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Chapter 1

Introdu
tion

1.1 Forewords

Last 
entury witnessed the birth and growth of a new way of thinking about the

physi
al world. Our aim is not to make a history of modern physi
s: the present

se
tion is meant solely to motivate the reader to go through the work presented,

while expressing a few more personal 
onsiderations. The argumentation presented

are inspired by the reviews [49, 48℄, among the others.

The route the physi
al thought has followed in said period of time, has been

in
uen
ed in a very pe
uliar way by the theoreti
al novelties the physi
s 
ommunity

has dis
overed during this period. All of those 
on
eptual steps the physi
al knowl-

edge of fundamental pro
esses has made, have been went along with 
orresponding

steps in mathemati
s. It is not o

asional, nowadays, that some novel 
on
ept in

theoreti
al physi
s triggers a new investigation or dis
overy in mathemati
s, or vi
e

versa; anyway this 
on
eptual 
oupling is not a prerogative of modern thought. In-

deed geometry in its early days was 
learly oriented to des
ribe the spa
e in whi
h

natural events take pla
e. After the very early works by Einstein upon General Rel-

ativity, the s
ope of the previous senten
e has enlarged in an almost dramati
 fashion.

In the same period, it be
ame 
lear that physi
s on a smaller s
ale was di�erent

from what it appeared to be in everyday life (at human-size s
ale). It took several

years for most of the physi
al 
ommunity to a

ept the new-birth Quantum Me
han-

i
s. The appearan
e of un
ertainty in physi
s puzzled most of those physi
ists who

did not promptly a

ept it. It 
ompelled to shift the traditional view on physi
al

1



2 SECTION 1.2

phenomena, to a more indire
t one: on a quantum system, there are several questions

that 
annot be asked any longer. This has been a

epted long ago understanding

that the nature of physi
al phenomena is su
h, and we must bear it. Also, this shift

in the attention, has be
ome a virtue, in physi
s, being it more abstra
t and hen
e

allowing for further rea
hing work.

So in modern physi
s one just gets used to several abstra
t 
on
epts, being always

able to tra
e them ba
k to their very sour
es, by mean of the physi
al meaning of ea
h

of them. This needs to be the 
ase for the not-so-re
ent Non
ommutative Geometry.

Already in the early times of Quantum Me
hani
s and Quantum Field Theory, [48℄,

the introdu
tion, as 
oordinates, of obje
ts whi
h did not 
ommute was 
onsidered

as a resour
e in order to 
ure the in�nite self-energies that plagued Quantum Field

Theory, before the Renormalization had be
ome a well-established matter. This has

already been noti
ed by Heisenberg in the 30's, and analysed thoroughly by Snyder

in 1947 [46℄.

More re
ently, mathemati
ians have studied this new geometry in several ways:

we will use mainly the point of view established by Alain Connes (see [7, 8℄ and

referen
es therein), adhering in this way to the 
hoi
e of a fairly large part of the

physi
al 
ommunity (see [28℄, [30℄ and referen
es therein).

1.2 Quantum Me
hani
s

The simplest physi
al instan
e of non
ommutative geometry is that of the phase

spa
e of a me
hani
al system after quantization. The theory with whi
h we start is

des
ribed by (regular) fun
tions on the 2n-dimensional phase spa
e � of the system.

The spa
e � is endowed with a 
losed nondegenerate 2-form ! that de�nes the

Poisson bra
kets, whi
h 
an be seen as a bilinear antisymmetri
 fun
tional de�ned

on the algebra of observables (regular fun
tions) A

:

= C

r

(�). One 
an 
hoose lo
al


oordinates in whi
h the 
anoni
al expression of the Poisson bra
ket between the

two observables f(q; p) and g(q; p) is

ff; gg

:

=

X

i

�f

�q

i

�g

�p

i

�

�g

�q

i

�f

�p

i

: (1.1)
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The standard quantization pro
edure requires to introdu
e the Hilbert spa
e H of

the physi
al states of the system, and map the algebra of observables A in an algebra

b

A of operators a
ting on H. The latter 
orresponden
e is de�ned in su
h a way that

the Poisson bra
kets (1.1) of any pair of observables f(q; p) and g(q; p) mapped into

the 
ommutator of the 
orresponding operators

^

f and ĝ:

i}

\

ff; gg =

^

f � ĝ � ĝ �

^

f

where the hat stands for the quantization map A 3 f 7�!

^

f 2

b

A.

1

In parti
ular the position and momentum observables q

i

and p

i

are mapped respe
-

tively to the operators q̂

i

and p̂

i

whi
h have the 
anoni
al 
ommutation relation

[q

i

; p

j

℄ = i} Æ

ij

:

It is well known that from this relation, whi
h is an obstru
tion to �nd simulta-

neous eigenve
tors of both the position and the momentum operators, there arise

the Heisenberg relations of un
ertainty on the measurements of the position and

momentum

(�q

i

)

2

(�p

i

)

2

&

1

4

}

2

; (1.2)

whi
h express quantitatively the loss of lo
alization of points in the phase spa
e �.

From the un
ertainty relations (1.2) one see that a point in the phase spa
e 
annot

be resolved in an area smaller that that of a Plan
k 
ell. This fa
t 
auses the loss

of the very notion of \point" in a quantized phase spa
e

2

. In Quantum Me
hani
s

physi
al properties are worked out, generi
ally speaking, by algebrai
 relations among

operators, sin
e this allows to work in a more abstra
t 
ontext. Therefore for a

physi
ist it is more pro�table to refer to the traditional physi
al lore of Quantum

Me
hani
s when 
onsidering the introdu
tion of a non
ommutative geometry in a

problem.

1.3 Quantization of Geometry

Sin
e the foundation of General Relativity by Einstein on 1916, the paradigm of

the physi
al theory of Gravity has been to identify the Gravity with the Geometry

1

To de�ne this quantization map properly, one need also to de�ne the quantization of any

symmetri
 produ
t of observables of A. We are not entering into any detail here, be
ause it would

be beyond the s
ope of this 
hapter.

2

Hen
e J. von Neumann happened to 
all that of a quantized phase spa
e a \pointless" geometry.
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of the Spa
e-Time. Hen
e, it is expe
ted on a general basis that quantization of

Gravity will lead to a non
ommutative Spa
e-Time geometry. Starting by the dire
t

appli
ation of Heisenberg's prin
iple to the Einstein's Gravity, one 
an obtain by a

semi-
lassi
al evaluation the un
ertainty relations for the 
oordinates in absen
e of

a strong external �eld [11℄:

X

i<j

�x

i

�x

j

& �

2

P

; (1.3)

whereas �

P

s 10

�33


m is the Plan
k length, and �x

i

are the un
ertainties on the

measurement of the 
oordinates. The argument to �nd the above goes as follows

[11℄. To perform a measurement of the lo
alization of an event, we give to our

test parti
les en energy of order

h

a

where a is the minimum among the un
ertainties

�x

i

; at the lo
ations of the test parti
les the density of energy is

h

a

. We must

ensure that this energy density does not ex
eed the threshold for the formation of

a bla
k hole, be
ause otherwise the horizon will take the region around the event

away from the observation.

3

In [11℄ there 
an be found more details on how to

introdu
e an algebra of operators from whose 
ommutation relations one 
an obtain

the un
ertainty relations (1.3). For our purposes, we need only to noti
e that the

relations (1.3) require that the 
oordinate of the almost-Minkowski Spa
e-Time are

\promoted" to non
ommuting operators

[x

�

; x

�

℄ = iQ

��

with �

P

s

p

jQj :

Therefore, very general arguments based on Quantum Me
hani
s and General Rela-

tivity lead, at a semi-
lassi
al level, to non
ommuting 
oordinates in the Spa
e-Time.

1.4 Strings and Branes

The arguments on the quantization of Spa
e-Time above 
an be improved by the

analysis of s
attering amplitudes of strings at high energy (see se
tion 3.1 in [49℄ and

referen
es therein). The out-
oming Heisenberg relations between the un
ertainty

on position and momentum of the string, get a term due to the �nite spatial extent

of the string itself:

�x &

}

2

�

1

(�p)

+ `

2

s

(�p)

�

:

3

We 
an also restri
t to stationary solutions of Einstein equation, when the un
ertainty on time

lo
alization is very large, obtaining that a must be smaller of the S
hwarzs
hild radius relative to

the energy

h

a

.
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This in turn implies that the un
ertainty on the measurement of spatial distan
es is

bounded from below by

�x & `

s

;

i.e. from the �nite length of the string. Therefore strings even at high energies 
annot

probe spa
e-time at distan
es lower than the length of the strings themselves. This

is an e�e
t of the intrinsi
 non-lo
ality of String Theory. To rea
h lower length s
ales

it is ne
essary to use D-brane as probes [49, 48℄.

1.4.1 Strings in a Magneti
 NS Ba
kground

From bosoni
 open string theory we 
an extra
t a simple example of how non
om-

mutativity of 
oordinates arise in a fundamental 
ontext. This should display some

of the motivations behind the ex
itement Non
ommutative Geometry 
auses in the

Theoreti
al Physi
s 
ommunity. Consider the a
tion of an open bosoni
 string mov-

ing in eu
lidean 
at Spa
e-Time, in presen
e of a ba
kground 2-form antisymmetri


B �eld [49℄

S =

1

4�`

2

s

Z

�

d

2

z (g

��

�

a

X

�

�

a

X

�

� 2�i`

2

s

�

ab

B

��

�

a

X

�

�

b

X

�

)

The ends of the open string are atta
hed on D-branes. The antisymmetri
 �eld B

��

plays the role of a magneti
 �eld on the D-branes. Let us restri
t ourselves to the


onstant B

��


ase. Moreover we take the so 
alled Seiberg-Witten limit[45℄

g

��

s `

4

s

s " �! 0 while Bis �xed,

in whi
h the massive modes de
ouple and the bulk dynami
s disappear, the theory

be
oming topologi
al; only the boundary theory survives

4

S

B

= �

i

2

Z

��

dt B

��

Y

�

d

dt

Y

�

; (1.4)

where Y

�

:

= X

�

j

��

is the restri
tion to the boundary of the string maps X

�

. This is

just the theory of a 
harged parti
le in a strong uniform magneti
 �eld B, therefore

proje
ted on the lowest Landau level. The 
anoni
al Poisson bra
kets obtained by

the a
tion (1.4) are

fY

�

; Y

�

g = i�

��

where �

��

:

= �

1

2

(B

�1

)

��

:

4

Let us noti
e that sin
e `

s

�! 0 the Seiberg-Witten limit is also a point-parti
le limit of the

open string.
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Upon quantization, these bra
kets be
ome the 
ommutators de�ning the usual non-


ommutative R

n

eu
lidean spa
e. Therefore we obtain a quantum e�e
tive theory

des
ribing strings in the low energy Seiberg-Witten limit, whi
h is a Quantum Field

Theory on a Non
ommutative spa
e.

1.5 Quantum Hall e�e
t

The famous Peierls' substitution [39℄ was introdu
ed for the �rst time in the problem

of the motion of a ele
trons on a plane, in a uniform magneti
 �eld B. As already

mentioned, the total a
tion of this system in the limit of strong magneti
 �eld B �!

1 (or small mass m �! 0) is

S =

Z

dt

eB

2

�

ab

x

a

(t) _x

b

(t) :

The 
anoni
al quantization leads us to the 
ommutation relations

[x

1

; x

2

℄ = i

}

eB

(1.5)

Also a 
oordinate depending potential V (x

a

) 
ould be added, without 
hanging the


anoni
al 
ommutation relations. This is maybe the easiest physi
al instan
e of

non
ommutative plane, and will be analysed in detail in 
hapter 3. We only noti
e

here that the non-vanishing 
ommutator (1.5) implies that the ele
tron 
annot be

lo
alized with in�nite pre
ision in the strong B limit.

1.5.1 Susskind's proposal

Inspired to the analogies between the physi
s of ele
trons in a strong magneti
 �eld

and the properties of D-Branes in String Theory, Susskind [47℄ proposed a model

to des
ribe Laughlin in
ompressible 
uid. He derived a Non
ommutative Chern-

Simons Field Theory starting from the Lagrange des
ription of the in
ompressible


uid, and 
onstru
ting a non
ommutative extension of it: the key feature to make

this extension was that in the limit of high density the non
ommutative theory

reprodu
ed the equations of motion of the Lagrange in
ompressible 
uid (see 
hapter

4 of the present thesis for the detailed analysis).

The original proposal in [47℄ des
ribed the in
ompressible 
uid in its thermo-

dynami
 limit, i.e. it des
ribed the in�nite 
uid. To des
ribe a �nite sample, and

to avoid the problems of proper regularisation the in�nite 
uids theory presented,
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Poly
hronakos [42℄ proposed a trun
ation of the model, introdu
ing the so 
alled

Chern-Simons Matrix Quantum Me
hani
s. The theory exposed also the boundary

ex
itations, whi
h have always had a great importan
e in the study of the Quantum

Hall e�e
t (for a review see [51℄).

Poly
hronakos model is a model of N � N (hermitian) matri
es. The trun
a-

tion has been 
arried on through the introdu
tion of a N -dimensional auxiliary time

dependent ve
tor, whi
h 
orresponds to the boundary �elds of low energy edge ex-


itations [51℄. He showed that this model possesses a U(N) gauge invarian
e, and

redu
ed it to a Calogero model of one-dimensional non-relativisti
 fermions with a

repulsive intera
tion: the 
oordinates and momenta of these 1-dimensional fermions

where the eigenvalues of the matri
es of the original theory.

This model shares many features with Laughlin theory of Quantum Hall 
uid, but

the two models are not equivalent to ea
h other. More pre
isely, while the states of

the two models are isomorphi
, the 
orresponden
e is not isometri
: the measure of

integration of Calogero model is real and one-dimensional, but the one of Laughlin

quantum Hall 
uid is 
omplex and two-dimensional.

Anyhow the 
lassi
al solutions of the matrix model presented the expe
ted feature

of the Hall 
uid and the fra
tional 
harge vortex ex
itations as well. In [23, 22℄ the

expe
ted Hall 
ondu
tivity has been derived from the non
ommutative theory.

Karabali and Sakita [27, 26℄ analysed the redu
tion of the matrix theory to 
om-

plex eigenvalues using the 
oherent states of ele
trons in the lowest Landau level

(Bargmann-Fo
k spa
e). Though they 
ould not disentangle the ele
tron 
oordinates

from the auxiliary variables of the boundary �elds, they performed some expli
it 
al-


ulations at low N . They found that the overlaps of states 
ontain, along with the

Laughlin wavefun
tion, a nontrivial measure fa
tor whi
h modi�es the short distan
e

properties of the 
uid.

Hen
e the two authors 
on
luded that either the matrix model did not des
ribe the

physi
s of Laughlin 
uid, or the 
orresponden
e happened in an unknown set of


oordinates.

1.6 Plan of the Thesis

In 
hapter 2 it will be presented a 
on
ise review of the Non
ommutative Geometry

in the Connes' paradigm. That 
hapter is not intended as a substitution of more
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lassi
al text, but as a handy review of the subje
t; the whole 
hapter is mainly

based on the book [28℄, but there are many other books on the subje
t, as well as

reviews written by both mathemati
ians and physi
ists (e.g. [7, 9, 8, 21, 50, 18℄ and

many others).

In 
hapter 3, we will �rst review several features of the problem of the ele
tron in

the Landau levels, stressing in parti
ular the important role of W

1

algebra of area

preserving di�eomorphisms [13℄ in the mathemati
al des
ription of the 
onditions

of in
ompressibility [6℄, and in the 
hara
terisation of the quantum Hall 
uids and

their ex
itations. The W

1

algebra plays an important role in the matrix model as

well, sin
e the Hilbert spa
e of states of the system holds a representation of the this

algebra.

Also the topi
 of the proje
tion to the �rst n Landau levels is addressed, and it is

shown what is the result of this proje
tion on the algebra of observables of the system

(see also [32, 31℄).

Moreover it will be analysed a deformation of the algebra de�ning the Landau levels

inspired by a paper by Nair and Poly
hronakos [38℄: the devi
e of Weyl quantiza-

tion map will be used to de�ne in the more abstra
t way the expe
tation values of

produ
ts observables of the theory. The whole ma
hinery will be employed to 
om-

pute the density expe
tation value and the density-density 
orrelation fun
tion on

the ground state of a droplet of Quantum Hall 
uid. The result will show that the


uid after the deformation of the algebra keeps its 
hara
teristi
 feature of (almost)

uniform density and of in
ompressibility. Also it will be provided a simple 
om-

putation whi
h will make expli
it a physi
al e�e
t of non
ommutativity, in terms of

an e�e
tive repulsion appearing when a two-body attra
tive potential is swit
hed on.

Chapter 4 will be devoted to the 
on
ise presentation of the work of Susskind

[47℄: the Lagrange des
ription of the the in
ompressible 
uid will be thoroughly

presented along with its extension to the non
ommutative theory, following [47℄ and

[25℄. The resulting theory will be a theory with a 
onstraint, the Gauss' law, whi
h

ensures the non
ommutativity of 
oordinates. The following 
hapter 5, will 
ontain

the statement of the trun
ation to �nite N of the non
ommutative theory by the

introdu
tion of the auxiliary time-depending 
omplex ve
tor 	. The quantization

of the model will employ the path integral, and the Faddeev-Popov pro
edure will

be used to �x the U(N) gauge symmetry, as 
ustomary in �eld theory. As a result,

together with the level quantization, we will obtain the redu
tion of the problem
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to the one-dimensional Calogero model of non-relativisti
 fermions, with a repulsive

potential generated by the non
ommutativity of 
oordinates. Also the s
alar produ
t

for the quantum theory will be written, in terms of the 
oherent states of the matrix

model, and the 
hange of statisti
s indu
ed by the integration measure in the s
alar

produ
t.

