove the stability of bosonic (fractional) topological insulators will be

the following: repeat the Fu-Kane-Mele stability argument for fermionic insulators of Section

4.5, by addressing the fermionic states identified within the bosonic theory by the previous

analysis.

Upon following the evolution of the low-lying states of Z ′B1
2
, 1
2

1
2

in (5.127) under continuos

change of the fluxes Φi from zero to KΦ0/2, one can check that the Ramond state |Ω〉R
is the evolution of the Neveu-Schwarz one |Ω〉NS . The Ramond state possesses a Kramers

partner |Ω〉′R, that remains degenerate upon adding any time-reversal invariant interaction

to the Hamiltonian. Then, following the evolution back to zero flux of |Ω〉′R, one finds that

this matches the following excited state of the Neveu-Schwarz sector

|ex〉NS ↔ exp(−E00
0−1−1), (5.141)

whose energy is of order O(1/R1, 1/R2). According to the stability argument discussed in

Section 4.5, it follows that the bosonic spectrum remains gapless in the thermodynamic limit

in presence of TR invariant interactions. This completes the proof of stability of bosonic

topological insulators for any odd integer value of the coupling K.

It is worth stressing the usefulness of the effective field theory approach for interacting

topological states. The stability argument originally using band theory was first translated

into the language of fermionic surface states and then reformulated in terms of properties

of partition functions. Then, the map between fermionic and bosonic partition functions

was used to extend the argument to interacting topological states (hydrodynamic approach)

which cannot be described by band theory.

The stability of the surface excitations can be again related to a Z2 anomaly. Indeed,

the bosonic Neveu-Schwarz and Ramond states related by the insertion of half- fluxes are

eigenstates of a TR invariant Hamiltonian, but possess different spin-parity index, i.e.

(−1)2S |Ω〉NS = |Ω〉NS , (−1)2S |Ω〉R = − |Ω〉R , (5.142)

although this quantity is conserved by TR symmetry. Therefore, similarly to the fermionic

case, we interpret this change as being a Z2 anomaly, which is equivalent to the Z2 index of

stability.

5.4.5 Stability and modular invariance

We now determine the transformations under SL(3,Z) of the bosonic partition functions

(5.77) with K > 1 [3]. The oscillator part of partition functions ZHO does not depend on

K and its transformations were already described in Section 5.4.1. The K3 anyon sectors

ZBm0m1m2
α0,α1α2

within each spin sector carry a unitary linear representation of the modular

group. This is just the generalization of the K2 sectors of topological insulators in (2 + 1)

dimensions, called Kλ(τ)K(τ)λ′ , λ, λ
′ ∈ ZK in Chapter 2 [1]; the only difference is that there

is no chiral factorization. The action of T1 reads
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T1 : ZBm0m1m2
α0,0α2

→ exp
(
−2πi

m0m1

K

)
ZBm0m1m2
α0,0α2

ZBm0m1m2
1
2
, 1
2
α2

→ exp
(
−2πi

m0m1

K

)
ZBm0m1m2

0, 1
2
α2

ZBm0m1m2

0, 1
2
α2

→ exp
(
−2πi

m0m1

K

)
ZBm0m1m2

1
2
, 1
2
α2

(5.143)

while S1 is represented by

S1 : ZBm0m1m2
α0,α1α2

→
∑

m̃0,m̃1∈ZK

1

K
exp

(
2πi

m̃1m0 + m̃0m1

K

)
ZB m̃0m̃1m2
α1,α0α2

(5.144)

The map between spin sectors for K > 1 is equal to that of K = 1 shown in Fig.5.3. As

in earlier discussions, the action of T2 and S2 can be found with the help of the parity P12,

leading to the matrices

(T2)mµ,m̃µ = δ
(3)
mµ,m̃µ

exp
(

2πi
m0m2

K

)
,

(S2)mµ,m̃µ =
1

K
δm1,m̃1 exp

(
2πi

m̃2m0 + m̃0m2

K

)
. (5.145)

We remark that these results have been first found in Ref. [116] for the case of ZB0,00.

In Section 5.2 we recalled the quantization of the global degrees of freedom of the BF

theory on the spatial three-torusM = T3×R. We then discussed the relation between bulk

and boundary observables, and how the bulk spectra is reproduced in the quantization of

the surface bosonic theory, through the quantum numbers of solitonic states. We note that

the matrices T1, T2 reproduce the statistical phases coming from braiding anyons around

vortex lines [117, 132, 133, 134]. This is another instance of the relation between bulk and

boundary observables, that has been stressed in Ref.[116], and further investigated for more

general hydrodynamic theories representing the three-loop braiding statistics [132, 133, 134,

135, 136, 137].

More precisely, in the geometry of the thick spatial two-torus of Fig.5.1, the conservation

of charge and flux between bulk and boundary implies that the partition function of anyon

indices (m0,m1m2) describes the edge theory in presence of bulk charge −m0 and bulk

fluxes (−m1,−m2). Modular invariant partition functions are obtained as usual by taking

linear combinations of anyon sectors. We should consider the case of vanishing bulk charge

m0 = 0, otherwise there is no symmetry of exchanging space and time. The following

expression summing over all fractional values of the fluxes (m1,m2),

ZBα0,α1α2
=

∑

m1,m2∈ZK

ZB
′ 0m1m2

α0,α1α2
(5.146)
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is left invariant by the modular transformations, apart from the usual maps between spin

sectors of Fig 5.3. Of course this expression matches earlier results under the dimensional

reduction of Section 5.4.2

We remark that the stability of the bosonic topological insulators is again related to the

the impossibility of writing a modular invariant partition function that is consistent with the

physical requirements. The expression that is invariant under V
K/2

1 , V
K/2

2 and the modular

group is the sum over the eight bosonic spin sectors of (5.146)

ZBINV =
∑

α0,α1,α2=0, 1
2

ZBα0 α1α2
. (5.147)

In analogy with the fermionic case in Section 4.6, this partition function is not consistent

with TR symmetry due to the presence of the Z2 anomaly, the change of the spin parity

index between the the bosonic Neveu-Schwarz and Ramond states related by the insertion

of half- fluxes. Therefore, TR symmetry requires not to sum over the sectors, leaving a set

of eight functions ZBα0,α1α2
that are modular covariant.
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Chapter 6

Conclusions and perspectives

In this thesis we have analyzed time-reversal invariant topological insulators in two and

three spatial dimensions. We have discussed their effective actions, computed the partition

functions of the edge and surface excitations, recovered the Z2 classification and extended it

in presence of interactions.