The last part of the thesis, 
hapter 6, will present the Holomorphi
 quantization

of the Chern-Simons Matrix Quantum Me
hani
s [5℄. Complex (matrix) 
oordinates

X;X

y

will be introdu
ed. A 
anoni
al transformation will be used to solve the Gauss'

law 
onstraint in terms of the eigenvalues of X: the path integral will be redu
ed

to that of the ele
trons in the lowest Landau level, the ele
trons 
oordinates and

momenta being the 
omplex eigenvalues of X and their 
anoni
ally 
onjugated vari-

ables.

In S
hr�odinger representation, while the 
oordinates will have the obvious diagonal

form, the 
anoni
al momenta will get a term whi
h geometri
ally is interpreted as a

nontrivial aÆne 
onne
tion; the appearan
e of this 
onne
tion has an analogous in

the appearan
e of the statisti
al intera
tion indu
ed by the ordinary Chern-Simons

intera
tion solved in terms of the sour
es (for a review see [53℄).

The in
ompressibility will be de�ned in terms of the matrix extension of the genera-

tors of W

1

algebra. In 
hapter 6 it is also performed the analysis of the realisation

of W

1

algebra in the Matrix Model, and the highest weight 
onditions de�ning in-


ompressibility [6℄ are proved to hold for the latter; also the �nite-size 
orre
tions

arising from the �niteness of dimensionality of the matri
es are taken into a

ount

and in
luded into the set of generators of the W

1

algebra.

It is argued as well that from the W

1

symmetry of the model it is possible to 
om-

pute all the s
alar produ
ts of the states of the Chern-Simons Matrix Model. The

problem of de
iding whether the Chern-Simons Matrix Model des
ribes the Laugh-

lin theory of Quantum Hall 
uid has been redu
ed to the proof that W

1

symmetry

holds for the Matrix theory. The latter has been done for its expression in general

gauge, but is still not 
omplete for the gauge �xed theory [5℄.
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Chapter 2

Brief introdu
tion to

Non
ommutative Geometry

This 
hapter is a 
on
ise review of the mathemati
al setting of Non
ommutative

geometry, mostly based on the book [28℄, both for the logi
al order of the arguments,

and for the terminology used therein. Other sour
es [21, 50, 7, 8, 9℄ have been used

as well to get a more 
omplete view of this subje
t.

2.1 A te
hni
al preamble

We are going to review some general de�nitions, needed to understand the mathe-

mati
al language of Non
ommutative Geometry. We start by de�ning here the basi


obje
ts.

De�nition 2.1 (Bana
h spa
es) A ve
tor spa
e V, of arbitrary dimension, over

the �eld of 
omplex numbers C ,

1

equipped with a norm, i.e. an appli
ation

k � k : V �! R

whi
h is (8a 2 C ; v; w 2 V)

� ka vk = jaj kvk

� kvk � 0 ; kvk = 0 () v = 0

� kv + wk � kvk+ kwk

1

In this thesis, we will 
onsider only ve
tor spa
es over C .

11
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With respe
t to this norm, the spa
e is required to be 
omplete, i.e. any Cau
hy

sequen
e is a 
onvergent one, to some point of the spa
e.

De�nition 2.2 (Bana
h Algebra) A Bana
h spa
e A endowed with an internal


omposition law �

� : A�A �! A

su
h that it is distributive with respe
t to the ve
tor spa
e addition. Moreover it is

required that

8v; w 2 A kv � wk � kvkkwk

A Bana
h algebra is said unital if it is endowed of a multipli
ative unit I, 8a 2

A a � I= I � a = a .

De�nition 2.3 (C

�

-algebra ) A Bana
h algebra equipped with an antilinear in-

volution � leaving the norm invariant a

��

= a; ka

�

k = kak, and su
h that

ka

�

ak = kak

2

Noti
e that there is no requirement here about the 
ommutativity or the asso
iativity

of the algebra produ
t.

De�nition 2.4 (Ideal of a Bana
h algebra A) A subspa
e I � A, with the prop-

erty that either

8a 2 A; g 2 I; a � g 2 I

for a left ideal, or

8a 2 A; g 2 I; g � a 2 I

for a right ideal. If both of the above are satis�ed, then we deal with a two-sided

ideal.

2

And ideal I is maximal if there is no proper ideal I

0

su
h that I � I

0

( A.

If A is a C

�

-algebra , and I � A a two-sided 
losed �-ideal (i.e. it has an involution

indu
ed by that of A), then the quotient A=I is a C

�

-algebra . A simple C

�

-algebra

has no nontrivial two-sided ideals.

2

If A has an involution (e.g. if it is a C

�

-algebra ) then its ideals are all two-sided.
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De�nition 2.5 (Resolvent set) Given a unital C

�

-algebra A, and a 2 A, the

resolvent set of a r(a) is the subset of C

r(a)

:

= fz 2 C j (a� z I) is invertibleg

For z 2 r(a), the operator (a� z I)

�1

is the resolvent of a at z.

The set �(a) = C nr(a) is the spe
trum of a.

For a C

�

-algebra A, the spe
trum of any a 2 A is nonempty and 
ompa
t.

De�nition 2.6 (Spe
tral radius of a 2 A) It is

�(a)

:

= supfjzj; z 2 �(a)g

Now, if A is a C

�

-algebra , then it holds the following

8a 2 A; kak

2

= �(a

�

a)

So we see that for a C

�

-algebra , the norm is unique and �xed by the algebrai


stru
ture.

De�nition 2.7 (Morphism of C

�

-algebra ) A C -linear appli
ation � : A �! B

su
h that

�(a

1

� a

2

) = �(a

1

) � �(a

2

)

When bije
tive it is a �-isomorphism

A morphism � : A �! B is 
ontinuous and su
h that

kak

A

� k�(a)k

B

Moreover it maps a C

�

-algebra in a C

�

-algebra .

De�nition 2.8 (Representation of a C

�

-algebra A) A pair (H; �), with H an

Hilbert spa
e, su
h that

� : A �! B(H)

is a �-morphism in the spa
e of bounded operators on H.

3

It is a faithful representation ifKer � = f0g, or equivalently if 8a 2 A; k�(a)k =

kak.

It is an irredu
ible representation if there are no nontrivial 
losed subspa
es of

3

A
tually the latter turns out to be a C

�

-algebra as well
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H whi
h are invariant under the a
tion of �(A), or equivalently if the 
enter

4

of A

satis�es Z(A) = fz Ijz 2 C g.

Two representations (H

1

; �

1

) and (H

2

; �

2

) are said unitary equivalent represen-

tations if there exists an unitary operator U : H

1

�! H

2

su
h that U�

1

� �

2

U.

De�nition 2.9 (Primitive ideal) A subspa
e I of the C

�

-algebra A su
h that I =

Ker � for some irredu
ible (H; �) representation of A. It is obviously a two-sided

ideal.

The spa
e of primitive ideals of a C

�

-algebra A is 
alled Prim(A)

De�nition 2.10 (Compa
t operator) An operator T : H �! H on a Hilbert

spa
e mapping weakly 
onvergent sequen
es of H in strongly 
onvergent ones. Equiv-

alently a 
ompa
t operator is an operator whi
h is approximable in norm by a

sequen
e fT

n

g of operators for whi
h the orthogonal 
omplement of ea
h of the ker-

nels Ker T

n

is �nite dimensional.

The spa
e of all 
ompa
t operators on an Hilbert spa
e H is usually 
alled K(H).

Now a few properties of 
ompa
t operators follow:

Proposition 2.1 (Polar de
omposition) The spe
trum of a 
ompa
t operator T :

H �! H is dis
rete and has no limit point in the 
omplex plane, eventually ex
ept the

origin. Any nonzero eigenvalue has �nite multipli
ity. Moreover, it may be written

T =

X

m




m

(T ) 

m

Æ �

m

; R

+

3 


m

(T )& 0

with f 

m

g and f�

m

g two orthonormal sets.

Proposition 2.2 If T : H �! H is 
ompa
t and self-adjoint, then there exists an

orthonormal basis f 

m

g of H su
h that T 

m

= �

n

 

m

with lim

m!1

�

m

= 0.

De�nition 2.11 (In�nitesimal) An in�nitesimal of order � 2 R

+

is a T 2 K(H)

su
h that for m � 1 ; 


m

(T ) = O(1=m

�

)

It turns out that K(H) is the largest norm 
losed two-sided ideal of the spa
e of

limited operators B(H). It is also a (non-unital) C

�

-algebra having only one 
lass

of irredu
ible representations. Another important property of K(H) is that if a C

�

-

algebra A a
ts irredu
ibly on an Hilbert spa
e, and 
ontains some 
ompa
t operator,

then it 
ontains all of them: K(H) � A.

4

It is the subspa
e of elements of A 
ommuting with all the elements of A
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De�nition 2.12 (Liminal C

�

-algebra ) A C

�

-algebra A for whi
h the image of

any irredu
ible representation (H; �) is 
oin
ident with K(H).

Equivalently (see the above properties of 
ompa
t operators) A is a liminal C

�

-

algebra i� �(A) � K(H).

De�nition 2.13 (Postliminal C

�

-algebra ) A C

�

-algebra A for whi
h the image

of any irredu
ible representation (H; �) is 
ontained in K(H).

Equivalently (see above) A is a postliminal C

�

-algebra i� �(A) \ K(H) 6= ;.

For a postliminal C

�

-algebra the 
lasses of irredu
ible representations are uniquely


hara
terised by their kernels.

Now we will need a new point of view about known things, suitable for extending

the theory of (ordinary) Geometry.

2.2 Commutative Spa
es

Firstly, let us 
onsider a 
ommutative C

�

-algebra A. From the 
ommutativity

it follows that its irredu
ible representations are all (unitary equivalent to) one-

dimensional representations. So, every irredu
ible representation is a fun
tional

� : A �! C , whi
h preserves the algebra produ
t (being it a �-morphism). It

is 
ustomary to use the symbol

b

A for the spa
e of all su
h fun
tionals, i.e. for

the spa
e of all the equivalen
e 
lasses of irredu
ible representations of A, the so


alled stru
ture spa
e.

5

The spa
e

b

A 
an be endowed with the weak topology (the

Gel'fand Topology) �

w

, de�ned on the sequen
es as follows

f�

n

g �

b

A; �

n

�! 0 (= 8a 2 A; �

n

(a) �! 0

It 
an be shown that with this topology

b

A is a T

2

topologi
al lo
ally 
ompa
t spa
e

6

.

This is true if A is only a Bana
h 
ommutative �-algebra as well.

De�nition 2.14 (Gel'fand Transform) It is this 
orresponden
e between a C

�

-

algebra A and the spa
e of 
omplex fun
tions

b

A �! C

^
� : A �!

b

A

0

a 7�! â

â(�)

:

= �(a); 8� 2

b

A

0

5

Su
h a spa
e, for 
ommutative algebras, is the spa
e of all the 
hara
ters of A

6

In the 
ase A is an unital algebra, (

b

A; �

w

) is a 
ompa
t topologi
al spa
e.
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An important 
ase of this mapping is given by the algebra of measurable fun
tions

L

1

(R) endowed with its natural norm

kfk

1

:

=

Z

dx jf(x)j

and with the produ
t of 
onvolution as algebra produ
t

8f; g 2 L

1

(R) f ? g(x)

:

=

Z

dy f(x� y)g(y)

It is a Bana
h �-algebra with the 
omplex 
onjugation as involution, as it 
an be

easily shown with the standard ma
hinery of Bana
h algebra theory

7

. Moreover, any

irredu
ible representation of L

1

(R) is 
ontinuous and 
an be written in integral form

in the following fashion

�(a) =

Z

dx �(x)a(x)

with � a suitable fun
tion in L

1

(R) ' L

1

(R)

0

, the dual of our algebra. The 
on-

volution produ
t is mapped to the point-wise produ
t. The fa
t � is a representa-

tion, hen
e a �-morphism, i.e. �(a ? b) = �(a)�(b), implies (given � 2 L

1

(R) and

a; b 2 L

1

(R))

�(a ? b)

:

=

Z

dx �(x)

Z

dy a(x� y)b(y) =

Z Z

dxdy �(x+ y)a(x)b(y)

�(a) � �(b)

:

=

Z

dx �(x)a(x)

Z

dy �(y)b(y)

so that �(x + y) = �(x)�(y). This quali�es �(�) as the exponential map. From this

and from the limitedness it follows �(x) = exp(ikx) ; k 2 R. So ea
h representation is

identi�ed with a real number. Putting everything together, we �nd that the Gel'fand

transform of an element a 2 L

1

(R) evaluated on a representation � is

â(�)

:

= �(a) =

Z

dx a(x)e

ik

�

x

i.e. it is the Fourier transform of a 2 L

1

(R) at the frequen
y k

�

. Noti
e that the

Gel'fand transform of a measurable fun
tion is a 
ontinuous fun
tion of the real line.

One 
an prove in general, that any Bana
h �-algebra A is mapped to the spa
e of


ontinuous fun
tions on the stru
ture spa
e

b

A; if the latter is only lo
ally 
ompa
t

(i.e. if A has no unit), it will be the spa
e C

0

(

b

A) of 
ontinuous fun
tions vanishing

at in�nity.

For a C

�

-algebra there is the following stronger statement

7

Let us noti
e that this algebra is a simple example of non-unital algebra, sin
e the unit of


onvolution produ
t is the Dira
 Æ fun
tion, whi
h is, of 
ourse, not a fun
tion but a distribution,

so it does not belong to L

1

(R).
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Theorem 2.1 (Gel'fand-Naimark) Given a 
ommutative unital C

�

-algebra A,

there exists a 
ompa
t Hausdor� spa
e X su
h that the Gel'fand transform is an

isometri
 �-isomorphism between A and C(X). This 
orresponden
e is �xed up to

homeomorphisms.

If the C

�

-algebra A is non-unital then the spa
e X will be only lo
ally 
ompa
t.

8

So for the Gel'fand-Naimark theorem ea
h 
ommutative C

�

-algebra \is" the spa
e of

fun
tions of a Hausdor� spa
e. Hen
e, in prin
iple, any result of 
lassi
al geometry


an be translated in this algebrai
 framework, provided that we 
an write all the data,

su
h as di�erential forms an so on. This requires more work, but in the meanwhile

we 
an render more material the 
orresponden
e between algebra and geometry.

So suppose we have the spa
e C(X) of 
ontinuous fun
tions on the 
ompa
t T

2

spa
e

X. Let us introdu
e the evaluation map

8p 2 X  

p

: C(X) �! C  

p

(f)

:

= f(p)

So any point of X de�ne, roughly speaking, a morphism of C(X) to C . Using the

Gel'fand topology and the de�nitions for 
ommutative Bana
h algebras, one 
an

prove that these maps de�ne an homeomorphism  

�

between X and

\

C(X), and that

any maximal ideal of C(X) is the kernel of some map  

p

, whi
h in turn is by the

de�nitions identi�ed with a point p 2 X.

In example we 
an asso
iate to ea
h point p 2 X the ideal of 
ontinuous fun
tions

vanishing on that point. The latter ideal is a maximal ideal of C(X), and is the kernel

of an irredu
ible representation of the algebra A ' C(X) itself. Thus we see that in

the 
ommutative 
ase the manifold X 
an be identi�ed with the maximal ideals of

the algebra of fun
tions de�ned on itself, and moreover given a generi
 
ommutative

C

�

-algebra A we 
an �nd a spa
e whose points are ideals (indeed, primitive ideals)

of A itself. This fa
t is a useful generalisation, whi
h allows us to generalise the

de�nition of spa
e itself, as we shall see in the next se
tion.

2.3 Non
ommutative Spa
es

The above dis
ussion is not adequate when we go on 
onsidering what happens when

one 
onsiders non
ommutative C

�

-algebra A. Indeed, in this more general 
ase, it is

8

There is a ni
e 
orresponden
e between the one-point 
ompa
ti�
ation of X and the unitaliza-

tion of A, in that the one point 
ompa
ti�
ation of the stru
ture spa
e

b

A of a Bana
h �-algebra is

the stru
ture spa
e of the algebra A+ fzI j z 2 C g (the unitalization of A).
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no more true that the irredu
ible representations are 
hara
terised by their kernel.

Now we introdu
e a topology on both PrimA and

b

A.

Let us start with the former: a subset W � PrimA is 
losed if and only if

9

8I 2 WI � J =) J 2 W

With this topology the spa
e PrimA is T

0

.

10

It 
an be proven that if A is a liminal

C

�

-algebra , then PrimA is T

1

11

.

We 
an now pass to the stru
ture spa
e

b

A by the 
anoni
al surje
tion � 7�! Ker �.

We endow

b

A with the 
oarsest topology whi
h renders this surje
tion 
ontinuous,

i.e. the quotient topology. In this topology the two obje
ts

b

A and PrimA are

homeomorphi
 if and only if

b

A is T

0

as well as PrimA. This is e.g. the 
ase if the

C

�

-algebra A is postliminal.

Also in the non
ommutative 
ase it is true that the stru
ture spa
e

b

A of a C

�

-algebra

is lo
ally 
ompa
t (
ompa
t if it has a unit), and PrimA share this property.

Non
ommutative Geometry is based on the extension of the 
lassi
al and familiar


on
epts of geometry, and what we just saw is a basi
 example of how this is usually

done in this bran
h of mathemati
s. Starting from an ordinary (
ommutative) spa
e,

we pass to des
ribe it in terms of the algebra of (
ontinuous, smooth, et
.) fun
tions

de�ned on it, knowing we 
an re
over the ordinary quantities of geometry in a formal

way. Now it has been made possible to generalise this stru
ture, without altering

the relation it has with the geometri
 
on
epts we may be interested in (i.e. points,

ve
tors and so on, as we shall see in the next se
tions). [8℄

In this more abstra
t terms, there are two proposals for the identi�
ation of points:

we 
an identify them with the primitive ideals of the C

�

-algebraA, or with the equiv-

alen
e 
lasses of irredu
ible representations of A, i.e. elements of

b

A, the stru
ture

spa
e of A. We will restri
t the analyses only to the 
ases in whi
h these two notions

are the same. As we saw this is the 
ase when e.g. the C

�

-algebra A is postliminal.

The treatment of more general 
ases is left to the literature (see [28℄ and referen
es

9

Su
h a topology is equivalent to the so 
alled Ja
obson topology, more usual in this 
ontext.

We are introdu
ing this one instead for the sake of simpli
ity.

10

A T

0

spa
e is su
h when for any pair of points there is an open neighbourhood of one of them

whi
h does not 
ontain the other. This leads to a \la
k of lo
alisation in a general T

0

spa
e, be
ause

there are points that \sti
k" to some other point. Also, not all points in a T

0

spa
e are 
losed.

This feature emerges when one studies the so 
alled Non
ommutative latti
es.

11

In T

1

spa
e for any pair of points, any of them has an open neighbourhood not 
ontaining the

other one.
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therein). In the 
ommutative 
ase it was also the 
ase, and we saw how to identify

points by the ideals of fun
tions vanishing at those points.

The interested reader may �nd in referen
e [28℄ maybe the simplest example of a

non
ommutative spa
e, the two-points spa
e; it turns out to be important for the

formulation made by Connes and Lott of the standard model of ele
tro-weak inter-

a
tions.

2.4 Modules

Till now we have dealt with algebrai
 stru
tures representing the geometri
al obje
ts,

roughly speaking, for themselves. Now we own only the basi
 tools to treat the

topology of a spa
e. In what follows we are going to introdu
e a kind of stru
ture

generalising the 
on
epts of ve
tor bundle geometry. Let us start with the basi


de�nitions

De�nition 2.15 (Module) A nonempty set E, endowed with an abelian 
omposi-

tion law + : E �E �! E, rendering it an abelian group, and an external 
omposition

law on a given ring R, � : R�E �! E, the latter having the following (asso
iativity

and distributivity) properties

8a; b 2 R; �; � 2 E

(a+

R

b) � � = a � � +

E

b � �

a � (� +

E

�) = a � � +

E

a � �

(ab) � � = a � (b � �)

In this 
ase E is 
alled a left module over R. When the external 
omposition law

is in the form � : E � R �! E then E is 
alled right module.

12

It is 
learly apparent that this is just a generalisation of the usual 
on
ept of ve
tor

spa
e. The usual notion is 
learly restored when R ' C . We will make use of

modules over algebras, instead of rings. In this 
ase we expli
itly require that the

module be a C -ve
tor spa
e as well. This is automati
, of 
ourse, when the algebra

is unital.

Of 
ourse the distin
tion between left and right stru
ture for a module is totally

12

We are being overni
e here, in order to make 
lear, e.g. whi
h sum are we talking about in

writing a \+". Of 
ourse we will abandon this 
lumsy notation, just be
ause it is usually super
uous

outside formal de�nitions.
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immaterial when only one kind of stru
ture is 
hosen. Infa
t it is enough to 
onsider,

for any left (right) A-module E , the opposite algebra A

o

de�ned by the relation

(ab)

o

:

= b

o

a

o

, and so use the isomorphi
 right (left) A

o

-module stru
ture over E .

This is not this the 
ase, instead, when dealing with bimodules, i.e. modules with

both a left and a right stru
ture. In this 
ase we of 
ourse 
ould ex
hange the left

and right stru
ture, but we must require the 
ompatibility between the two of them.

De�nition 2.16 (Bimodule over an algebra) A left and right module E over an

algebra A for whi
h it is satis�ed the relation

8� 2 E ; 8a; b 2 A (a�)b = a(�b)

i.e. the left and right stru
tures 
an be supported in a 
ompatible way.

Moreover a bimodule E over a �-algebra A is a �-bimodule if there is an involution

� : E �! E su
h that 8a; b 2 A; � 2 E there is the identity (a�b)

�

= b

�

�

�

a

�

.

De�nition 2.17 (Modules morphism) Let A be an algebra, E, F two left (right)

A-modules. Then � : E �! E is a module morphism i� it is C -linear and A-

linear, i.e. it satis�es

8� 2 E ; a 2 Az 2 C

(

�(a�) = a � �(�)

�(z�) = z�(�)

De�nition 2.18 (Dual module) Given a left (right) module E over the algebra A,

its dual E

0

is

E

0

:

= Hom(E ;A) = f� : E �! A j � is a morphismg

It is also a right (left) A-module, de�ned by

8a 2 A; � 2 E

0

�(�) �

A�E

0

a

:

= (�(�))a

2.4.1 Modules from inside

Being the modules obje
ts more general than the ve
tor spa
es, there are many

subtleties about them. Now we begin to des
ribe the most elementary ones.

De�nition 2.19 (Generating family) Given E a left (right) module, a generating

family is a net fe

n

g � E with the property that 8v 2 E there exists another net

fa

n

g � A satisfying

v =

X

n

a

n

e

n

summing over a �nite subnet

The generating family fe

n

g is a basis if its elements are A-linearly independent.
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De�nition 2.20 (Free module) A module E whi
h admits a basis

De�nition 2.21 (Module of �nite type) A module E whi
h admits a basis of �-

nite 
ardinality. In general this 
ardinality has not universal meaning, in that one

is not assured there are no basis for E with di�erent �nite 
ardinality.

13

Modules of

�nite type are also 
alled �nite.

The prototype for a free �nite module over the algebra A is A

m

�

=

C

m


A. the

following holds

Proposition 2.3 For any �nite module E over the algebra A, there is alwaysM 2 N

and a morphism � : A

M

�! E whi
h is onto. Then � maps a basis of A

M

on a

generating family of E, the latter eventually la
king (when E is not free) of the linear

independen
e of its elements.

In the sequel we will deal only with �nite modules, even when we do not spe
ify

it expli
itly.

The fa
t a module E is not free is the translation of the non triviality of a ve
tor

bundle. The 
anoni
al example of this is the tangent bundle of the sphere S

2

, whi
h

is a module over the algebra C

1

(S

2

), but does not admit a basis, sin
e there does

not exist two global independent ve
tor �elds .

De�nition 2.22 (Proje
tive module) A left (right) module E over an algebra A

whi
h is a dire
t summand of a free module.

Equivalently a module E is proje
tive if for every module M, and every morphism

� : M �! E whi
h is onto, there exists its right inverse morphism f : E �! M,

i.e. � Æ f = I

E

.

14

Moreover, it is equivalent to the fa
t that for any morphism � : F �! G between

13

This fa
t, true only for modules of �nite type, depends on the algebra (more generally, on the

ring) on whi
h the module itself is de�ned. For a ring R with the invariant basis property the

modules R

n

and R

m

are isomorphi
 only if n = m: so the 
ardinality of a basis for a module on

su
h a ring de�nes an invariant of the module we 
all the dimension (or rank) of the module itself.

In example this is the 
ase for 
ommutative rings, and for �nite dimensional algebras, or whenever

there is a ring map R �! K over a �eld, et
. For a C

�

-algebra , the existen
e of a 
hara
ter, i.e.

a �-morphism, and hen
e of a point in the geometry, entails the invarian
e of the dimension.

14

This fa
t is also referred to as the morphism � admitting a split, being f su
h a split.
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modules, any morphism  admits a lift 
, i.e. the following diagram 
ommutes




F

% #

�

E

 

�! G

It 
an be shown of 
ourse that the three bran
hes of the above de�nition are indeed

equivalent statements.

For a �nite proje
tive module E over an algebraA one 
an show that, applying the

de�nitions, and the (2.3), there exist an idempotent � = �

2

: A

M

�! A

M

su
h that

E

�

=

�A

M

. When the algebra A is a �-algebra (as is almost always our 
ase), then it

makes sense to de�ne an Hermitian stru
ture over the A modules, i.e. a sesquilinear

form h�; �i : E

2

�! A whi
h is positive, i.e. h�; �i � 0 and h�; �i = 0 , � = 0. h�; �i

is said to be nondegenerate if 8� 2 E h�; �i : E �! E

0

is an isomorphism between the

module and its dual. If the �nite proje
tive module E admits an hermitian stru
ture

(i.e. is an Hermitian module), then the idempotent � = �

2

is a true proje
tor (i.e.

is self-adjoint as well).

The following theorem shows what is the relation between ve
tor bundles and

�nite proje
tive modules.

Theorem 2.2 (Serre-Swan) Given a �nite dimensional 
ompa
t manifoldM, any

module E over C

1

(M) is isomorphi
 to the module of smooth se
tions of some bundle

E �!M if and only if E is proje
tive of �nite type.

2.5 Di�erential forms

Be A an (asso
iative) algebra over C . Then we put the following de�nition

De�nition 2.23 (Universal di�erential forms) It is the graded algebra


A

:

=

M

p=0




p

A

where we de�ne

15

� The 0 degree is 


0

A

:

= A

15

Noti
e that ea
h degree has a natural left A module stru
ture.
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� The grading on the �rst degree Æ : A �! 


1

A whi
h is a C -linear map su
h

that (Leibniz rule)

Æ(ab) = Æ(a)b+ aÆ(b)

� The �rst degree 


1

A is the module generated by the image of the grading Æ

applied on the algebra A

� Higher degrees are de�ned as




p

A

:

= 


1

A


A

� � � 


A




1

A

| {z }

p

the produ
t being de�ned by simply writing all the fa
tors in a row, and rear-

ranging them using the Leibnitz identity, so that e.g., we have (a

1

Æa

2

)(a

3

Æa

4

) =

a

1

Æ(a

2

a

3

)Æa

4

� a

1

a

2

Æa

3

Æa

4

, a

i

2 A.

� The grading Æ is extended to the higher degrees by using the rule

Æ(a

0

Æa

1

� � � Æa

p

)

:

= Æa

0

Æa

1

� � � Æa

p

Using in parti
ular the last property, we �nd (this is a 
onsequen
e of the de�nition)

Æ(!

1

!

2

) = Æ(!

1

)!

2

+ (�1)

deg(!

1

)

!

1

Æ(!

2

)

Æ

2

= 0

Noti
e also that the usual rule for the 
ommutation of di�erential forms simply does

not make sense in this 
ontext.

If A has an involution �, then we 
an extend the di�erential algebra stru
ture with

(Æa)

�

:

= �Æ(a

�

)

(a

0

Æa

1

� � � Æa

q

)

�

:

= (Æa

q

)

�

� � � (Æa

1

)

�

a

�

0

The usual 
ohomology is uninteresting here, be
ause

(

Ker (Æ:


q

A�!


q+1

A)

Im (Æ:


q�1

A�!


q

A)

= 0 (= q � 1

Ker (Æ : 


0

A �! 


1

A) = C

;

i.e. it is trivial.

An interesting fa
t is now that the graded algebra we just de�ned is universal:
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Proposition 2.4 Suppose A is an asso
iative algebra, and (

L

n

�

n

; d) is a graded

di�erential algebra; any morphism � : A �! �

0


an be extended in a unique way

to a morphism  : (
A; Æ) �! (

L

n

�

n

; d) of graded di�erential algebras, in su
h a

way that for every 
ell the following diagram 
ommutes

 : 


q

A �! �

q

Æ # # d

 : 


q+1

A �! �

q+1

i.e. d Æ  =  Æ Æ.

The map is essentially de�ned by the following relation

 (a

0

Æa

1

� � � Æa

q

) = �(a

0

)d�(a

1

) � � �d�(a

q

)

Being A a unital algebra, we now instan
e the universal graded algebra 
A, with

the de�nitions:

�

0

:

= A

�

1

:

= Ker (j : A


C

A �! A ; a


C

b 7�! ab)

d : A �! A


C

A ; a 7�! a


C

I� I


C

a

We extend the above de�nition to the higher degrees by the immersion

�

q

:

= �

1




A

� � � 


A

�

1

| {z }

q

� A


C

� � � 


C

A

| {z }

q+1

su
h that

16

a

0

da

1

� � �da

q

' a

0

(a

1




C

I� I


C

a

1

)


A

� � � 


A

(a

q




C

I� I


C

a

q

)

and that, being � and � respe
tively the internal and external multipli
ations

!

1




A

� � � 


A

!

q

� !

q+1




A

� � � 


A

!

q+p

:

= !

1




A

� � � 


A

!

q+p

a � !

1




A

� � � 


A

!

q

:

= (a!

1

)


A

� � � 


A

!

q

!

1




A

� � � 


A

!

q

� a

:

= !

1




A

� � � 


A

(!

q

a)

The derivation d is extended by using the Leibniz rule and the usual identity

d(a

0

da

1

� � �da

q

)

:

= da

0

da

1

� � �da

q

16

Words like a � b


C





A

g are rewritten as (ab)


C

(
g), be
ause of the immersion.
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just as it has been done for the universal di�erential forms. This 
an be a

omplished

due to the fa
t that

! 2 �

1

, ! =

X

i

a

i




C

b

i

with

X

i

a

i

b

i

= 0

We 
an de�ne a very simple graded universal algebra de�ned pre
isely along these

lines, whi
h is an algebra of fun
tions on a generi
 manifoldM.

An algebra of fun
tions.

We now want to present a simple example of the above kind, based on the algebra

A = C(M; C ) of fun
tions on a spa
e M. This is done with the identi�
ation

A


C

� � � 


C

A; C(M� � � � �M)

and the multipli
ations

(f � g)(x

1

; : : : ; x

q+p

)

:

= f(x

1

; : : : ; x

q+1

)g(x

q+1

; : : : ; x

q+p

)

(h � f)(x

1

; : : : ; x

q+1

)

:

= h(x

1

)f(x

1

; : : : ; x

q+1

)

(f � h)(x

1

; : : : ; x

q+1

)

:

= f(x

1

; : : : ; x

q+1

)h(x

q+1

)

and the di�erential operator

df

:

= ( I


C

f � f 


C

I)

whi
h 
an be extended with

df(x

1

; : : : ; x

n

)

:

=

q+1

X

i=1

(�1)

i+1

f(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

q+1

)

on the spa
es

�

q

:

= ff 2 C(M� � � � �M) j f(x

1

; : : : ; x

i�1

; x; x; x

i+1

; : : : ; x

q+1

= 0)

i=1;:::;q+1

g

2.6 Spe
tral Triple

De�nition 2.24 (Spe
tral Triple) A triple (A;H; =D) with H a Hilbert spa
e, A

a unital C

�

-algebra of bounded operators

17

on H,

18

and =D (the Dira
 operator) a self

adjoint operator on H satisfying

17

For te
hni
al reasons, we de�ne here the spe
tral triple only on unital algebras. The modi�
a-

tions of the 
onditions for A nonunital may be found e.g. in [18℄, at se
tion 3 and the following.

18

A
tually we should 
onsider a generi
 representation � : A �! B(H) of A on H. We will

usually omit the symbol �, ex
ept in some 
ases, just for the sake of simpli
ity. We just noti
e that

the irredu
ible representations of A have a geometri
 meaning, see the dis
ussion at se
tion (2.3)

of the generalisation of Gelfand-Naimark theorem to a non
ommutative C

�

-algebra .
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1. 8z =2 R ; ( =D� z I)

�1

2 K(H)

2. 8a 2 A ; [ =D; a℄ 2 B(H)

De�nition 2.25 (Even Spe
tral triple) A spe
tral triple (A;H; =D) with a self-

adjoint unitary operator � : H �! H satisfying f�; =Dg = 0 and 8a 2 A ; [�; a℄ = 0.

If the grading � does not exist, the triple is an odd triple.

We now introdu
e the analog of dimension of a manifold into this abstra
t framework.

De�nition 2.26 The spe
tral triple (A;H; =D) is said of dimension d if the op-

erator k =Dk

�d

is an in�nitesimal of �rst order (see def. (2.11)). The dimension is

intended to be nonnegative.