Our analysis clarified that the stability of these topological phases is associated to an

anomaly of the boundary theories. Indeed, the states of the Neveu-Schwarz and Ramond

sectors possess different values of the Z2 spin-parity index, that is a time-reversal invariant

quantity. It turns out that anomalous system possesses gapless excitations protected by the

symmetry.

Furthermore, the partitions functions of topological insulators have interesting geomet-

rical properties connected to stability. Indeed, studying the behavior under two and three

dimensional modular transformations, we found that the stability is associated to the impos-

sibility of having a modular invariant partition function that is consistent with time-reversal

symmetry. We have interpreted this result as a discrete gravitational anomaly accompanying

the Z2 spin-parity anomaly.

In this thesis, we have also answered the question of whether non-anomalous two dimen-

sional systems does become fully gapped. By using CFT methods, we found the interactions

that completely gap the edge modes of unstable Abelian and non-Abelian topological insu-

lators in two dimensions.

In order to find these results, we have analyzed the low energy effective field theories

of both two and three dimensional topological insulators. In two dimensions, this analysis

took full advantage of the exact bosonization, while in (2+1) dimensions an analogous exact

mapping between fermions and bosons cannot be found. Our analysis clarified some aspects

of the recent discussions on effective field theories for three dimensional topological insulators

as well as added some insight on the general problem of bosonization in (2 + 1) dimensions.

We considered the (3+1) dimensional topological BF gauge theory as the hydrodynamic

effective field theory for topological insulators. First, studying the surface effective field

theory, we introduced another non-local dynamics for the bosonic field, that reproduces the

fermionic induced action in presence of the background gauge field, to quadratic order.
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Furthermore, by quantizing the compactified scalar field we determined the surface parti-

tion functions on the torus geometry. We found eight functions that are different from those

of the fermionic spin sectors, but transform in the same way for ‘large gauge transforma-

tions’, i.e. for magnetic flux insertions and modular transformations. Moreover, bosonic and

fermionic functions become equal under dimensional reduction to (1 + 1) dimensions. We

have assigned fermion numbers to the bosonic states and, thus, we have defined the corre-

sponding three dimensional bosonic Neveu-Schwarz and Ramond sectors. By means of this

correspondence, we reformulated the flux insertion argument and the Z2 stability criterion

for every interacting topological insulators with K > 1, with K odd integer.

Our study of the bosonic theory is related with recent conjectures of bosonization in

(2 + 1) dimensions. The basic picture underlying these correspondences is that of ‘attaching

flux tubes to particles’, that changes the statistics from fermionic to bosonic and viceversa

[13] [130]. One flux per particle can be attached by coupling matter to a ‘statistical’ gauge

field Aµ with Chern-Simons action of coupling constant K = 1: this interaction can be

removed by a (singular) gauge transformation that changes the statistics of wave functions

from fermionic to bosonic and viceversa. Recently, several authors have suggested that flux

attachment also holds for relativistic excitations and have proposed a web of dualities between

fermionic and bosonic theories [128, 129, 124]. In our setting, we can argue that the flux

attachment is represented by the choice of boundary conditions for the soliton excitations

in the Ramond sector, corresponding to half fluxes added along the two spatial cycles of the

torus.

The compactified bosonic theory is an interesting exactly solvable model of interacting

fermions that could be further analyzed by computing correlation functions and other observ-

ables. In our comparison of bosonic and fermionic surface theories, we discussed properties

that are rather independent of interactions; thus, we did not address the problem of a precise

map between fermionic and bosonic dynamics. Nonetheless, the quantization of the other

non-local bosonic action introduced in Section 5.1.3 and the study of partition functions

could be future steps in understanding the relation between interacting bosons and fermions

in (2 + 1) dimensions.

In this thesis we discussed the simplest (3 + 1) dimensional BF theory involving particle

and vortex excitations. Recently, some authors have pointed out that vortex excitations in

three spatial dimensions may possess a new effect, the so called three-loop braiding [132, 133,

134, 135]. In order to capture this statistical phase, one needs more BF theories coupled

together [116, 136, 137]. Some progress in studying the quantization of these theories has

been done [116, 137]. It would be interesting to study the relations between these theories

and interacting fermionic states. Upon repeating the quantization of the solitonic modes

of this thesis and introducing the corresponding Ramond sectors, we could extend the Z2

stability criterion to these theories.

We conclude this thesis by stressing that the effective field theory approach has many

interesting direction to explore in the study of topological states. Recently, new phases

have been introduced called symmetry enriched topological phases [138]. In these cases, the
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surface excitations are gapped but supports intrinsic two dimensional topological order, thus

the systems cannot be adiabatically continued into the trivial phase [139] [140]. A well-known

example is the T-Pfaffian state, a time-reversal state that possesses non-Abelian excitations

similar to those of the Pfaffian state in the QHE [141, 142, 143]. To understand these phases

new duality relations between fermionic and bosonic theories have been recently proposed

[125, 126].
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Appendix A

Fermion quantum numbers

In this appendix we shall give some details about the fermion quantum numbers discussed in

the effective theories of the quantum Hall effect and topological insulators in two and three

dimensions. First we will discuss the Weyl and the Dirac fermion in two dimensions, thus

we will generalize these results to the three dimensional case.