De�nition 2.27 (Real Spe
tral triple) An even spe
tral triple (A;H; =D;�) of

dimension d, with an antilinear isometry J : H �! H respe
ting the following


onditions

1. J

2

= �

1

(d) I

2. J =D = �

2

(d) =DJ

3. for even dimension J� = i

d

�J

4. [a; Jb

�

J

�

℄ = 0 a; b 2 A

5. [[ =D; a℄; Jb

�

J

�

℄ = 0

where the 8-tuples �

1;2

are

19

�

1

= (1; 1;�1;�1;�1;�1; 1; 1) �

2

= (1;�1; 1; 1; 1;�1; 1; 1)

In parti
ular the last 
ondition of the above ones is 
alled the �rst order axiom, i.e.

it is the generalisation of the fa
t the Dira
 operator =D is a �rst order di�erential

operator. Usually one requires also that, de�ned the derivation

Æ(�)

:

= [j =Dj; �℄

then 8a 2 A we have a; [ =D; a℄ 2

T

k

Dom(Æ

k

). Sin
e in the 
ommutative 
ase this

entails a 2 C

1

, this is 
alled the smoothness axiom.

19

The argument of �

1;2

is intended in Z

8

, of 
ourse.
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2.7 Connes' di�erentials

Given the spe
tral triple (A;H; =D), we de�ne the following representation of the

universal algebra 
A, indu
ed by the representation � : A �! B(H) of the algebra

A

� : Æa 7�! [ =D; a℄

where � is extended as a morphism (and due to the self-adjointness of Dira
 operator,

also a �-morphism) of the 
omplex 
A, thrown by � in B(H). The usual rules for

the extension of the derivatives apply in this 
ase as well, i.e.

a

0

Æa

1

� � � Æa

q

7�! �(a

0

)[ =D; �(a

1

)℄ � � � [ =D; �(a

q

)℄

�(Æ(a

0

Æa

1

� � � Æa

q

)) 7�! [ =D; �(a

0

)℄[ =D; �(a

1

)℄ � � � [ =D; �(a

q

)℄

and the Leibniz rule.

But now some trouble o

urs, be
ause it is not true that the image of 
A by � is a


orre
t algebra of forms. Indeed we noti
e that there exist forms for whi
h �(!) = 0

and instead �(Æ(!) 6= 0, the so 
alled junk forms. Sin
e the things so far have

been kept very abstra
t, it may be diÆ
ult to visualise these obje
ts. A
tually, in

the 
ommutative 
ase, their arise is essentially due to the la
k of non
ommutativity

of the substitute of the Grassman produ
t, i.e. the formal produ
t we obtained just

writing the fa
tors one by one, in a row. We want to show this 
on
retely. Take a

manifold M and the triple (A

:

= C

1

(M);H

:

= L

2

(M;S); =D

:

= 


�

�

�

), with S the

spa
e of spinors. The Dira
 operator is just the usual one, well known from physi
s,

with 


�

the usual gamma matri
es (a
tually se
tions of Cli�ord bundle over M).

It 
an be shown that this triple (on
e it is made even and real, a

ording to our

de�nitions before) represents the usual Riemann geometry of spin manifolds. We

just want to show what junk forms are in this 
ontext. So we write (� is just the

representation by mean of multipli
ation by a fun
tion)

8f 2 A �(Æf) = [ =D; f ℄ = 


�

�

�

f

A generi
 1-form is

!(x) =

X

k

f

k

(x)


�

(x)�

�

g

k

(x)

we noti
e that the 1-form of 


1

A

!

junk

:

= fÆf � (Æf)f = 2fÆf � Æ(f

2

)
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whi
h is 
learly non zero, is represented in this way

�(!

junk

) = f


�

�

�

f � (


�

�

�

f)f = 0

and its derivative instead is

�(Æ!

junk

) = 2[ =D; f ℄[ =D; f ℄ = 2


�




�

�

�

f�

�

f = �4g

��

�

�

f�

�

f I

whi
h is 
learly nonzero for non-
onstant f(x). Noti
e that in the 
lassi
al Grass-

mann produ
t this \symmetri
" part simply does not appear. The idea now is to

eliminate su
h terms, in order to make non
ommutative di�erential geometry analog

to ordinary one.

De�nition 2.28 (Connes' Di�erential Forms) The graded algebra de�ned by




=D

A

:

=


A

J

0

+ ÆJ

0

where we meant by J

0

the following obje
t

20

J

0

:

=

M

q

f! 2 


q

Aj�(!) = 0g

The representation of


A

J

0

+ÆJ

0

is just

�(
A)

�(ÆJ

0

)

, so that taking the quotient is the same as

to eliminate the forms Æ! for whi
h �(!) = 0 (be
ause ! 2 J

0

) and �(Æ!) 6= 0.

It 
an be shown rigorously that the Connes' algebra 


=D

A is isomorphi
 in the 
om-

mutative 
ase to the Grassmann algebra of di�erential forms, and so it is the non-


ommutative generalisation of the latter.

2.8 Conne
tions and Gauge �elds

Let us take a right �nite proje
tive A-module E . For the Serre-Swan theorem, when

A is 
ommutative, E is the module of se
tions of some bundle. Even when the algebra

is non
ommutative, we want to give a meaning to the 
on
ept of 
onne
tions on su
h

\bundles".

20

It is easy to show that J

0

+ ÆJ

0

is a two sided ideal, with di�erential grading, so that the

quotient keeps the property of 
A.
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De�nition 2.29 (Universal Conne
tion) It is a C -linear map

r : E 


A




q

A �! E 


A




q+1

A

whi
h in addition follows the Leibniz rule

8! 2 
A; v 2 E 


A




q

A r(v � !) = rv � ! + (�1)

q

v � Æ!

Usually in �eld theory also the 
urvature needs to be de�ned. It is

R

:

= r

2

j

E

: E �! E 


A




2

A

It is easy to show that r

2

is also A-linear

r

2

(v � !) = (r

2

v) � !

and satis�es the Bian
hi identity

[r;R℄ = 0

We want to expli
itly write an alternative view over the 
onne
tion r. We 
ould

view it as the map

[r; �℄ : End

A

E 


A




q

A �! End

A

E 


A




q+1

A

This is 
ustomary when physi
ists say something about 
ovariant derivatives in the

Non
ommutative �eld theory. Now we state the important theorem

Theorem 2.3 Any module E is proje
tive if and only if it admits a 
onne
tion.

For any �nite proje
tive A-module E it is de�ned a natural 
onne
tion, the so 
alled

Grassmann 
onne
tion; given the surje
tion � : A

M

�! E as in the proposition (2.3),

and its right inverse  : E �! A

M

= C

M




C

A, and the proje
tion p : A

M

�! E ,

we may de�ne

21

r

Gr

:

= p Æ ( I
 Æ) Æ  : E 


A




q

A �! E 


A




q+1

A

with Æ the universal di�erential grading, and  as well as p have been extended in the

obvious way in order to be de�ned on the tensor produ
ts with the algebra 
A. One


ould even write, for short r

Gr

= pÆ. It is easy to see that the di�eren
e between two

21

Both  and p exist due to the de�nition (2.22)
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onne
tions, just like in ordinary geometry, is an A-linear operator, i.e. it belongs

to End

A

E 


A


A, so that we 
ould write a generi
 universal 
onne
tion as

r = r

Gr

+ A A 2 End

A

E 


A


A

where we give A the natural name of gauge potential.

When the module E is given an Hermitian stru
ture, we may demand the 
on-

ne
tion to be 
ompatible with this stru
ture. This is the requirement

8�; � 2 E Æh�; �i = h�;r�i � hr�; �i

and the sesquilinear form has been extended in the obvious way to the tensor produ
t

E 


A




1

A. It is easy to see that the Grassmann 
onne
tion is 
ompatible, and that

for a general 
onne
tion given by r

Gr

+A the 
ompatibility requires that the gauge

potential be hermitian: A = A

�

.

What we have done so far was aimed at the 
onne
tions 
oming from the univer-

sal 
al
ulus. But the same formal things 
an be re-done verbatim for the Connes'


al
ulus, due to the universality properties previously stated. So to deal with the

di�erential 
al
ulus it is enough to 
onsider 
onne
tions as maps

r : E 


A




q

=D

A �! E 


A




q+1

=D

A

following the rule

8! 2 


=D

A; v 2 E 


A




q

=D

A r(v � !) = rv � ! + (�1)

q

v � d!

with d(�)

:

= [ =D; �℄. A generi
 (
ompatible) 
onne
tion is now of 
ourse

r = r

Gr

+ A = pd+ A with A = A

�

and so on.

2.8.1 Gauge transformations, Di�eomorphisms

Given a (left) �nite proje
tive A-module E , the A linear transformations of E to itself

form the algebra of Endomorphisms of the module E . The latter is 
alled End

A

E

End

A

E

:

= f� : E �! E j 8a 2 Av 2 E ; �(a � v) = a � �(v)g

If the module is Hermitian we 
an de�ne End

A

E as an involutive algebra, with an

involution � given by the usual rule

hv

1

; Bv

2

i

:

= hB

�

v

1

; v

2

i
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Given the 
anoni
al isomorphism E ' pA

M

, with hermitian idempotent p, this

algebra is 
learly isomorphi
 to the \proje
ted" algebra p(A


C M

C

M

)p = p

M

A

M

p,

so that we 
ould identify the endomorphisms of E as all the matri
es b 2

M

A

M

whi
h


ommute with the proje
tor p Æ b = b Æ p.

The algebra End

A

E has a subgroup formed by all the unitary endomorphisms

(so that they are automorphisms)

U(E)

:

= fu 2 End

A

E j u

�

u = I= uu

�

g

For U(E) in parti
ular is true that given a �nite proje
tive A-module E

E ' pA

M

p; U(E) ' pU(A

M

)p

The a
tion of the unitary group U(E) on the universal 
ompatible 
onne
tion r

is given by the natural law

u : r 7�! uru

�

It follows that the 
urvature transform in the same way as well

u : r

2

7�! ur

2

u

�

The gauge potential instead transforms

22

u : A 7�! uAu

�

+ upÆu

�

Of 
ourse this is true also when instead of the universal 
onne
tion one 
onsiders

the Connes' 
onne
tion, just in the same way it has been done above. For the

potential in parti
ular we rewrite the above transformation rule as

u : A 7�! uAu

�

+ updu

�

Now we take the unital C

�

-algebra A and 
onsider its group of automorphisms,

Aut(A). This group has a normal (i.e. invariant

23

) subgroup, made up by automor-

phisms of the form

8a 2 A �

u

: a 7�! uau

�

u 2 fu 2 A j uu

�

= I= u

�

ug

This normal subgroup is the group of Inner automorphisms Inn(A) C Aut(A). To

interpret the role of this automorphisms, we now get a 
ommutative unitalC

�

-algebra

22

We use short notations, in whi
h E has been identi�ed with pA

M

23

In the sense it is left invariant by any automorphism of A
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C

1

(M) for some 
ompa
t manifoldM. It 
an be proved by 
onsidering the appro-

priate pullba
ks, that the automorphisms in this 
ase are just the di�eomorphisms,

i.e.:

Aut(C

1

(M)) ' Diff(M)

Of 
ourse, being this a 
ommutative C

�

-algebra , all the automorphisms are outer

ones Out(A)

:

= Aut(A)=Inn(A) = Aut(A), sin
e Inn(A) is trivial; for a non
om-

mutative C

�

-algebra the 
orre
t analog of the di�eomorphisms are the outer auto-

morphisms, indeed the normal subgroup Inn(A) leaves invariant ea
h irredu
ible

representation of A on H, i.e. any \point" in the (non
ommutative) spa
e.

Anyway, given a real spe
tral triple (A;H; =D) of dimension d with real stru
ture

J , where the C

�

-algebra A is represented by � : A �! B(H), we 
an see that any

u 2 U(A) generates an isomorphismwith the new spe
tral triple (A;H; =D+u[ =D; u

�

℄+

�

2

(d)Ju[ =D; u

�

℄J

�

) where the C

�

-algebra A is represented by another representation,

namely the 
omposition of the old one with the inner automorphism generated by

u, �

0

= � Æ �

u

. This gives an interpretation of the inner automorphisms as \gauge

transformations" of the non
ommutative geometry, and in turn of the gauge degrees

of freedom as inner 
u
tuations of the non
ommutative geometry.

2.9 Integration, or (Dixmier) Tra
e

Let T 2 K(H) be a 
ompa
t operator on some Hilbert spa
e. As in de�nition (2.11),

we 
an 
lassify T by the de
ay rate of the eigenvalues f


m

(T )g of its norm operator

p

T

�

T . If T

1

and T

2

are two in�nitesimals of order respe
tively �

1

and �

2

, then the

operator T

1

T

2

is of order not greater than �

1

+�

2

. Moreover the spa
e of in�nitesimal

onH form a two-sided ideal of B(H) Now 
onsider the (generally divergent) sequen
e

of partial sums

hT i

M

:

=

M

X

n=0




m

(T )

For �rst order in�nitesimals, the above sequen
e is logarithmi
ally divergent. We

want our \non
ommutative integral" to have non vanishing value only for in�nitesi-

mal of �rst order. The �rst step is to de�ne it on positive in�nitesimals of �rst order.

The one 
an extend it by linearity, be
ause of the fa
t the ideal of �rst order in�nites-

imal is generated by its positive part. Now let T be su
h a positive in�nitesimal, we
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an de�ne an interpolation to non integer values of hT i

M

, and then the Cesaro mean

tr

�

(T )

:

=

1

log�

Z

�

e

dt

t

hT i

t

log t

whi
h is bounded due to the fa
t

hT i

t

� C log t

and moreover is asymptoti
ally linear in the sense that

j tr

�

(T

1

+ T

2

)� tr

�

(T

1

)� tr

�

(T

2

) j � B

log log�

log�

So any limit point of tr

�

(T ) de�nes a linear positive tra
e, vanishing for in�nitesimals

of order greater than one. In most 
ases of physi
al interest (like Yang-Mills and

Gravity), tr

�

(T ) 
onverges, so that the integral does not depend on the limit point

one 
hoses (see [8℄ 
hapter VIII and [28℄ se
tion 6.2 and 6.3).



34 SECTION 2.9



Chapter 3

Landau levels

In this 
hapter we will analyse the problem of ele
trons 
on�ned to move in a plane,

intera
ting with an orthogonal magneti
 �eld (see [6℄). We will start with the usual

one body problem, and then we will show in detail the proje
tion to the lowest

level states, together with its generalisation to the lowest N +1 states, in parti
ular

explaining the 
onsequen
es in terms of non
ommutativity. Then we will show one

more deformation of the algebra de�ning the Landau levels, whi
h introdu
es a

non
ommutative geometry as well, and presents some interesting physi
al features

for a system in a non
ommutative spa
e, for the sake of physi
al intuition.

3.1 The one body problem

First we need the hamiltonian for an ele
tron in a uniform 
onstant magneti
 �eld.

The hamiltonian is written in the standard fashion

H =

1

2m

�

p�

e




A

�

2

(3.1)

We will 
hoose the so-
alled symmetri
 gauge, for it keeps manifest the azimuthal

symmetry of the problem. So, in 
artesian 
oordinates

A =

B

2

(�x

2

; x

1

)

We may as well suppress the x̂

3


oordinate along whi
h the magneti
 �eld is dire
ted.

The momentum operator

p = �ir

35
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will be 
onsidered a
ting on the �rst two 
oordinates of wave fun
tions. Let us

introdu
e 
omplex 
oordinates now. We pose

8

>

>

>

>

<

>

>

>

>

:

z = x

1

+ ix

2

�z = x

1

� ix

2

� =

1

2

(

�

�x

1

� i

�

�x

2

)

�

� =

1

2

(

�

�x

1

+ i

�

�x

2

)

It is also 
ustomary to use magneti
 units, de�ned by:

} = 1 
 = 1 ` =

r

2}


eB

= 1

The last quantity is 
alled the magneti
 length. It is a length s
ale of the problem

introdu
ed by the presen
e of the magneti
 �eld.

The hamiltonian may be written in a harmoni
 os
illator form, introdu
ing the ladder

operators

1

a

:

=

z

2

+

�

� a

y

:

=

�z

2

� � (3.2)

They satisfy the usual 
ommutation relation

�

a ; a

y

�

= 1 (3.3)

So the hamiltonian takes the form

H = 2 a

y

a + 1 (3.4)

There is another 
onserved quantity, the angular momentum, whi
h is 
onserved

due to the rotational invarian
e, it is . To write it, we introdu
e two more ladder

operators, 
ommuting with the a's

b

:

=

�z

2

+ � b

y

:

=

z

2

�

�

� (3.5)

They satisfy the equation

�

b ; b

y

�

= 1 (3.6)

These operators 
an be shown to be the generators of the magneti
 translations[17,

15℄. The algebra of the latter ones is

[�̂

i

; �̂

j

℄ = iq �

ijk

B

k

where B

k

= B � x̂

k

is the magneti
 �eld

1

The a and a

y

operators are manifestly the 
ovariant derivatives.
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whi
h in our two dimensional 
ase, with B = B x̂

3

, be
omes

2

[�̂

1

; �̂

2

℄ = i q B and �

3

� 0

or in 
omplex 
oordinates

[�̂;

^

��℄ =

B

2

(

�̂

:

=

1

2

(�̂

1

+ i�̂

2

)

^

��

:

=

1

2

(�̂

1

� i�̂

2

)

In magneti
 units this 
ommutator be
omes that of b operators (3.6) Now we 
an

write the angular momentum

J = b

y

b � a

y

a (3.7)

We see that [H; J℄ = 0 so that a base for the Hilbert spa
e is given in term of

simultaneous eigenstates of both the operators, in this form

 

mn

:

=

b

ym

p

m!

a

yn

p

n!

 

0

(3.8)

with

(

H 

mn

= (2n+ 1)  

mn

J 

mn

= (m� n)  

mn

:

The states  

mn

are normalized by

h 

mn

j 

kl

i =

Z

d

2

z  

�

mn

(z; �z) 

kl

(z; �z)e

�jzj

2

The basi
 wavefun
tion  

0

(z; �z) = hz; �z j 

0

i is solution of

aj 

0

i = 0 ; bj 

0

i

and therefore is gaussian:

hz; �z j 

0

i =  

0

(z; �z) =

1

p

�

e

�

jzj

2

2

k 

0

k

2

= 1:

We see that ea
h energy level (Landau levels) is in�nitely degenerate. Let us give a

look to the lowest Landau level, the level with n = 0. The wave fun
tions of these

states are

 

m0

(z; �z) =

1

p

�

z

m

p

m!

e

�

jzj

2

2

2

The �

3

� 0 
onstraint is a
tually a se
ondary 
onstraint 
oming out by requiring the hamilto-

nian to be �rst 
lass.
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These are the wave fun
tions of parti
les lo
alized in a \fuzzy" annulus, be
ause

the probability distribution is angle-independent and peaked at jzj

2

= m. So the

lowest level is made up by 
on
entri
 layers. In the higher Landau levels, the wave

fun
tions present, besides the power fa
tor, a generalised Laguerre polynomial fa
tor.

We may 
ount the states in ea
h Landau level, in a dis


3

of radius R, their

number being n

e

=

R

2

`

2

=

�

�

0

being � = �R

2

B the magneti
 
ux through the dis


and �

0

= �`

2

B the quantum of magneti
 
ux. So we may say that in ea
h Landau

level there is one state for ea
h 
ux quantum through the dis
.

3.2 W

1

algebra

By using the fa
t that the generators of magneti
 translation b, b

y


ommute with the

hamiltonian H, we 
an 
onstru
t several obviously 
onserved quantities [6℄

L

nm

:

= (b

y

)

n

b

m

(3.9)

We may ask now whi
h N�other symmetry they generate. Their algebra is

[L

nm

;L

kl

℄ =

mfk

X

i=1

m!k!

(m� i)!(k � i)!i!

L

n+k�i;m+l�i

�

�

m$l

n$k

�

(3.10)

whi
h, up to higher quantum 
orre
tions (we restore for a moment }), reads

[L

nm

;L

kl

℄ = }(mk � nl)L

n+k�1;m+l�1

+O(}

2

) (3.11)

This is known to be the algebra of (
lassi
al) area preserving di�eomorphisms, or

w

1

. The algebra de�ned by (3.10), like all the quantum generalisations of (3.11), is


alled W

1

algebra.

3.2.1 Se
ond quantization

We 
an give now a more intuitive des
ription of the generators of W

1

algebra (see

[6℄ and refs. therein) by using se
ond quantization. Namely, given the wavefun
tions

(3.8), we de�ne the �eld operators

^

�(z; �z)

:

=

X

ln




ln

 

ln

(z; �z)

3

This 
on�guration is known as the Corbino dis
 geometry
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where we have used the Fo
k (fermioni
) operators

[


ln

; 


y

km

℄

+

= Æ

lk

Æ

nm

as usual in �eld theory, a
ting on a Hilbert spa
e de�ned from a va
uum j0i as the

(
losure of the) linear span of the set

f

Y

i




y

k

i

n

i

j0ig

The se
ond quantized version of the L

st

operators is

L

st

:

=

Z

d

2

z

^

�

y

(z; �z)(b

y

)

n

b

m

^

�(z; �z) =

1

X

n=0

1

X

l=s




y

l;n




t+l�s;n

p

l!(t + l � s)!

(l � s)!

=

=

1

X

n=0

1

X

l=t




y

l;n




s+l�t;n

p

l!(s+ l � t)!

(l � t)!

It is manifest that Landau levels with di�erent prin
ipal quantum numbers (the

number of a

y

.s in the state) are not 
onne
ted by the L

st

operators. Ea
h term of

the sum




y

l;n




s+l�t;n

p

l!(s + l � t)!

(l � t)!

simply shu�es the parti
les within the same (n-th) level, varying their angular mo-

mentum. When an ele
tron is shifted on an orbital with larger radius, then its

angular momentum is in
reased, while it de
reases if the radius of the �nal orbital

is smaller.

We are only interested now in the lowest Landau level (n = 0), and in the a
tion of

L

st

on the ground state. The latter is the state with the minimum angular moment,

whi
h is simply, for N parti
les

j
i

:

= 


y

N;0

� � � 


y

0;0

j0i

Applying a generator ofW

1

to j
i, we noti
e immediately that it vanishes identi
ally

if s < t, while it redu
es to a number in the 
ase s = t

(

L

st

j
i = 0 ( t > s

L

ss

j
i =

(N+1)!

(s+1)(N�s)!

j
i

So the only nontrivial 
ase is when s > t, in whi
h 
ase its e�e
t on the ground state is

that of in
reasing the angular momentum of the ground state j
i by shifting ele
trons

from inside the Fermi sphere to more external orbitals. So the in
ompressibility of
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the ground state is simply due to the fa
t it is the state with minimum angular

momentum, and 
an be written by the highest weight-like 
onditions ([6℄)

L

st

j
i = 0( s < t (3.12)

We stress here that the 
ommutation relations 
lose within the set of L

st

with s < t.

So the whole Lie subalgebra generated by fL

st

g

s<t

annihilates the ground state.

3.3 The trun
ation to a �nite number of Landau

levels

3.3.1 The theory in the lowest level

For B !1, we may wish to 
onsider only the states belonging to the lowest Landau

level. They have been written above, as a gaussian times an entire fun
tion of z.

Now we 
hara
terise them by a proje
tor that maps any wavefun
tion to its n = 0


omponent. Similarly any operator is sandwi
hed between two 
opies of the proje
tor

I

0

:

=

1

X

m=0

 

m0

Æ  

y

m0

(3.13)

This operator proje
ts on the levels with n � N . To pi
k out the lowest at all, we

put N = 0.

We 
an see that the 
ommutation relations are not left un
hanged by this (nonuni-

tary) transformation. In parti
ular, we may 
ompute that:

[z; �z℄ ; [z; �z℄

N

= �

P

1

m=0

 

m0

Æ  

y

m0

�

�;

�

�

�

;

�

�;

�

�

�

N

= �

1

4

P

1

m=0

 

m0

Æ  

y

m0

(3.14)

We see that the algebra of fun
tions of the 
oordinates of the problem, abelian at

the beginning, is made non
ommutative by this proje
tion, as well as the algebra

generated by the derivatives. To be more spe
i�
, we have obtained the algebra of

the non
ommutative plane, generated by the proje
ted operators z

0

:

= I

0

z I

0

and

�z

0

:

= I

0

�z I

0

whi
h satis�es

[z

0

; �z

0

℄ = � I

0

For the derivative operators it is

[�

0

;

�

�

0

℄ = �

1

4

I

0
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3.3.2 Proje
tion to the �rst N + 1 Landau levels

This proje
tor is generalised to higher levels (see also [32, 31℄) with the de�nition

I

N

:

=

N

X

n=0

1

X

m=0

 

mn

Æ  

y

mn

(3.15)

In this way we �nd the following results

8

>

>

>

>

<

>

>

>

>

:

[z; �z℄

N

= �(N + 1)

P

1

m=0

 

mN

Æ  

mN

= �(N + 1)( I

N

� I

N�1

)

�

�;

�

�

�

N

= �

N+1

4

P

1

m=0

 

mN

Æ  

mN

= �

N+1

4

( I

N

� I

N�1

)

[�; z℄

N

=

�

�

�; �z

�

N

= I

N

�

N+1

2

P

1

m=0

 

mN

Æ  

mN

=

N�1

2

I

N

+

N+1

2

I

N�1

[�; �z℄

N

=

�

�

�; z

�

N

= 0

(3.16)

In this equations we do not �nd any longer the non
ommutative plane algebra,

be
ause the 
ommutator [z

N

; �z

N

℄ is not proportional to the identity anymore. We

noti
e that as the number N is sent to in�nity, the sequen
e of a generi
 proje
ted

operator A

N

:

= I

N

A I

N

does not 
onverge operatorially to anything, as 
an be seen

by the fa
t the norm of the operator

P

1

m=0

 

mN

Æ  

mN

equals one for ea
h N .

Anyway, it 
onverges weakly, i.e., the 
onvergen
e is limited to any matrix element

between normalizable states. This is also a 
onsequen
e of the fa
t one 
annot de�ne

a derivative on a �nite rank matrix algebra, e.g. take X an hermitian N �N matrix

generating the algebra of (formal) power series

A = f

X

n

a

n

X

n

g

and take the derivative �

X

be su
h that

[�

X

; X℄ = I

with I the N �N identity matrix. Then taking the tra
e of the above equation we

have a 0 = 1 in
onsisten
y, be
ause the tra
e of a �nite rank 
ommutator vanishes,

while this is obviously not the 
ase for the identity matrix. The only way out from

this, exists when the matri
es are \in�nite" dimensional so that the tra
e is divergent

(prote
ting the 
ommutator, roughly speaking, by the usual linear manipulations).

3.4 Deformed Landau levels

This se
tion is inspired by a work of Nair and Poly
hronakos [38℄ about quantum

me
hani
s on non
ommutative plane, we introdu
e e�e
ts of a non
ommutative ge-
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ometry in the well known physi
al problem of the quantum me
hani
s of Landau

levels. We re
onsider the algebra of the ladder operators a; a

y

and b; b

y

, and gener-

alise it as follows

8

>

>

<

>

>

:

�

a; a

y

�

= 1

�

b; b

y

�

= � 2 R

+

0

�

a; b

�

= 0 =

�

a; b

y

�

: (3.17)

We want to keep the interpretation of this algebra as that of the quantum me
hani
s

on a plane thread by the magneti
 �eld; therefore we take the a; a

y

operators as the

kinemati
 momenta with whi
h the Hamilton operator is made, and the b; b

y

as the

magneti
 translations on the plane. So we have

H = 2a

y

a+ 1 [b;H℄ = 0 = [b

y

;H℄

We still have an Hilbert spa
e built starting from a va
uum j 

0

i, by the appli
ation

of both a and b. We use the same notation we employed before in the \ordinary"


ase, (3.8).

We 
an �x the form of the 
oordinate operators in terms of the a's and b's by


onsidering what the 
ommutation relations of the latter with z; �z must be. We have

the requirements

[z; a℄ = 0 ; [z; a

y

℄ = 1

just as in the ordinary 
ase, and

[b

y

; z℄ = 0 ; [b; z℄ = 1

be
ause of the transformation rules of the 
oordinates under magneti
 translations.

These relations �x the 
oordinates z; �z to be

(

z

:

= b

y

�� + a

�z

:

= b�� + a

y

(3.18)

Sin
e we want the rotational symmetry in our problem we must �x the form of the

angular momentum, J, su
h that it both 
ommutes H, and transforms the 
oordinates

in the natural (ve
tor) fashion, i.e.

�

J;H

�

= 0

�

J; z

�

= z

�

J; �z

�

= ��z

With this properties J 
an be found to be

J =

b

y

b

�

� a

y

a
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Of 
ourse the normalized eigenve
tors of H and J are modi�ed in the following way

 

mn

:

=

b

ym

p

m!�

m

a

yn

p

n!

 

0

(3.19)

From the (3.18) the non
ommutativity relation of the 
oordinates 
an be 
omputed

to be

[z; �z℄ = 1�

1

�

Of 
ourse when � = 1 the original 
ommutative theory is re
overed. When � 6= 1,

these 
oordinates do not have a straightforward meaning, be
ause they are not 
-

numbers: let us dis
uss this point in more detail. In the study the quantum me
hani
s

of a point 
harge in ordinary Landau levels. Usually what one does, is to pi
k up

a pair of fun
tions from A (sin
e we are on a plane), and identify any value of the

pair of 
oordinates, with a point on the plane. In the quantum theory, there exists

the position operator, and to ea
h point of the plane 
orresponds to a ve
tor in an

orthonormal 
omplete set fjz; �zig of eigenstates of position operator. As we have

said in the se
tion 2.2, in the more abstra
t algebrai
 framework, a point on a spa
e

is basi
ally an equivalen
e 
lass of irredu
ible representations of the algebra A of

(C

r�0

) fun
tions on that spa
e. From the same point of view of the above lines,

ea
h one of these equivalen
e 
lasses is labelled by the eigenvalues of the 
oordinate

operator, whi
h are just 
-numbers. The operators (3.18), do not form a 
omplete

system of operators, be
ause they 
annot be simultaneously diagonalized, and do not

lead to pairs of 
oordinates. Hen
e, one obtains a less detailed information from the


oordinates only.

3.4.1 The Weyl transform

When non
ommutativity of 
oordinates has been introdu
ed, we 
annot des
ribe

physi
al quantities using pairs of 
oordinates. An idea is to 
onsider Wigner fun
-

tions. Basi
ally we want to study the matrix element

�

 

l;0

0

Æ

Æ

Æ(p� �z)Æ(q � z)

Æ

Æ

 

m;0

�

between two one-parti
le states of the lowest Landau level; here

Æ

Æ

� � �

Æ

Æ

means we are

taking the symmetri
 (Weyl) ordering, that avoids ambiguities in the de�nition of

the above equation. Another reason is the following. Let us introdu
e now the Weyl

transform whi
h maps fun
tions to operators. Take the algebra of fun
tions on the
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plane, and take the algebra (non
ommutative plane) A

�

generated by the operators

x

i

satisfying

�

x

i

; x

j

�

= ��

ij

; i; j = 1; 2

We 
an asso
iate to ea
h fun
tion f : R

2

�! C on the plane the operator of A

�

U [f ℄

:

=

1

(2�)

2

Z

d

2

k

Z

d

2

� e

ik�(x��)

f(�) (3.20)

This is a \non
ommutative generalisation" of the Dira
 Æ relation

f(x) =

Z

dy Æ(x� y)f(y)

so that we 
an write, using 
omplex 
oordinates:

U [f ℄ =

Z

d

2

� f(�)

Æ

Æ

Æ(�

z

� z)Æ(�

�z

� �z)

Æ

Æ

(3.21)

This formula gives a pre
ise meaning to the idea of \substituting" an operator for

a 
oordinate in an ordinary fun
tion; indeed it allows us to write ea
h operator of

A

�

in an unambiguous form. Moreover the equation (3.20) does automati
ally the

job of ordering operator monomials in the most symmetri
 way. Now one 
an ask if

it is possible to rewrite the produ
t of two su
h operators in the same way, i.e. as

a \operatorial" kernel smeared with a \
lassi
al" fun
tion. In parti
ular we would

like the produ
t of the smearing fun
tions be at least asso
iative. By plugging in the

de�nition of the Weyl operators, and using the Campbell-Baker-Hausdor� lemma,

we 
an �nd that it is indeed possible, and that the produ
t is given in terms of the

following 
onvolution

U [f ℄U [g℄ =

1

(2�)

2

Z

d

2

k e

ik�x

Z

d

2

� e

�ik��

f ? g(�) = U [f ? g℄ ; (3.22)

whi
h de�nes the Moyal produ
t ?

f ? g(�)

:

= f(�) e

�

2

 

�

i

�

ij

!

�

j

g(�)

and the derivatives are meant to a
t on � variables a

ording to the dire
tion of the

overset arrows. Of 
ourse this produ
t is not 
ommutative.

Every operatorial ordering of (3.21) de�nes a di�erent quantization of the algebra of

regular fun
tions on the plane, but all of these quantizations are equivalent. Thus,

we are free to 
hose the symmetri
 ordering, being the most natural one. In this 
ase

we have the algebra generated by the operators z; �z satisfying

[z; �z℄ = 1�

1

�
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The expression of the matrix element is:

�

 

l;0

0

Æ

Æ

Æ(q � z)Æ(p� �z)

Æ

Æ

 

m;0

�

:

=

Z

dxdy

(2�)

2

�

 

l;0

0

e

i(qx+py)�i(zx+�zy)

 

m;0

�

=

=

Z

dxdy

(2�)

2

e

i(qx+py)

�

e

i�ya

 

l;0

0

e

�

i

�

yb

e

�

i

�

xb

y

e

�ixa

 

m;0

�

e

�

xy

2

e

xy

2�

=

=

Z

dxdy

(2�)

2

e

i(qx+py)

�

e

i

�

�yb

y

 

l;0

0

e

�

i

�

xb

y

 

m;0

�

e

�

xy

2

e

xy

2�

: (3.23)

Here we used the fa
t that in the lowest Landau level the a operator vanishes,

a 

l;0

= 0. The 
omputation leads for the matrix elements

�

e

i

�

�yb

y

 

l;0

0

e

�

i

�

xb

y

 

m;0

�

=

s

l!m!