Weyl fermion in two dimensions

To discuss the Dirac theory in two dimensions we take advantage of the chiral/antichiral

decomposition that occurs in the massless case, namely the fact that the massless Dirac

fermion can be decomposed in two massless Weyl fermions left and right moving, respectively.

We focus our attention on one Weyl fermion defined on the circle parametrized by the angle

θ and decompose it in terms of rising and lowering operators as follows

ψ(θ, t) =
∑

k

dke
ik(θ−t). (A.1)

The fermionic modes satisfy the anti-commutation rules {dk, dl} = δkl and act on the vacuum

as

dk |Ω〉 = 0, k > 0, (A.2)

d†k |Ω〉 = 0, k 6 0. (A.3)

It follows that dk with k > 0 and d†k with k 6 0 annihilate, respectively, particle and

antiparticle excitations.

Imposing antiperiodic (periodic) spatial boundary conditions we find that the field expan-

sion (A.1) takes half-integer (integer) values defining the Neveu-Schwarz (Ramond) sector

as follows

ψ(θ + 2π, t) =




−ψ(θ, t), if k ∈ Z + 1

2 Neveu-Schwarz,

ψ(θ, t), if k ∈ Z Ramond.
(A.4)

Thus, the Ramond sector has a zero energy mode satisfying the anti-commutation rule

{d†0, d0} = 1 and acting on the vacuum as d†0 |Ω〉 = 0.
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The normal ordered expression of the charge operator takes the form [20]

Q =
∑

k

: d†kdk :=
∑

k>0

(
d†kdk − d−kd

†
−k

)
if k ∈ N +

1

2
, (A.5)

Q =
∑

k

: d†kdk :=
∑

k>0

(
d†kdk − d−kd

†
−k

)
+ : d†0d0 : if k ∈ N. (A.6)

In these expressions the renormalized charge was defined in such a way that the Neveu-

Schwarz ground state is neutral, Q |Ω〉NS = 0.

To find the charge of the Ramond ground state we have to determine the normal or-

dered prescription of the zero modes operators. First, let us show that the Ramond sector

possesses two degenerate ground states. Following standard CFT arguments [22] [21], we in-

troduce the operator (−1)F , that anti-commutes with the fermion field (A.1), (−1)Fψ(θ, t) =

−ψ(θ, t)(−1)F . In terms of modes, this means that

{(−1)F , dk} = 0 for all k, (A.7)

that is (−1)F has eigenvalues ±1 acting on states with even and odd numbers of fermion

creation operators, respectively. Since the zero modes anti-commutes with (−1)F also, it

follows that the Ramond sector possesses two degenerate ground states |Ω〉±R, such that

(−1)F |Ω〉±R = ± |Ω〉±R . (A.8)

This condition can be satisfied taking |Ω〉+R such that

d†0 |Ω〉+R = 0, |Ω〉−R = d0 |Ω〉+R . (A.9)

The normal ordering of the zero modes is written in the general form

: d†0d0 := d†0d0 − x, x = 〈d†0d0〉 , (A.10)

where 0 6 x < 1 is a parameter expressing the partial filling of the ground state located at the

Fermi level. It can be shown that the higher moments of charge and Hamiltonian operators

satisfy the Virasoro and Kac-Moody (see Chapter 1), consistently with the fermionic anti-

commutation relations only for x = 1/2 [20]. With this choice, the charge operator of the

Ramond sector takes the following form

Q =
∑

k>0

(
d†kdk − d−kd

†
−k

)
+ d†0d0 −

1

2
, (A.11)

from which follows that

Q |Ω〉±R = ±1

2
|Ω〉±R . (A.12)

In Table (A.1) we summarize the indices and charges assigned to ground states of the

Weyl theory. These values are those obtained by the insertion of half-flux Φ0/2 described in

Chapter 2.
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ground state Q (−1)F

|Ω〉NS 0 1

|Ω〉+R 1/2 1

|Ω〉−R −1/2 −1

Table A.1: Indices and charges of the Neveu-Schwarz and Ramond ground states of the Weyl

theory.

Dirac fermion in two dimensions

In two space-time dimensions, the massless Dirac fermion is obtained combining together one

chiral and antichiral Weyl fermion. This realizes the edge theory of 2D topological insulator

with ν↑ = −ν↓ = 1, also called quantum spin Hall effect (see Section 2.1). The global charge

operator is given by the sum of the charge operators, respectively, of the chiral (spin up) and

anti-chiral (spin down) components, namely

Q = Q↑ +Q↓. (A.13)

The charge Q↓ is defined with opposite sign w.r.t. Q↑, as shown by the coupling to the

electromagnetic background leading to vanishing total Hall current. Therefore, the antichiral

charge Q↓ is defined by the same expressions in (A.5) and (A.11) changed in sign, for the

antichiral Neveu-Schwarz and Ramond sectors, respectively. It turns out that the total

charge has no shift in the Ramond sector, leading to

Q |Ω〉+↑ |Ω〉+↓ = 0, (A.14)

as shown in Table A.2.

In Chapter 2 we introduce the spin-parity index that is related to the difference of charges

Q↑ −Q↓,
(−1)2S = (−1)F = (−1)Q↑−Q↓ . (A.15)

In this expression, the normal ordering shift in the Ramond sector adds up for the two

chiralities, giving the result

(−1)2S |Ω〉+↑ |Ω〉+↓ = − |Ω〉+↑ |Ω〉+↓ . (A.16)

The values of charge and spin-parity for all ground states of the Neveu-Schwarz and Ramond

sectors are summarized in Table A.2 and match those obtained in Chapter 2.