�

l+m

mfl

X

s=0

�

s

(�ix)

l�s

(�iy)

m�s

(l � s)!(m� s)!s!

e

�

xy

�

(3.24)

where m f l

:

= min fm; lg. Noti
e that this is just a polynomial in x and y times

the overall exponential. Now we 
an put it ba
k into (3.23) and take the Fourier

transform obtaining

�

 

l;0

0

Æ

Æ

Æ(q � z)Æ(p� �z)

Æ

Æ

 

m;0

�

=

=

1

�

�

�

�

�

2�

1 + �

�

�

�

�

s

l!m!

�

l+m

mfl

X

s=0

�

s

(l � s)!(m� s)!s!

�

�

�

�q

�

l�s

�

�

�

�p

�

m�s

e

�

2�

1+�

pq

(3.25)

We 
an go on 
omputing an alternative form that does not 
ontain derivatives

�

 

l;0

0

Æ

Æ

Æ(q � z)Æ(p� �z)

Æ

Æ

 

m;0

�

=

= (�1)

l+m

j2�j

�j1 + �j

s

l!m!

�

l+m

mfl

X

s=0

(mfl)�s

X

t=0

�

s

�

�

2�

1+�

�

m+l�2s�t

p

l�s�t

q

m�s�t

(l � s� t)! (m� s� t)! s! t!

e

�

2�

1+�

pq

(3.26)

The above formula allow us to write any expe
tation value of the form

�

 

l;0

0

U [f ℄  

m;0

�

as an integral on a \quasi
lassi
al phase spa
e" (q; p)

�

 

l;0

0

U [f ℄  

m;0

�

=

=

p

l!m!

�

j2�j

j1 + �j

mfl

X

s=0

(mfl)�s

X

t=0

(�1)

t

�

s�

l+m

2

�

2�

1+�

�

m+l�2s�t

(l � s� t)! (m� s� t)! s! t!

�

�

Z

dq dp f(q; p) e

�

2�

1+�

pq

p

l�s�t

q

m�s�t

(3.27)
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Now, let us write down the expression of the wavefun
tions of the �rst Landau level

for � = 1

 

l;0

(z; �z) =

z

l

p

� l!

e

�

jzj

2

2

After res
aling of the last integral, we 
an re
ognise it as the matrix element between

the wavefun
tions of appropriate states in the lowest Landau level for � = 1

Z

dq dp f(q; p) e

�

2�

1+�

pq

p

l�s�t

q

m�s�t

= �

p

(l � s� t)! (m� s� t)!

�

2�

1 + �

�

s+t�

m+l

2

�

�

�

�

�

�

1 + �

2�

�

�

�

�

Z

d� d

�

�  

�=1

l�s�t;0

(�;

�

�)

�

f

 

s

1 + �

2�

�;

s

1 + �

2�

�

�

!

 

�=1

m�s�t;0

(�;

�

�)

(3.28)

We see that (3.27) 
an be written as a linear 
ombination of the analogous matrix

element for � = 1, involving just the states with lower angular momentum ( 

l

0

;0

with

lower l

0

). This implies that the deformation of the algebra 
onsidered here, does

not violate the in
ompressibility de�ned in terms of W

1

algebra (see se
tion (3.2)):

the matrix elements of any observables are indeed written in terms of � = 1 matrix

elements between states of equal or lower angular momentum. In this interpretation,

putting

~

f(�;

�

�)

:

= f

 

s

1 + �

2�

�;

s

1 + �

2�

�

�

!

we 
an write

�

 

l;0

0

U [f ℄  

m;0

�

=

=

p

l!m!

lfm

X

s=0

(lfm)�s

X

t=0

(�1)

t

�

1+�

2

�

s�

l+m

2

s! t!

p

(m� s� t)!(l � s� t)!

�

 

�=1

l�s�t;0

0

~

f  

�=1

m�s�t;0

�

(3.29)

3.4.2 Se
ond quantization and density

Now we 
ome ba
k for a moment to the � = 1 situation, i.e. to the 
ommutative


ase, for the theory proje
ted to the �rst Landau level. In this 
ontext, one has the

wavefun
tions

 

�=1

l;0

(z; �z) =

z

l

p

� l!

e

�

jzj

2

2

As dis
ussed earlier, we introdu
e the se
ond quantization, using a set of ladder

(fermioni
) operators




l

; 


y

l

f


l

; 


y

m

g = Æ

lm
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and the Fo
k spa
e generated starting from the va
uum state j0i as the 
losure of

the span of

(

Y

l




y

k

l

j0i; 8l; k

l

2 N ; k

l�1

< k

l

)

with h0j0i = 1. The �eld �(z; �z) in se
ond quantization is

�(z; �z) =

X

l




l

 

l;0

(z; �z)

We need the ground state of the in
ompressible 
uid of N + 1 ele
trons

j
i

:

= 


y

N

� � � 


y

0

j0i

Now we want to evaluate the expe
tation value of the density operator � of the �eld

� on this fundamental state j
i. The density is

�(z; �z)

:

= �

y

�(z; �z) =

X

kl




y

l




k

 

�

l;0

(z; �z) 

k;0

(z; �z)

For its expe
tation value one �nds

h
j�(z; �z)j
i

:

=

X

kl

 

�

l;0

(z; �z) 

k;0

(z; �z) h0j


0

� � � 


N




y

l




k




y

N

� � � 


y

0

j0i =

=

N

X

l=0

 

�

l;0

(z; �z) 

l;0

(z; �z)

This 
an be written as

h
j�(z; �z)j
i =

N

X

l=0

Z

d

2

�  

l;0

(�;

�

�) Æ(� � z)Æ(

�

� � �z) 

l;0

(�;

�

�) =

N

X

l=0

�

 

l;0

0

Æ

z

Æ

�z

 

l;0

�

For � 6= 1, we repeat the previous steps, obtaining the following relation

�

h
jU [�(�; ��)℄j
i

�

=

N

X

k=0

�

 

k;0

0

Æ

Æ

Æ

�

Æ

��

Æ

Æ

 

k;0

�

where � is a 
omplex number whi
h represents the point where we 
omputed the

density in the � = 1 framework of above. We 
an apply now our formula (3.29) to

get the result after some manipulation

�

h
jU [�(�; ��)℄j
i

�

=

1

�

�

�

�

�

2�

1 + �

�

�

�

�

N

X

k=0

k

X

s=0

�

k

s

��

2

1 + �

�

k�s

U

�

s� k; 1;

�

�

�

2�

1+�

�

�

�

���

�

(k � s)!

e

�

j

2�

1+�

j

���

(3.30)
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where U(a; 
; z) is the Tri
omi fun
tion (hypergeometri
 
on
uent of the se
ond

kind).

We 
an now put the 
omplex 
oordinates of any point in the pla
e of � and ��,

so that we 
an see that the expe
tation value of the density on the lowest Landau

level is rotational invariant. We 
an plot it for various values of � and at �xed N

(see �gure 3.1).

2 4 6 8 10 12

0.05

0.1

0.15

0.2

0.25

0.3

Figure 3.1: Density plot for various values of �

When one varies the number of parti
les, we expe
t that the droplet expands

without 
hanging its plateaux density, be
ause the �lling fra
tion of the deformed

Landau level is

�

1�2�

. We 
an see this to happen when � =

1

2

in �gure 3.2.

The 
orrelation fun
tion h�(x)�(y)i

We turn ba
k for a moment to � = 1, in order to show the form of the density-

density 
orrelation fun
tion on the in
ompressible ground state h
j�(z

1

)�(z

2

)j
i.

We will work out a form whi
h holds also for � 6= 1, and now try to 
ompute the


orrelation fun
tion h�(x)�(y)i




. A straightforward 
omputation leads for generi
 �,
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1 2 3 4 5 6 7

0.025
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0.075

0.1
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0.15

Figure 3.2: Density plot for various numbers of parti
les

in the same way as before, to the result
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Operating on this expression, we 
an see the last two terms are
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and

N

X
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One 
an see that the two terms above are both real, and moreover they are both

invariants under simultaneous rotations of z

1

and z

2

on the 
omplex plane

(

z

i

7�! e

i�

z

i

�z

i

7�! e

i�

�z

i

We 
an 
onsiderably simplify the formula for the 
orrelation fun
tion by 
omputing

it for z

1

= 0 and with z

2

on the real line � = z

2

= �z

2

, away from the origin � = 0.

We obtain

h
jU [�(0)℄U [�(�; ��)℄j
i =

=

1

�

2

�

�

�

�

2�

1 + �

�

�

�

�

2

N

X

m=0

(

1 + �

2

 

1�

�

� � 1

� + 1

�

N+1

!

�

�

� � 1

� + 1

�

m

)

�

�

m

X

s=0

�

m

s

��

2

1 + �

�

m�s

U(s�m; 1;

2�

1+�

j�j

2

)

(m� s)!

e

�

2�

1+�

j�j

2

(3.31)

The shape of the fun
tion as we vary the number of parti
les N , is left basi
ally

invariant within a 
hara
teristi
 length, the latter being basi
ally the only obje
t

whi
h varies with N . This is exa
tly what happens in 
ommutative 
ase. As it is

apparent from �gures 3.4 and 3.5, in the non
ommutative 
ase (� 6= 1) the two points


orrelation fun
tion of the density has an un
ommon feature near the origin, be
ause

it be
omes negative. This is an e�e
t of non
ommutative deformation of the algebra

of Landau levels. To understand it in physi
al terms, we 
an do the following: we

swit
h on a small perturbation, in the form of a two body potential

^

V (x; y)

:

=

^

 (x)

^

 

�

(x)V (x� y)

^

 (y)

^

 

�

(y)
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Figure 3.3: Plot of the 
orrelation fun
tion of the density with itself for various

numbers of parti
les for � = 1 (
ommutative 
ase).

and we 
ompute the �rst order perturbation on the unperturbed ground state. The

result is (for simpli
ity we do the 
omputation at x = 0, y = �y = r)

V(r)

:

= V(0; r) = h
jU [�(0)℄V (0; r)U [�(r)℄j
i

In the 
ase of the harmoni
 potential V (0; r) =

1

2

r

2

, we obtain for the e�e
tive

potential V(r) a shape whi
h has a minimum at r 6= 0, as shown by �gures (3.6) and

(3.7). It means that the attra
tion between the parti
les due to

^

V is balan
ed by an

e�e
tive \repulsion" that is related to the loss of lo
alization on the non
ommutative

plane (see also the introdu
tory 
hapter of this thesis and [28℄).
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Figure 3.4: Plot of the 
orrelation fun
tion of the density with itself for various

numbers of parti
les � =

1

2

(non
ommutative 
ase with � = �1).

2 4 6 8

-0.02

-0.01

0.01
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Figure 3.5: Plot of the 
orrelation fun
tion of the density with itself for N = 20

parti
les, � =

1

2

.
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Figure 3.6: E�e
tive potential for various � 2 [0:5; 1:5℄

20 40 60 80
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0.6

0.8

Figure 3.7: Lo
ations of minima of the e�e
tive potential as a fun
tion of � 2

[0:2; 0:99℄.
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Chapter 4

From Lagrange in
ompressible


uid to Non
ommutative

Chern-Simons theory

4.1 In
ompressible 
uid

At high values of the magneti
 �eld, and at low temperature, the two-dimensional

ele
trons of the quantum Hall e�e
t form an in
ompressible 
uid, the density of

whi
h is uniform and 
orresponds to the observed plateaus [44, 34℄. The 
uid is

in
ompressible be
ause the density waves have a gap, whi
h is in�nite in the limit of

in�nite magneti
 �eld [47℄. We shall be interested in this limit only.

The in
ompressibility of the 
uid implies that the theory is invariant under trans-

formations leaving invariant the volume element, i.e. under the Area-preserving Dif-

feomorphisms. Having a granular pi
ture of the 
uid in mind, one may view this

transformations just as a relabelling of the parti
les of the 
uid.

4.2 Lagrange 
oordinates

The basi
 obje
t in the Lagrange des
ription of 
uids [25℄ is the set of \
omoving


oordinates" X(t;x), i.e. a set of ve
tor valued fun
tions of the time, ea
h of them

\following" the time-evolution of a parti
le. Ea
h fun
tion of this set is labelled by

an initial 
ondition for the position of the parti
le it is following, i.e. X(t = 0;x) = x

(see �g. 4.1).

55
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Figure 4.1: Comoving 
oordinates following a parti
le

Using the 
omoving 
oordinates we may express quantities depending on �xed

points in the spa
e

1

, su
h as the 
uid density and the 
urrent, in the following way

�(t; r) =

Z

dx �

0

(x) Æ(X(t;x)� r) =

�

0

det

�

�X(t;x)

�x

�

x=�(t;r)

(4.1)

j(t; r) = �

0

Z

dx

_

X(t;x) Æ(X(t;x)� r) (4.2)

Here �

0

is a referen
e uniform density in the \spa
e of labels". We now write the

Lagrangian for the in
ompressible 
uid in 
omoving 
oordinates

L

0

=

Z

dx �

0

�

1

2

_

X

2

(t;x)� V

�

det

�

�X(t;x)

�x

���

(4.3)

We 
an see that the theory de�ned by this lagrangian is invariant under transforma-

tions su
h that

(

x 7�! x+ f(x)

X(t;x) 7�! X(t;x) + (f � r)X(t;x)

with f

i

(x) / �

ij

�

j

�(x) (4.4)

We see that X(t;x) are s
alar �elds under these transformations. In two dimensions

these ones are the most general area-preserving transformations.

4.3 Intera
tion with a magneti
 �eld

We are now going to add to this lagrangian the intera
tion with an external magneti


�eld

L

0

=

eB

2

Z

dx �

0

�

ab

_

X

a

X

b

(4.5)

1

This is the standard Euler des
ription of 
uid me
hani
s, in whi
h the observer just \sits"

at a point in the spa
e, measuring the quantities of the 
uid as this passes by.



CHAPTER 4 57

It's easy to see that L

0

is invariant under (4.4) as well. Using N�other theorem we

may see that the 
onserved quantity deriving from this symmetry is

det

�X

�x

(t;x) =

1

2

�

ab

�

ij

�

�x

i

X

a

�

�x

j

X

b

This is proportional to the inverse of the density of the 
uid, in 
omoving 
oordinates.

So we 
an say that the density of an element of the 
uid is a 
onstant when we follow

its motion. At the equilibrium we put as a 
onstraint

det

�X

�x

(t;x) = 1 (4.6)

In the limit in whi
h the magneti
 �eld is in�nite only the magneti
 term and the


onstraint survive. So we are left with the lagrangian

L =

eB

2

�

0

Z

dx

�

�

_

X

a

� fX

a

; A

0

g

�

X

b

�

ab

+

2

�

0

A

0

�

(4.7)

where we have introdu
ed the Poisson bra
kets notation

fA;Bg

:

=

1

�

0

�

ij

�

�x

i

A

�

�x

j

B (4.8)

and the Lagrange multiplier A

0

(x). The term in 
urly bra
kets plays the role of a


ovariant time derivative: it is part of the Gauss-law 
onstraint (4.6), that will be

important to ensure the invarian
e of the theory.

4.3.1 Introdu
tion of non
ommutativity

Some 
onsiderations are in order. The number of states of two-dimensional ele
-

trons in ea
h Landau level is the ratio between the total magneti
 
ux threading the

surfa
e and the elementary quantum of 
ux �

0

:

=

2�~


e

. This means that, in ea
h

Landau level, there is a state for ea
h one of these \
uxons", so that the 
uid shows

somehow a \granularity". In the se
tions 2.2 and 2.3, we saw that the introdu
tion

of a non
ommutative algebra in the pla
e of the algebra of fun
tions on a manifold,


auses the loss of the notion of points of the spa
e. A
tually one is left with the


lasses of irredu
ible representations of the algebra itself, whi
h 
ontain less infor-

mation. We may view this also from a simple point of view, going ba
k to the basi


interpretation of quantum theory: one 
onsiders the un
ertainty relation generated

by the 
ommutator of the 
oordinates of the non
ommutative plane

[x; y℄ = i� (�x)

2

(�y)

2

&

1

2

�

2
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This means that in a non
ommutative theory the points are somehow \blurred", or

fuzzy. Thus introdu
ing the non
ommutativity is a 
lean way to introdu
e a sort

of delo
alization of points of the spa
e. One way to a
hieve this, is to 
onsider the

Lagrange 
oordinates as time dependent matri
es. In this approa
h, the integral is

substituted by the tra
e, and the role of the Poisson bra
kets (4.8) is taken by the


ommutator

f; g i[; ℄

After res
aling of the Lagrangian, we obtain with these substitutions

L(X

a

; A

0

) =

B

2

tr

h�

_

X

a

+ i[X

a

; A

0

℄

�

X

b

�

ab

+ 2�A

0

i

(4.9)

where we have introdu
ed the 
onstant � = 1=�

0

. The equation of motion for A

0

is

just a 
onstraint, be
ause it appears into the Lagrangian without time derivatives,

like a Lagrange multiplier, and it is the so said Gauss law 
onstraint

X

a

X

b

�X

b

X

a

= i� �

ab

� (4.10)

whi
h has to be read as a matrix equation. Be
ause of the reality of the 
oordinates

X(t;x), the matri
es whi
h substitute them has to be taken hermitian. The model

(4.9) 
an be 
alled Chern-Simons Matrix Quantum me
hani
s. The reason of this

name 
an be understood in the following way [4℄. Take the theory (4.9) as a theory

of 
u
tuations of the matri
es X

a

on a �xed ba
kground x

a

. So we 
ould write,

introdu
ing the 
u
tuation matri
es A

a

X

a

= x

a

+ � �

ab

A

b

(4.11)

where the ba
kground x

a

satisfy the 
ommutation relation [x

1

; x

2

℄ = i�. We 
ould

also view this form of X

a

as if we had written the displa
ement from the initial

referen
e positions of ea
h 
uid element by the displa
ement ve
tor ��

ab

A

b

. So we

just need to substitute (4.11) into (4.9), to obtain

L(A) =

B�

2

tr

�

�

���

�

A

�

�

�

A

�

+

2

3

A

�

A

�

A

�

��

(4.12)

where the derivative �

�

has been de�ned as

�

0

�

:

=

�

�t

�

�

i

�

:

=

h

�i

x

i

�

; �

i

i = 1; 2
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As it is apparent, equation (4.12) is the non
ommutative generalization of the Chern-

Simons Lagrangian. We 
ould rewrite the a
tion in terms of the appropriate Moyal

produ
t in this way

S

0

(A) =

B�

2

Z

d

3

x �

���

�

~

A

�

? �

�

~

A

�

+

~

A

�

?