Dirac fermion in three dimensions

In (2 + 1) dimensions the Clifford algebra (4.11) does not have a chiral-antichiral decompo-

sition; thus, it is not obvious how to generalize the previous results. Therefore, we should

reconsider the problem of defining the spin quantum number, and then the spin-parity index,

of the ground states of Neveu-Schwarz and Ramond sectors.
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ground state Q↑ Q↓ Q (−1)2S = (−1)F

|Ω〉NS = |Ω〉↑ |Ω〉↓ 0 0 0 1

|Ω〉(1)
R = |Ω〉+↑ |Ω〉+↓ 1/2 −1/2 0 −1

|Ω〉(2)
R = |Ω〉−↑ |Ω〉+↓ −1/2 −1/2 −1 1

|Ω〉(3)
R = |Ω〉+↑ |Ω〉−↓ 1/2 1/2 1 1

|Ω〉(4)
R = |Ω〉−↑ |Ω〉−↓ −1/2 1/2 0 −1

Table A.2: Charges and indices of the Neveu-Schwarz |Ω〉NS and Ramond |Ω〉(i)R , i = 1, . . . , 4

ground states of the Dirac theory in (1+1) dimensions.

Let us start again from the (2 + 1) dimensional Dirac field involving creation and annihi-

lation operators of particles (a†n, an) and antiparticles (b†n, bn), where n = (n1, n2) ∈ Z2 [97].

These operators obey anti-commutation relations

{
a†n, an′

}
= δn,n′ ,

{
b†n, bn′

}
= δn,n′ , (A.17)

and satisfy the vacuum conditions

an |Ω〉 = bn |Ω〉 = 0 n1, n2 ∈ Z. (A.18)

In (2 + 1) dimensions, the charge and fermion operators are defined as, respectively,

Q =
∑

n

(
a†nan − b†nbn

)
, (A.19)

(−1)F = (−1)
∑

n a
†
nan+b†nbn . (A.20)

Requiring antiperiodic and periodic spatial boundary conditions, we can define the (2+1)

dimensional equivalents of the Neveu-Schwarz and Ramond sectors, respectively. As shown

in Chapter 4, the Neveu-Schwarz sector takes n1, n2 ∈ Z+1/2 and has a unique ground state

|Ω〉 1
2

1
2
; this is neutral and its spin parity index, equal to the fermion number, is given by

Q |Ω〉 1
2

1
2

= 0, (A.21)

(−1)2S |Ω〉 1
2

1
2

= (−1)F |Ω〉 1
2

1
2

= |Ω〉 1
2

1
2
. (A.22)

As shown in Chapter 4, the Ramond sector possesses indices n1, n2 ∈ Z. Thus, using the zero

modes operators (a00, a
†
00) and (b00, b

†
00), one obtains four degenerate ground states |Ω〉(i)00 ,

with i = 1, 2, 3, 4.

In Chapter 4, upon following the evolution of the spectrum under the insertion of half

fluxes, we saw that the Neveu-Schwarz ground state is mapped in the following Ramond

ground state: |Ω〉 1
2

1
2
→ |Ω〉(1)

00 , while the |Ω〉(4)
00 is identified as the partner of the Kramers

pair, namely |Ω〉(4)
00 = T |Ω〉(1)

00 . Both states are neutral, i.e.

Q |Ω〉(1)
00 = Q |Ω〉(4)

00 = 0. (A.23)
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Then, the Fock space identification of the four states in the Ramond sector of the fermionic

partition function is:

|Ω〉(1)
00 ≡ |Ω〉R , |Ω〉(2)

00 = a†00 |Ω〉R , (A.24)

|Ω〉(3)
00 = b†00 |Ω〉R , |Ω〉(4)

00 = b†00a
†
00 |Ω〉R , (A.25)

where |Ω〉R is the Ramond ground state.

Let us reconsider the normal ordering of the charge and fermion number given in (A.19)

and (A.20), starting from the expansion around the Fermi level of a non-relativistic spectrum

at finite volume. In the case of the Neveu-Schwarz sector, as showed in Fig. 4.7, the Fermi

level is located in between the empty and filled states, because the energy spectrum (4.35) is

strictly positive. This gives a clear identification of particles and antiparticles and determines

the standard normal-ordering of the relativistic expressions written in (A.21) and (A.22).

In the Ramond sector, instead, there is an ambiguity because two charged excitations

are exactly located at the Fermi level (see Fig. 4.9). Thus, we shall assume that they are

partially filled as in the previous case of two dimensions:

〈a†00a00〉 = x, 〈b†00b00〉 = 1− x, 0 ≤ x < 1 (A.26)

It turns out that the normal-ordered expressions of charge and fermion number in (A.19)

and (A.20) should be modified in the term (n1, n2) = (0, 0) of the sums, as follows

Q =
∑

n

a†nan − b†nbn + 1− 2x, (A.27)

(−1)F = (−1)
∑

n a
†
nan+b†nbn+1 (A.28)

Upon further assuming the particle-hole symmetric filling x = 1/2, we obtain the following

quantum number assignments

(−1)2S = (−1)F = −1 on |Ω〉(1)
00 , |Ω〉

(4)
00 , (A.29)

(−1)2S = (−1)F = 1 on |Ω〉(2)
00 , |Ω〉

(4)
00 . (A.30)

These are the generalizations of the results in (1 + 1) dimensions discussed before. The

values of charge, fermion number and spin-parity indices of the Neveu-Schwarz and Ramond

ground states are summarized in Table (A.3).