~

A

�

?

~

A

�

�

where now the

~

A

�

are spa
e-time fun
tions, in the spirit of se
tion 3.4.1. We 
an

now write down the equations of motion for

~

A

�

, up to the �rst order in � to �nd [47℄

�

ab

�

�

a

A

b

�

1

2

fA

a

; A

b

g

�

= 0

This is the equation of the 
uid whose dynami
s is given by the a
tion (4.7) in whi
h

we substituted (4.11) meant as a 
ommutative expression, i.e. in terms of 
ommuta-

tive x and A(x; t). Of 
ourse this fa
t says nothing about the inverse path from the


ommutative to the non
ommutative theory. This must be done, as we did, 
hoosing

the most natural (in a sense minimal) matrix a
tion. Having said all this about

the a
tion (4.12), we are free to 
ome ba
k to the form (4.9) instead, whi
h will be


onsidered in the following. This is the so 
alled \Chern-Simons Matrix Quantum

Me
hani
s".

4.4 Matrix Chern-Simons theory

We will use, in the sequel, the Matrix Chern-Simons theory de�ned by the a
tion

S(X

a

; A

0

) =

B

2

Z

dt tr

h�

_

X

a

+ i[X

a

; A

0

℄

�

X

b

�

ab

+ 2�A

0

i

(4.13)

As mentioned before, the equation of motion of the Lagrange multiplier A

0

is just

the Gauss law 
onstraint

X

a

X

b

�X

b

X

a

� i� �

ab

� 0 (4.14)

or in 
omponents

G

ik

:

= X

1

il

X

2

lk

�X

2

il

X

1

lk

� i� Æ

ik

� 0 (4.15)

The 
anoni
al 
oordinate-momentum pairs obtained from the above �rst-order la-

grangian are

(X

(1)

ij

;

B

2

X

(2)

ji

) � (X

(1)

ij

;�i

Æ

ÆX

(1)

ij

) and (X

(2)

ij

;

B

2

X

(1)

ji

) � (X

(2)

ij

;�i

Æ

ÆX

(2)

ij

)
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We have to perform a 
hoi
e of polarization by adding to the kineti
 term of the

lagrangian a total derivative term. In this way we have the 
anoni
al pairs

(X

(1)

ij

; BX

(2)

ji

) � (X

(1)

ij

;�i

Æ

ÆX

(1)

ij

)

The 
anoni
al 
ommutation relations are 
onsequently

[X

(1)

ik

; X

(2)

lm

℄ =

1

B

Æ

im

Ækl

The 
onstraint (4.14) 
annot be solved by �nite rank matri
es. To see this it is

enough taking the tra
e of both sides of the equation, and noti
ing that the tra
e of

a 
ommutator between �nite rank matri
es is always zero. So we must sear
h the

solutions in the spa
e of operators or, to say this roughly, of in�nite rank matri
es. Of


ourse this 
an mean problems, when one needs to do a
tual 
omputations, be
ause

we need at least some 
ondition about the behaviour of the matrix elements restri
ted

to orthogonal 
omplements of in
reasing 
odimension in the Hilbert spa
e on whi
h

operators are de�ned. Indeed we will see in the next se
tion a 
onstru
tive way of

trun
ating the 
oordinate operators while keeping a 
onsistent Gauss' law 
onstraint.
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Finite N Non
ommutative

Chern-Simons

In view of the problems mentioned in se
tion 4.4, we need a trun
ation of the model

to �nite dimensional N . We now will follow the work [42℄, but using fun
tional

integral te
hniques. The a
tion for in�nite N is (remember that X

a

are hermitian

matri
es)

S(X

a

; A

0

) =

B

2

Z

dt tr

h�

_

X

a

+ i[X

a

; A

0

℄

�

X

b

�

ab

� 2�A

0

i

and the equation of the motion of the Lagrange multiplier A

0

, i.e. the Gauss law


onstraint, is

G

ik

:

= X

1

il

X

2

lk

�X

2

il

X

1

lk

� i� Æ

ik

� 0

or

X

a

X

b

�X

b

X

a

� i� �

ab

� 0

We now modify this equation in the following way

X

a

X

b

�X

b

X

a

� i� �

ab

�K � 0 (5.1)

where all the matri
es here are N -dimensional, and we have introdu
ed K su
h that

the �nite N in
onsisten
y disappears

trK = �i� N

An important thing to noti
e, before we pass to the fun
tional integral for this model,

is that the above 
onstraint is invariant under the U(N) gauge group if together with

the X

a

, we vary the K matrix itself, in the same matrix fashion

K 7�! U K U

y
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To modify the a
tion in order to obtain the 
onsistent Gauss law 
onstraint, we 
ould

add to the a
tion a term of the form

�i

Z

dt tr fKA

0

g

At this point, we want to write the partition fun
tional for the theory, 
onsidering

for now K as an external �eld. We now will use the a
tion for the X

a

matri
es

S

CS

[X; Y ℄ = B

Z

dt tr

�

_

XY

�

with

(

X

:

= X

1

Y

:

= X

2

whi
h 
orrespond to the 
hoi
e of polarization 
orresponding to the 
anoni
al pairs

(X

ij

; BY

ji

) � (X

ij

;�i

Æ

ÆX

ij

)

and the 
ommutation relations

[X

ik

; Y

lm

℄ =

1

B

Æ

im

Æ

kl

The a
tion S

CS

di�ers from the kineti
 term of (4.13) for a total time derivative. We

must 
onstrain the fun
tional integration only to matri
es satisfying the Gauss law


onstraint (5.1). This is done by integrating out the Lagrange multiplier A

0

, thus

obtaining a Dira
 delta fun
tion into the (redu
ed) partition fun
tional

e

Z[K℄ =

Z

DXDY e

iS

CS

[X;Y ℄

Æ

�

[X; Y ℄� i� � �K

�

(5.2)

Now we noti
e that the a
tion, still preserving global gauge invarian
e (i.e. invarian
e

under time independent U(N) transformations), is not invariant under an U(t) 2

U(N) depending on time. Infa
t, if we perform a (time dependent) U(N) gauge

transform U(t) on the X, Y we obtain

S

CS

[X; Y ℄ 7�!B

Z

dt tr

�

d

dt

�

UXU

y

�

UY U

y

�

=

=B

Z

dt tr

_

XY +B

Z

dt trU

y

_

U [X; Y ℄ =

=S

CS

[X; Y ℄ +B

Z

dt trU

y

_

UK + iB�

Z

dt trU

y

_

U

(5.3)

Where we used the 
onstraint and the usual properties of the tra
e. The last integral

is

I

U

= iB�

Z

dt trU

y

_

U = iB�

Z

dt

d

dt

ln detU = �B� arg detU

�

�

�

t

2

t

1
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where we 
ould eventually put the integration limits to in�nity. If we take a gauge

transformation trivial at the limit times, then I

U

is just an integer multiple of 2�,

being it just a natural representation of �

1

(U(N)) = Z. Sin
e in the path integral this

term enters as the argument of an exponential, the produ
t B� must be an integer

number, in order to have a 
onsistent de�nition of an U(N)-invariant measure of the

path integral: we have just found the 
ondition for the quantization of the number

B�, analogous of the level of the ordinary Chern-Simons �eld theory. From the

original de�nition of � in terms of the Lagrange 
uid, we �nd

Z 3 B� =

B

�

0

=

1

�

where � is the �lling fra
tion of the Hall 
uid, i.e. the density res
aled by the square

of the magneti
 length `

2

= B. So in physi
al terms, we �nd the quantization of the

�lling fra
tion.

Now let us look at the se
ond integral in the last row of (5.3)

B

Z

dt tr

_

UKU

y

We write K as a matrix whi
h 
olumns are arbitrary linear 
ombinations of, say, M

ve
tors of C

N

. We only need to make it an anti-hermitian matrix; we write K in the

form

K

:

= iA � J �A

y

A 2

N

C

M

; J 2

M

C

M

(5.4)

For simpli
ity we take J = I. Under a gauge transformation on X; Y the re
tangular

matrix A 
hanges by a left translation

(

X

U

7�! UXU

y

A

U

7�! UA

(5.5)

In this way the 
onstraint is left invariant. Consider now the a
tion [42, 35℄

S

0

[A℄

:

= iB

Z

dt trA

y

_

A

This form of the a
tion of (A;A

y

) gives as 
anoni
al pairs

(A

ia

; BA

�

ia

) � (A

ia

;�i

Æ

ÆA

ia

)

so the relative 
ommutation relations are

1

[A

ia

; A

�

kb

℄ =

1

B

Æ

ik

Æ

ab

1

Noti
e that in 
ase of a more general F we would rather have [A

ia

;

P




F

b


A

�

k


℄ =

1

B

Æ

ik

Æab being

B

P




F

b


A

�

k


the 
anoni
al momentum of A

kb

.
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Its 
hange after a gauge transformation (5.5) is given by

Z

dt trA

y

_

A 7�!

Z

dt trA

y

_

A+

Z

dt tr

_

UAA

y

U

y

We 
an see that the last term is exa
tly the 
hange of S

CS

we saw in (5.3). Now,

anyway, we will 
onsider only the \minimal" version of the substitution (5.4), i.e.

when A 2 C

N 2

K

:

= i		

y

K

ij

= i  

i

 

�

j

and the a
tion we should add to S

CS

to render it invariant is

S

B

[	℄ = �iB

Z

dt tr	

y

_

	

So that the total a
tion is given by

S

T

= S

CS

[X; Y ℄ + S

B

[	℄ (5.6)

Of 
ourse in the partition fun
tional we must 
onsider also the integration over these

new degrees of freedom, the 	's. We 
hoose for them a 
at measure, so that

Z =

Z

D	D	

y

DX DY e

iS

CS

[X;Y ℄+iS

B

[	℄

Æ

�

[X; Y ℄� i� � �i		

y

�

(5.7)

This is the Chern-Simons MAtrix Model introdu
ed by Poly
hronakos in [42℄. This

fun
tional integral is invariant under U(N) gauge transformations, intended as a
ting

in the following way

8

>

>

<

>

>

:

X

U

7�! UXU

y

Y

U

7�! UY U

y

	

U

7�! U	

U = U(t) 2 U(N) (5.8)

5.1 Faddeev-Popov quantization

We want to treat the partition fun
tional (5.7) with the standard te
hniques of

Gauge Field Theory [12℄. To do this, we �rst need a 
onvenient gauge 
hoi
e. The

�rst 
oming to mind is obviously the gauge in whi
h matri
es are diagonal. Anyway

this is not 
ompletely possible. We 
annot diagonalize both X and Y (at �xed t)

with a single U(N) transformation, be
ause of the 
onstraint. Hen
e we will 
hoose

2

See [35℄ for a more 
omplete dis
ussion of the general substitution for K, and its interpretation

in terms of multi-layered 
uid physi
s.
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to diagonalize just one matrix, and the other one will have some degrees of freedom

�xed by the 
onstraint, while the integration will be free on the others.

As a starting point, we will use the following identity

1 =

Z

�(U)Æ[UXU

y

� �℄�

FP

[�℄ (5.9)

where �(U) is an invariant measure on the group of unitary time depending trans-

formations, � is a diagonal matrix whi
h is the gauge �xed form of X. By standard

Field Theory arguments, the Faddeev-Popov determinant depends only on gauge in-

variant quantities.

We insert now the identity (5.9) in the integral (5.7), and we obtain

Z =

Z

�(U)

Z

D	D�DY e

iS

CS

[�;UY U

y

℄+iS

B

[U	℄

Æ

�

[�; UY U

y

℄�i���i U		

y

U

y

�

�

FP

[�℄

where we used the invarian
e of the total a
tion (provided the quantization 
ondition

on B� is met) and of the Dira
 delta. Now we 
an use the fa
t the measures on X, Y

and 	 
an be de�ned to be unitary invariant, and write the fun
tional in the gauge

�xed form

Z =

�

Z

�(U)

�

Z

D	D�DY e

iS

CS

[�;Y ℄+iS

B

[	℄

Æ

�

[�; Y ℄� i� � �i		

y

�

�

FP

[�℄

(5.10)

Of 
ourse the volume of the gauge group is not relevant for the physi
s. We need

now to 
ompute the determinant �

FP

[�℄. It 
an be done rewriting the identity (5.9)

in the following way

1 =

Z

�(U)Æ[UXU

y

� �℄�

FP

[�℄ =

Z

�(U)Æ[UX � �U ℄�

FP

[�℄

using the invarian
e of right shift of the argument of the delta.

3

Now the above integral 
an be re
ognized, in the standard way, to be

�

FP

[�℄ =

�

Z

�(U)Æ[UX � �U ℄

�

�1

= Det

0

Æ(UX � �U)

ÆU

The fun
tional derivative of the gauge �xing fun
tional is

�

Æ(UX � �U)(t)

ab

ÆU(t

0

)

ik

�

(ik)(ab)

= Æ

ai

(X

kb

� �

a

Æ

kb

)Æ(t� t

0

)

3

Any Ja
obian arising by the shift 
an be reabsorbed in the measure �(U), in that it depends

only by the transformation U , and not by �.
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The determinant 
an be easily seen (e.g. introdu
ing ghost �elds) to be

Det

0

(Æ

ai

(X

kb

� �

a

Æ

kb

)Æ(t� t

0

)) = exp

(

Z

dt ln

Y

a

Y

k 6=a

det

0

(X � �

a

�)

)

=

= exp

(

Z

dt ln

Y

i�k

(�

i

(t)� �

k

(t))

2

)

where det

0

means we are ex
luding null modes, i.e. the determinant det

0

is not per-

formed on the eigenspa
es relative to eigenvalue �

a

. This is the obvious generalization

of the Vandermonde determinant

Q

i�k

(�

i

� �

k

)

2

for time depending matri
es. We


an put this result into the partition fun
tion, obtaining

Z = 


U(N)

Z

D	D�DY e

iS

CS

[�;Y ℄+iS

B

[	℄

Æ

�

[�; Y ℄� i� � �i		

y

�

�

� exp

(

Z

dt ln

Y

i�k

(�

i

(t)� �

k

(t))

2

)

We 
an still elaborate on this expression, rewriting the argument of the Dira
 delta

as follows

�

[�; Y ℄� i� � �i		

y

�

ik

= (�

i

� �

k

)Y

ik

� i�Æ

ik

� i  

i

 

�

k

=

=

(

(�

i

� �

k

)(Y

ik

� i

 

i

 

�

k

�

i

��

k

) for i 6= k

�i�Æ

ik

� i 

i

 

�

k

for i = k

In this way we may well see that the the delta de
omposes into a \diagonal" part

depending just on the absolute values of the 
omponents of 	 and �, and a more


ompli
ated \o�-diagonal" part

Y

i

Æ[� + j 

i

j

2

℄

Y

i 6=k

Æ

�

(�

i

� �

k

)(Y

ik

� i

 

i

 

�

k

�

i

� �

k

)

�

The �rst fa
tor simply 
onstrains the integral over 	, to be an N -fold integration

over 
omplex unimodular numbers. The se
ond part is now a 
onstraint for the o�-

diagonal entries of the matrix Y . But it is not linear in Y

ik

. We 
an rewrite it in a

way it be of the form Æ(y � a)

Y

i 6=k

(DetÆ(t� t

0

)(�

i

� �

k

))

�1

Æ

�

Y

ik

� i

 

i

 

�

k

�

i

� �

k

�

=

= expf�

Z

dt ln

Y

i 6=k

(�

i

(t)� �

k

(t))gÆ

�

Y

ik

� i

 

i

 

�

k

�

i

� �

k

�

g
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This fa
tor 
an
el the Faddeev-Popov determinant, to give the gauge �xed partition

fun
tion

4

Z = 


U(N)

Z

D	

Y

i

Æ[�+j 

i

j

2

℄ e

iS

B

[ 

i

℄

Z

Y

i

D�

i

Dy

i

e

iS

CS

[�

i

;y

i

℄

Y

i 6=k

Æ

�

Y

ik

�i

 

i

 

�

k

�

i

� �

k

�

(5.11)

where the Chern-Simons a
tion is

S

CS

[�; Y ℄ = S[�

i

; y

i

℄ = B

X

i

Z

dt

_

�

i

y

i

The 
orrelation fun
tion of any gauge invariant fun
tional of the X, Y , in parti
ular

the addition to the a
tion of any invariant potential, 
an be obtained by insertion

into the (5.11). Noti
e that the Hamiltonian of this Chern-Simons Matrix Quantum

Me
hani
s, just as in the ordinary 
ase, is vanishing; moreover we see that (5.11) is

just a (
onstrained) phase spa
e path integral, in the 
onjugate 
oordinates (�

i

; y

i

).