The expressions for Q and (−1)F in (A.27) and (A.28) are equivalent to the previous

results for the (1 + 1) dimensional Dirac theory (A.11) taking into account the pairing of

chiralities explained earlier and the particle vs antiparticle identification.
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ground state Q (−1)2S = (−1)F

|Ω〉 1
2

1
2

0 1

|Ω〉(1)
00 0 −1

|Ω〉(2)
00 1 1

|Ω〉(3)
00 −1 1

|Ω〉(4)
00 0 −1

Table A.3: Charges and indices of the Neveu-Schwarz and Ramond ground states of the

massless Dirac theory in (2 + 1) dimensions.
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Appendix B

Modular transformation and spin

structures of 2D topological

insulators

In the following we give the expressions of partition functions for the four spin sectors

NS, ÑS, R, R̃, that describe the edge excitations of topological insulator models examined

in the main text. We describe their behavior under flux insertion and modular transforma-

tions [1].

B.1 Laughlin states

The Laughlin states discussed in Section 2.3.1 are described by the c = 1 CFT of the chiral

boson [21]. The anyon sectors for the chiral modes of the NS and ÑS spin sectors are, for

λ = 1, · · · , p, p odd, [23]:

KNS
λ (τ, ζ; k) =

F (τ, ζ)

η(τ)

∑

n∈Z
exp

(
i2π

(
τ

(np+ λ)2

2p
+ ζ

np+ λ

p

))
, (B.1)

KÑS
λ (τ, ζ; k) =

F (τ, ζ)

η(τ)

∑

n∈Z
(−1)pn exp

(
i2π

(
τ

(np+ λ)2

2p
+ ζ

np+ λ

p
+
λ

2

))
,

with F = exp
[
−π(Imζ)2/p Imτ

]
is a non-holomorphic prefactor and η(τ) the Dedekind

function

η(τ) = q
1
24

∞∏

n=1

(1− qn), q = exp(i2πτ). (B.2)

The anyon sectors of the R and R̃ spin sectors are defined by:

KR
λ = KNS

λ+ p
2
,

KR̃
λ = KÑS

λ+ p
2
. (B.3)
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The edge partition functions for each spin sector (Eq.(2.17) and (2.18)) are obtained by

matching the fractional charge of the chiral and antichiral anyon sectors locally at the edge

Z(σ) =

p∑

λ=1

K
(σ)
λ K

(σ)
−λ , σ = NS, ÑS,R, R̃. (B.4)

The transformation of the anyon sectors ((B.1) and (B.3)) under the modular group,

generated by S and T , and for the insertion of one and p/2 fluxes through the annulus, the

V and V
p
2 transformations, respectively, are obtained by extending the calculations of Ref.

[23] [66]. Altogether they are:

• S

KNS
λ (−1

τ
,
−ζ
τ

) = eiϕ
p∑

λ′=1

Sλλ′ K
NS
λ′ (τ, ζ), (B.5)

KÑS
λ (−1

τ
,
−ζ
τ

) = eiϕ
p∑

λ′=1

Sλλ′K
R
λ′(τ, ζ),

KR
λ (−1

τ
,
−ζ
τ

) = eiϕ
p∑

λ′=1

Sλλ′ K
ÑS
λ′ (τ, ζ),

KR̃
λ (−1

τ
,
−ζ
τ

) = exp

(
2πi

p

4

)
eiϕ

p∑

λ′=1

Sλλ′K
R̃
λ′(τ, ζ),

with

Sλλ′ =
1√
p

(
2πi

λλ′

p

)
, eiϕ = exp

(
iπ

p
Re

(
ζ2

τ

))
. (B.6)

• T

KNS
λ (τ + 1, ζ) = exp

(
− 2πi

λ

2

)
TaK

ÑS
λ (τ, ζ), (B.7)

KÑS
λ (τ + 1, ζ) = exp

(
2πi

λ

2

)
TaK

NS
λ (τ, ζ),

KR
λ (τ + 1, ζ) = TaTbK

R
λ (τ, ζ),

KR̃
λ (τ + 1, ζ) = TaTbK

R̃
λ (τ, ζ),

with

Ta = exp

(
2πi

(
λ2

2p
− 1

24

))
, Tb = exp

(
2πi

(
p

8
+
λ

2

))
. (B.8)

• V

KNS
λ (τ, ζ + τ) = VΦ0K

NS
λ+1(τ, ζ), (B.9)

KÑS
λ (τ, ζ + τ) = −VΦ0K

ÑS
λ+1(τ, ζ),

KR
λ (τ, ζ + τ) = VΦ0K

R
λ+1(τ, ζ),

KR̃
λ (τ, ζ + τ) = −VΦ0K

R̃
λ+1(τ, ζ),

with

VΦ0(τ, ζ) = exp

(
− 2πi

1

p

(
Re

τ

2
+Reζ

))
(B.10)
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• V p
2

KNS
λ (τ, ζ +

pτ

2
) = V p

2
Φ0

KR
λ , (B.11)

KÑS
λ (τ, ζ +

pτ

2
) = V p

2
Φ0

exp

(
− 2πi

p

4

)
KR̃
λ ,

KR
λ (τ, ζ +

pτ

2
) = V k

2
Φ0
KNS
λ ,

KR̃
λ (τ, ζ +

pτ

2
) = V p

2
Φ0

exp

(
− 2πi

p

4

)
KÑS
λ ,

with

V p
2

Φ0
= exp

(
− 2πi

(
p

8
Reτ +

1

2
Reζ

))
. (B.12)

Upon using these formulas, we obtain that the transformations of partition functions (B.4)

illustrated in Fig. 2.4.

B.2 Pfaffian states

The edge partition function for the Pfaffian states in the Neveu-Schwarz spin sector is given

in (2.49) [66]. We obtain the partition functions of the other spin sectors acting with T and

ST on ZNSPf (2.49) as described in Section 2.4.3. They read:

Z
NS/ÑS
Pf =

∣∣K0I ±K4ψ
∣∣2 +

∣∣K0ψ ±K4I
∣∣2 +

∣∣(K1 ±K−3)σ
∣∣2

∣∣K2I ±K−2ψ
∣∣2 +

∣∣K2ψ ±K−2I
∣∣2 +

∣∣(K3 +K−1)σ
∣∣2,

(B.13)

Z
R/R̃
Pf =

∣∣K3I ±K−1ψ
∣∣2 +

∣∣K3ψ ±K−1I
∣∣2 +

∣∣(K0 ±K4)σ
∣∣2

∣∣K−3I ±K1ψ
∣∣2 +

∣∣K−3ψ ±K1I
∣∣2 +

∣∣(K2 +K−2)σ
∣∣2.

We have written the neutral characters with the same symbol of the Ising fields

χ0
0 = χ2

2 = I, χ1
1 = χ1

3 = σ, χ0
2 = χ2

0 = ψ, (B.14)

that model the neutral excitations of this system [21] [24].

B.3 Read-Rezayi states

The Read-Rezayi models [67] are based on the neutral Zk parafermion conformal theo-

ries with central charge c = 2(k − 1)/(k + 2), and are described by the coset construction

ŜU(2)k/Û(1)2k [66]. For these theories the values of the stability parameters are p = kM+2

with M = 1, 3, 5, · · · and k = 2, 3, · · · . The expressions of partition functions depend on the

parity of k.
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Partition functions for RR states with even k

The charge characters are given by the functions (1.40) Kλ(τ, kζ, kp) with periodicities

Kλ+kp = Kλ. The Zk parafermionic characters that describe the neutral part are denoted

by χ`m(τ ; 2k), and have the following periodicities and modular transformations [66],

χ`m = χ`m+2k = χk−`m+k, m = ` mod 2, (B.15)

χ`m = 0 m = `+ 1 mod 2,

S : χ`m(−1

τ
, 0; 2k) =

1√
2k

k∑

`′=0

2k∑

m′=1

exp

(
− 2πi

mm′

2k

)
s`,`′ χ

`′
m′(τ ; 2k), (B.16)

s`,`′ =

√
2

k + 2
sin

(
π(`+ 1)(`′ + 1)

k + 2

)
,

T : χ`m(τ + 1, 0; 2k) = exp

(
2πi

(
`(`+ 2)

4(k + 2)
− m2

4k
+

1

24

))
χ`m(τ ; 2k).

Starting from the Neveu-Schwarz sector given in Ref.[66] and acting with T and ST , we find

those of the other spin sectors. Altogether they read:

Θ`NS
a (τ, ζ; k) =

k∑

b=1

Ka+bp(τ, kζ; kp) χ`a+2b(τ ; 2k), (B.17)

Θ`ÑS
a (τ, ζ; k) =

k∑

b=1

(−1)bKa+bp(τ, kζ; kp) χ`a+2b(τ ; 2k),

Θ`R
a (τ, ζ; k) =

k∑

b=1

Ka+bp(τ, kζ; kp) χ`
a+2b+ k

2

(τ ; 2k),

Θ`R̃
a (τ, ζ; k) =

k∑

b=1

(−1)bKa+bp(τ, kζ; kp) χ`
a+2b+ k

2

(τ ; 2k),

where a = 0, 1, · · · , p− 1, and ` = 0, 1, · · · , k. The partition functions in the corresponding

spin sectors are:

Z
(σ)
RR =

k∑

`=0

p∑

a=1
a=` mod 2

Θ`(σ)
a Θ

`(σ)
−a , σ = NS, ÑS,R, R̃. (B.18)

We note that the partition functions of the Pfaffian state (Eq.B.13) are obtained by choosing

M = 1 and k = 2 in the previous formulas. The transformations of the anyon sectors (B.17)

and the partition functions (B.18) under the insertion of fluxes and the modular group are

the same of the Pfaffian state, represented in Fig. 2.4 (a) and (c).
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Partition functions for RR states with odd k

In this case, the charge characters are different for each spin sector. For the NS and ÑS

sectors they are:

KNS
λ (τ, kζ; kp) = Kλ(τ, kζ; kp), (B.19)

KÑS
λ (τ, kζ; kp) =

F (τ, ζ)

η(τ)

∑

n∈Z
(−1)nkpexp

[
2πi

(
τ

2kp

(
nkp+ λ

)2
+
ζ

p

(
nkp+ λ

)
+
λ

2

)]
.

Those of the R and R̃ spin sectors are defined by:

KR
λ = KNS

λ+ kp
2

, (B.20)

KR̃
λ = KÑS

λ+ kp
2

.

These charge characters have the same periodicities (2.40), i.e. Kλ = Kλ+kp. Making use of

Zk parafermionic characters χ`m(τ ; 2k) introduced in (B.15), the anyon sectors for four spin

sector take the usual form of simple current invariants:

Θ`(σ)
a (τ, ζ; k) =

k∑

b=1

K
(σ)
a+bp(τ, kζ; kp) χ`a+2b(τ ; 2k), σ = NS, ÑS,R, R̃. (B.21)

The edge partition functions of the four spin sector have the same expression of those in

the even k case (B.18). Because the values of (k, p) are odd, as discussed in Section 2.4.4,

it is easy to show that under the V
p
2 transformation and the modular group the partition

functions transform as represented in Fig. 2.4 (a) and (b).
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Appendix C

Regularized vacuum energy

C.1 Regularization through the Epstein’s formula

We define the generalized Epstein’s Zeta function [105][106]:

ζφ[g,h](s) =
∑

m1,...,mp∈Z

e2πim·h

[φ(m + g)]s/2
, (C.1)

where g = (g1, . . . , gp), h = (h1, . . . , hp), m = (m1, . . . ,mp) e φ(g) = gTCg and C a p × p
invertible and definite positive matrix. This function can be rewritten in the following form

ζφ[g,h](s) =
πs/2

Γ
(
s
2

)
∫ +∞

0

dz

z
zs/2

∑

m1,...,mp∈Z
e−πzφ(g+m)+2πi(m·h)

≡ πs/2

Γ
(
s
2

)
∫ +∞

0

dz

z
zs/2Θφ[g,h](z).

(C.2)

For s > 2 the integral in (C.2) converges, while diverges if s ≤ 2. To find an analytic

continuation of the function ζφ we split the integral as:
∫ +∞

0 =
∫ 1

0 +
∫ +∞

1 . The first integral

can be rewritten using the generalized Gauss sum

∑

m1,...,mp∈Z
e−πzφ(g+m)+2πih·m =

e−2πi(g·h)

zp/2
√

detC

∑

m1,...,mp∈Z
e−

π
z

Φ(h+m)−2πi(g·m), (C.3)

where Φ(g) = gTC−1g. Substituting z → 1/z in the first integral and then adding the two

integrals we obtain

(detC)1/4eiπg·h π−s/2Γ
(s

2

)
ζφ[g,h](s)

= (detC)1/4eiπg·h
∫ +∞

1

dz

z
z
s
2 Θφ[g,h](z) +

e−iπg·h

(detC)1/4

∫ +∞

1

dz

z
z
p−s
2 ΘΦ[h,−g](z).

(C.4)

This last equation, since that Θφ[−g,−h](z) = Θφ[g,h](z), is left invariant if we make the

following substitutions

s −→ p− s, [g,h] −→ [h,−g], C −→ C−1. (C.5)
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The analytic continuation of the ζφ function for s < p− 2 is then obtained:

π−s/2Γ
(s

2

)
ζφ[g,h](s) =

e−2πig·h
√

detC
π−

p−s
2 Γ

(
p− s

2

)
ζΦ=φ−1 [h,−g](p− s). (C.6)

We are interested to h = 0 and g = (α1, . . . , αd) with αµ = 0, 1/2 for µ = 1, · · · , d. In

this case, in order to avoid divergences on the generalized Zeta function (C.1), we have to

exclude the zero modes m = (0, . . . , 0) on the r.h.s of (C.6); is possible to show that the

analytic continuations (C.6) is still valid.

Application for d = 2 and s = −1

In the two formulas for the partition function (4.41) and (4.42) we have to regularized the

divergent vacuum energy
∑

k

k0 = 2π
∑

n1,n2

|(n1 + α1)k1 + (n2 + α2)k2| (C.7)

= 2π
∑

n1,n2

[
((n1 + α1)k11 + (n2 + α2)k21)2 + ((n1 + α1)k12 + (n2 + α2)k22)2

]1/2

= 2π
∑

n1,n2

[
(n+ α)T kkT (n+ α)

]1/2
= 2π

∑

n1,n2

[
(n+ α)T C (n+ α)

]1/2

= 2π
∑

n1,n2

(φ[n+ α])1/2 ,

where C = kkT and k is the spatial sub-matrix of the general k matrix. Using the analytic

continuation formula (C.6) with h = 0, g = (α1, α2), p = 2, s = −1 and detC = (detk)2, we

obtain the following relation

2π
∑

k

k0 = − 1

2π detk

∑

n1,n2

′ e(−2πiα·n)

∣∣n1k1
′ + n2k2

′∣∣3 , (C.8)

where in the sum
∑ ′ are excluded the values (n1, n2) = (0, 0). It is easy to show that the

components of vectors k1
′ and k2

′ are related to those of k1 and k2 through the following

matrix relation

(
k1
′

k2
′

)
=

(
k′11 k′12

k′21 k′22

)
=

1

detk

(
k22 −k21

−k12 k11

)
. (C.9)

Substituting these components in (C.8) and relabelling (n1 → n2, n2 → −n1) we obtain

2π
∑

k

k0 = −(detk)2

2π

′∑

n1,n2

e−2πi(α1n2−α2n1)

|n1k1 + n2k2|3
. (C.10)

If now we transpose the k’s in terms of the ω’s using the relations (4.31), we obtain the

desired result in (4.47)

2π
∑

k

k0 = −V (3)F0 = −V
(3)

2π

∑

n1,n2

′ e
−2πi(α2n1−α1n2)

|n1ω2 − n2ω1|3
. (C.11)
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C.2 Regularization through the Mellin transform

The partition function (4.67) defined in the special geometry (4.66) possesses the following

divergent exponent

2πr01

∑

n

√
[(n+ α1) + β(n2 + α2)]2 + [r12(n2 + α2)]2 = 2πr01

∑

n

|n+ ζ| , (C.12)

where we introduced the complex variable ζ = α1 + β(n2 + α2) + ir12(n2 + α2). Let us

consider the following Mellin transform

1

2

∑

n

1

|n+ ζ|2s =

√
π

2Γ(s)

∑

l∈Z

∫ +∞

0
dt ts−

3
2 e−t(Im(ζ))2+π2l2

t
+2πilRe(ζ). (C.13)

Note that for s = −1/2 we recover the divergent sum in (C.12). Separating the mode l = 0

from those with l 6= 0 and making the substitution t→ π2/t in the latter case, we obtain

1

2

∑

n

1

|n+ ζ|2s =

√
π

2Γ(s)
(Im(ζ))1−2sΓ(s− 1/2)+

+
π−1/2+2s

Γ(s)

∑

l>0

∫ +∞

0
dt t−(s+1/2)e−

π2

t
(Im(ζ))2+tl2 cos(2πlRe(ζ)).

(C.14)

Since Γ(x) has a pole in x = −1, the first term on the right hand side is divergent for

s = −1/2. Our regularization procedure is to remove the divergent term, obtaining

1

2

∑

n

|n+ ζ| = − 1

2π2

∑

l>0

∫ +∞

0
dt e−

π2

t
(Im(ζ))2+tl2 cos(2πlRe(ζ)). (C.15)

Introducing the ∆ function

∆(m; a) = − 1

2π2

∑

l>0

∫ +∞

0
dt e−

π2m2

t
−tl2 cos(2πla), (C.16)

we arrived to the desired result for the regularized expression (C.12)

2πr01

∑

n1

√
[(n1 + α1) + β(n2 + α2)]2 + [r12(n2 + α2)]2

= 4πr01∆[r12(n2 + α2);α1 + β(n2 + α2)].

(C.17)
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Appendix D

Massive Θ functions

The massive Θ functions are defined by the following expression [104] [109]

Θ[a,b](τ ;m) =
∏

n∈Z

∣∣∣1− exp
[
−2πIm(τ)

√
(n+ a)2 +m2 + 2πiRe(τ)(n+ a) + 2πib

]∣∣∣
2
×

× exp [4πIm(τ)∆(m; a)] ,

(D.1)

where a, b,m ∈ R and τ ∈ C; taking the logarithm we have

log Θ[a,b](τ,m) =
∑

n

log
[
1− exp

{
−2πτ2

√
(n+ a)2 +m2 + 2πiτ1(n+ a) + 2πib

}]
+ c.c.

+ 4πτ2∆(m, a).

(D.2)

Now we expand the logarithm as a Taylor series. We have

log Θ[a,b](τ,m) = −
∑

n

+∞∑

p=1

{
1

p

[
exp

{
−2πτ2

√
(n+ a)2 +m2 + 2πiτ1(n+ a) + 2πib

}]
+ c.c.

}

+ 4πτ2∆(m, a).

(D.3)

The following identity is used for the square-root at the exponent

e−z =
1√
π

∫ +∞

0
ds s−1/2e−s−

z2

4s . (D.4)

After the substitution s→ p2s, we obtain

log Θ[a,b](τ,m)

= − 1√
π

∑

n

+∞∑

p=1

∫ +∞

0
ds

{
exp

[
−π
(
πτ2

2

s

)
n2 + 2πi

(
iπτ2

2 a

s
+ τ1p

)
n+

− π2 τ
2
2 p

2a2

s
− π2τ2

1

s
m2 + 2πipaτ1 + 2πibp− p2s

]
+ c.c.

}
+ 4πτ2∆(m, a).

(D.5)

Applying on the sum over n the following Poisson formula

127



∑

n∈Z
e−πAn

2+2πiBn =
1√
A

∑

n∈Z
e−

π
A

(n−B)2 , (D.6)

we have

log Θ[a,b](τ,m)

=− 1

πτ2

∑

n∈Z

+∞∑

p=1

∫ +∞

0
ds

{
exp

[
−sp2 |τ |2

τ2
2

− π2τ2
2m

2

s
+ 2πibp− sn2

τ2
2

+ 2nsp+

+2πina
τ1

τ2
2

]
+ c.c.

}
+ 4πτ2∆(m, a).

(D.7)

Now we can split the sum over n in (D.7) in three intervals: (n ∈ (−∞ − 1], n = 0, n ∈
[1,+∞)), and observe that the two intervals (n ∈ (−∞− 1], n ∈ [1,+∞)) can be collect in

a unique interval with n ∈ [1,+∞) but with the sum over p extended to p ∈ (−∞,+∞), to

which we must remove the case p = 0. We have

log Θ[a,b](τ,m)

=− 1

πτ2

+∞∑

n=1

∑

p∈Z

∫ +∞

0
ds

{
exp

[
−sp2 |τ |2

τ2
2

− π2τ2
2m

2

s
+ 2πibp− sn2

τ2
2

+ 2ns
τ1

τ2
2

p+ 2πina

]
+ c.c.

}

+
1

πτ2

+∞∑

n=1

∫ +∞

0
ds

{
exp

[
−π

2τ2
2m

2

s
− sn2

τ2
2

− 2πina

]
+ c.c.

}

− 1

πτ2

+∞∑

p=1

∫ +∞

0
ds

{
exp

[
−sp2 |τ |2

τ2
2

− π2τ2
2m

2

s
+ 2πibp

]
+ c.c.

}
+ 4πτ2∆(m, a).

(D.8)

Using the definition (C.16) of the ∆ function, we can check that the second term cancels

with the last one, while the third term gives 4πτ2/|τ |2∆(m|τ |, b). Moreover, applying the

Poisson formula (D.6) to the sum over p in the first integral and making the substitution

s→ sk2/|τ |2 we obtain

log Θ[a,b](τ,m)

= − 1√
π

∑

p∈Z

+∞∑

k=1

1

k

∫ +∞

0
ds s−1/2

{
exp

[
−s− π2k2τ2

2

s|τ |4
(

(p− b)2 +m2|τ |2
)

+

+2πik

(
−a+ (p− b) τ1

|τ |2
)]

+ c.c.

}
+ 4π

τ2

|τ |2 ∆(m|τ |, b).

(D.9)

Apply once again the identity (D.4) and reconstructing the Taylor expansion for the loga-

rithm, we finally obtain the desired result (4.77) [104] [109]

Θ[a,b](τ,m) = Θ[b,−a]

(
−1

τ
,m|τ |

)
. (D.10)
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