We will dis
uss the meaning of these 
onjugate pairs afterwards.

Considering the fa
t this model is the matrix model generalization of an in
ompress-

ible 
uid, and that we just 
ut it o� to have a �nite number of degrees of freedom,

physi
ally we expe
t that in absen
e of a 
on�ning potential, the density of the par-

ti
les (or quasi-parti
les), whi
h are in a �nite number, must fall o� to zero, be
ause

they are spread on an non
ompa
t spa
e. The simplest 
on�ning potential is the

quadrati
 one (see [42℄)

V[X; Y ℄ =

!

2

Z

dttr (X

2

+ Y

2

) (5.12)

This is manifestly U(N) invariant. In our � gauge, it 
an be written

V[�; Y ℄ =

!

2

X

i

Z

dt (y

2

i

+ �

2

i

) +

!

2

X

i 6=k

Z

dt

�

2

(�

i

� �

k

)

2

(5.13)

where we have imposed also the gauge 
ondition j 

i

j

2

= ��. Inserting this into

(5.11), we 
an see that the partition fun
tional for the problem with the 
on�ning

potential be
omes

Z[V℄ = 


U(N)

Z

	

Z

Y

i

D�

i

Dy

i

e

iS

CS

[�

i

;y

i

℄�iV[�

i

;y

i

℄

(5.14)

By dire
t inspe
tion, we see that the dynami
s of the eigenvalues is given in terms of

the Calogero model Hamiltonian V[�

i

; y

i

℄ of the (unidimensional) problem des
ribed

by the 
onjugate pairs of 
oordinates (q

i

; p

i

)

:

= (�

i

; y

i

).

4

For a di�erent 
omputation of the Calogero model in the framework of 1-dimensional matrix

models, the reader 
an see the �rst part of the paper [20℄.
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5.2 S
alar produ
t

By using the same te
hnology we used to 
ompute the fun
tional integral of the

model, we 
an 
ompute also the s
alar produ
t between states of the matrix model.

We are not interested now in the a
tual expli
it expression of the wavefun
tions sat-

isfying the 
onstraint (5.1), be
ause in the next se
tion we will have them 
omputed

in a more interesting gauge 
hoi
e, namely by passing to 
omplex 
oordinates: that

will be the point at whi
h the 
omparison with Laughlin theory of quantum Hall

e�e
t will be made.

The s
alar produ
t between two states j�

1

i and j�

2

i 
an be rewritten in the form

h�

1

j�

2

i =

Z

Y

ij

dX

ij

h�

1

jXihXj�

2

i

where it has been inserted in the s
alar produ
t the resolution of identity in terms

of 
oherent states

5

I=

Z

Y

ij

dX

ij

jXihXj jXi

:

= e

trX

b

X

1

j0i (5.15)

Applying the same ma
hinery we used before, the s
alar produ
t redu
es to the

integral over eigenvalues

h�

1

j�

2

i =

Z

Y

i

d�

i

Y

i<j

(�

i

� �

j

)

2

h�

1

jf�

l

gihf�

l

gj�

2

i (5.16)

The Vandermonde fa
tor in the integrand 
an be 
ast in the de�nition of the wave-

fun
tions in this way

�[X℄;

Y

i<j

(�

i

� �

j

)�[X℄ (5.17)

so that the wavefun
tions 
hanges it symmetry under ex
hange of eigenvalues (i.e.

parti
les). With this identi�
ation the s
alar produ
t redu
ed to the eigenvalues

be
omes an integral with a 
at R

N

measure.

The (5.16) 
an be used to 
ompute the Green fun
tion by fun
tional integration

in the usual way. The basi
 expression is of the form

6

G[X

0

; X; t℄ = hX

0

; tjX; 0i = hX

0

je

iHt

jXi

5

A

ording to the typographi
al traditions of Quantum Me
hani
s the hat in the symbol

b

X

1

is

showing its operatorial nature as opposed to the 
-number nature of X .

6

We allow here also for the in
lusion of a potential as in (5.12) and (5.13) in the hamiltonian of

the system.
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Now we insert the identities

I=

Z

Y

ij

dQ

ij

jQihQj jQi

:

= e

trQ

b

X

1

j0i

I=

Z

Y

ij

d�

ij

j�ih�j j�i

:

= e

tr�

b

X

2

j0i

with hQj�i =

1

2�

e

itr�Q

at intermediate times 0 = t

0

< t

1

< � � � < t

N�1

< t

N

= t and the 
onstraint

(5.1), whi
h must be 
ast essentially in the de�nition of the evolution operator in

the obvious way

7

e

iHt

:

= P

Phys

e

iHt

P

Phys

What we obtain is of 
ourse nothing else than the partition fun
tional we had in

(5.11) or (5.14) (see also [20℄).

7

This is the evolution operator making only the gauge invariant (physi
al) states evolve.
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Chapter 6

Complex Coordinates for the

Chern-Simons Matrix Model

In the previous 
hapter we have found the path integral of trun
ated Chern-Simons

matrix model. In parti
ular the fa
t that a 2-dim model ends up in the quantization

of a 1-dim one may be puzzling. Anyhow, in a non
ommutative geometry, one

usually 
annot give sense to the 
on
ept of lo
alization of points in terms of n-tuples

of 
oordinates, in the same way as in the phase spa
e of a system after quantization.

As in the ordinary Quantum Me
hani
s, dis
ussed in 
hapter 3, one may adopt

Wigner representation (i.e. Weyl transform and Moyal produ
t) in order to use


oordinates in the des
ription of physi
al problems on a non
ommutative geometry.

In the previous 
hapter we performed the quantization of the model in hermitian


oordinates. The redu
tion to the eigenvalues led to a model des
ribed in terms of

real, one dimensional 
oordinates of the ele
trons. To have a more dire
t physi
al

interpretation of the result, we prefer working with 
omplex eigenvalues. Hen
e we

need to introdu
e the analogous of the quantization in 
omplex 
oordinates.

What we now des
ribe is the \Holomorphi
 quantization" of the model [5℄. We


an de�ne 
omplex 
oordinates for our matrix model

X

:

= X

1

+ iX

2

X

y

:

= X

1

� iX

2

With these 
oordinates the a
tion be
omes

S

CS

[X;X

y

℄ + S

B

[	℄ =

iB

2

Z

dt tr

�

_

XX

y

�

�

iB

2

Z

dt tr	

y

_

	 (6.1)

while the 
onstraint is

G

:

= [X;X

y

℄� 2� � 	 Æ	

y

� 0 (6.2)

71
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and as before the 
onsisten
y 
ondition on 	 is

2N� +

X

i

 

�

i

 

i

= 0

As a result the partition fun
tional is

Z =

Z

D	D	

y

DXDX

y

e

iS

CS

[X;X

y

℄+iS

B

[	℄

Æ

�

[X;X

y

℄� 2� � �		

y

�

(6.3)

This path integral is still U(N) invariant. But now, for a general � 6= 0, any matrix

satisfying the Gauss' law 
onstraint 
annot be diagonalized by a U(N) gauge trans-

formation. This is be
ause of the fa
t that ne
essary and suÆ
ient 
ondition for a


omplex matrix X to be diagonalizable by U(N) transformation is [X;X

y

℄ = 0, i.e.

X is a Normal Matrix.

When � = 0, instead, we have 
lassi
ally from the Gauss' law 
onstraint

[X;X

y

℄ = 	 Æ	

y

and

X

i

j 

i

j

2

= 0

So 	 � 0 and [X;X

y

℄ i.e. X is normal.

Thus the 
lassi
al expe
tation is that for � = 0 our path integral be
omes an

integral over normal matri
es. Though, as we will see in the sequel, the natural

measure we will be lead to is not that indu
ed from the 
at measure over 
omplex

matri
es by the natural in
lusion. This is of 
ourse due to the presen
e of the Dira


Æ fun
tion enfor
ing the 
onstraint, whi
h in turn naturally arises as a result of

integration over the Lagrange multiplier A

0

.

6.1 Diagonalization

In the spa
e of 
omplex matri
es the subset of matri
es with distin
t eigenvalues is

the highest dimensional invariant subset. This means, the sets of matri
es with two

or more degenerate eigenvalues is negligible in the sense of Lebesgue measure.

Sin
e a matrix X 2

N

C

N

with N distin
t eigenvalues is always diagonalizable by

an invertible transformation of basis ve
tors, we 
an write any 
omplex matrix X,

besides a null-measure set of matri
es, as

X = V �V

�1

V 2 GL(N; C ) � = diag(�

1

; : : : ; �

N

) (6.4)
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6.1.1 Canoni
al 
oordinates

The kineti
 �rst order a
tion integral

iB

2

Z

dt tr

�

_

XX

y

�

�

iB

2

Z

dt tr	

y

_

	

implies the 
anoni
al hamiltonian 
oordinates to be

(X

ij

;

iB

2

X

�

ij

) � (X

ij

;�i

Æ

ÆX

ij

)

( 

l

;�

iB

2

 

�

l

) � ( 

l

;�i

Æ

Æ 

l

)

These last equations in turn imply the 
ommutation relations

[X

ik

; X

�

lm

℄ =

2

B

Æ

il

Æ

km

[ 

k

;  

�

l

℄ = �

2

B

Æ

kl

With these relations one may rewrite the Gauss' law 
onstraint (5.1) in S
hr�odinger

representation in the following normal ordered form

G

ik

= X

is

Æ

ÆX

ks

�X

sk

Æ

ÆX

si

� 2B�Æ

ik

�  

i

Æ

Æ 

k

(6.5)

Performing the diagonalization (6.4) we obtain the obvious result on X

ij

and  

l

:

X

ij

= V

il

�

l

V

�1

lj

 

k

= V

kl

�

l

These fa
torisations indu
e a de
omposition on the 
otangent spa
e at a point in

(X;	) manifold. These de
omposition may be found, and in turn this implies the

de
omposition of derivative (momentum) operators on tangent spa
e. The de
om-

position on 
otangent spa
e is

dX

ij

=V

il

(d�

l

Æ

lm

� [�; dv℄

lm

)V

�1

mj

d 

k

=V

kl

(d�

l

+ dv

lm

�

m

)

where we de�ned

dv

ij

:

= V

�1

il

dV

lj
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Requiring that the 
anoni
al pairing is invariant what we obtain for the momenta

is

1

Æ

ÆX

ij

=V

�1

li

�

Æ

lm

Æ

Æ�

l

+

1� Æ

lm

�

l

� �

m

�

�

l

Æ

Æ�

m

�

Æ

Æv

lm

��

V

jm

Æ

Æ 

k

=V

�1

lk

Æ

Æ�

l

Sin
e the 
anoni
al pairing is left invariant, also the 
ommutators of the new vari-

ables are still 
anoni
al.

One 
ould be puzzled by the fa
t that with this diagonalization we have twisted the

usual (and handy) relation between the matrix X and its hermitian 
onjugate X

y

.

This 
an be seen as though the introdu
tion of non
ommutativity (i.e. swit
hing on

� 6= 0) made up for the appearan
e of a ba
kground into the �rst-quantized theory.

On the other hand, in the next se
tion the path integral formulation will make 
lear

that the hermiti
ity of the hamiltonian of the present system is spoilt by this diago-

nalization. This is not bad, in regard of the unitarity of the model and positivity of

the norm (e.g. see [3℄), as far as the hamiltonian preserves PT symmetry. The non-

hermiti
ity of the hamiltonian 
auses by itself the fa
t the 
onjugate of the matrix

X after the diagonalization is not the 
onjugate of the diagonalized matrix anymore

(see e.g. [14℄). We will not 
onsider this in the more general framework now, be
ause

it goes beyond the s
ope of the present work.

However, we have re
overed the rule of 
onjugation in the form of a 
ovariant deriva-

tive term, similar to the e�e
t of some ba
kground introdu
ed by non
ommutativity.

We will see how the expressions for the new 
anoni
al operators will work properly:

in parti
ular the operators that are the matrix extensions of the generators of W

1

(see se
tion 3.2) will have the 
orre
t behaviour under 
omplex 
onjugation, when

the 
ovariant derivative term is taken into a

ount.

An important thing to noti
e is that the Gauss' law 
onstraint (6.2) is redu
ed,

after normal ordering, to the following form

G

ij

= V

il

�

Æ

lm

�

��

l

Æ

Æ�

l

� 2B�

�

� (1� Æ

lm

)

Æ

Æv

lm

�

V

�1

mj

(6.6)

Applying the 
onstraint to physi
al states we get

G

ij

jPhysi = 0()

8

<

:

�

�

l

Æ

Æ�

l

+ 2B�

�

jPhysi = 0 ; 8 l

Æ

Æv

lm

jPhysi = 0 (= l 6= m

1

These results are nothing more than the 
ontragredient rule plus the fa
t the de
omposition by

an invertible matrix 
ause a nontrivial form of parallel transport.
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The non-diagonal 
omponents �xes the 
ovarian
e of physi
al states under GL(N; C )

transformations, pre
isely they imply that the wavefun
tions of physi
al states must

depend on V only by terms of the form detV

n

; the diagonal ones are the remaining

nontrivial part of the 
onstraint, and we will give more on this later.

In 
ase of a more general auxiliary term A

ia

, as in (5.4), we 
an perform the

previous de
omposition mutatis mutandis, to obtain as a result for the diagonal part

of the 
onstraint

8 l ;

 

X

s

A

ls

Æ

ÆA

ls

+ 2B�

!

jPhysi = 0

6.1.2 Path Integral (Faddeev-Popov adapted)

For � 6= 0, the GL(N; C ) diagonalization we just performed is not a gauge transfor-

mation in the path integral, indeed any gauge invariant term of the a
tion transforms

non-trivially; e.g. any term of the kind of

trXX

y

= tr�(V

y

V )

�1

�

y

(V

y

V )

The point here is to make a GL(N; C ) transformation inside the path integral re-

adsorbing in some way the non-invariant term. The strategy to do this is the follow-

ing:

J =

Z

DXDX

y

F [X;X

y

℄ =

Z

DXDX

y

Z

diag

D�D�

y

�

FP

�

�

Z

GL(N;C )

�(V ) Æ

C

[V

�1

XV � �℄Æ

C

[V

y

X

y

V

y�1

� �

y

℄F [X;X

y

℄

Here, in the Fadeev-Popov identity the Æ

C

fun
tions are intended not as the usual Æ,

but as a \
omplex argument" Æ

C

, de�ned in a way that

Æ

C

[M ℄Æ

C

[M

y

℄ � Æ[M ℄

Working out the integral above we obtain [12℄

J =

Z

GL(N;C )

�(V )

Z

diag

D�D�

y

�

FP

[�;�

y

℄F [�; (V

y

V )

�1

�

y

(V

y

V )℄�

�

Z

DXDX

y

Æ

C

[X � �℄Æ

C

[V

y

V X

y

(V

y

V )

�1

� �

y

℄ =

=

Z

GL(N;C )

�(V )

Z

diag

D�D�

y

Z

D

~

��

FP

Æ

C

[

~

�� (V

y

V )

�1

�

y

(V

y

V )℄F [�;

~

�℄
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The quantity �

FP

may be 
omputed in the usual way being it a ja
obian determinant,

just keeping in mind that now the 
oordinates are 
omplex, so that we essentially

obtain the square of the determinant we already had for hermitian matri
es, namely

�

FP

=

Y

t

Y

i<j

j�

i

� �

j

j

4

Now we only need to integrate out the GL(N; C ) transformation. When we do this

integration, the integration over

~

� is redu
ed to the integration over matri
es whi
h

have the same eigenvalues of �

y

(be
ause it is an integral over a 
onjuga
y 
lass of

�

y

). The determinant we obtain performing the integration

Z

�(V )

Z

D

~

� Æ

C

[

~

��W�

y

W

�1

℄ with W

:

= V

y

V

is

Y

t

Y

i<j

(�

�

i

� �

�

j

)

�2

This 
an
els part of the Faddeev-Popov determinant, a
tually the one depending on

f�

�

i

g only; let us write now the 
omplete path integral, putting altogether

Z

D�D

~

�

Z

D�D

~

�

Y

t

Y

i<j

(�

i

� �

j

)

2

e

iS

CS

[�;

~

�℄+iS

B

[�;

~

�℄

Æ[[�;

~

�℄� 2� � � Æ

~

�℄ (6.7)

where the 
hange of variables from 	 to � has been made in order to re-adsorb the


hange of the a
tion after the GL(N; C ) transformation. Another 
onsequen
e of this


hange of variables, as is already 
lear from the general framework of this theory, is

to keep the 
onstraint invariant.

2

A 
lari�
ation on the Æ fun
tion in the 
omplete partition fun
tion is in order

here. The original path integral had in it

Æ[[X;X

y

℄� 2� �	 Æ	

y

℄ =

Z

DMe

itrM([X;X

y

℄�2��	Æ	

y

)

Sin
e the argument of the Æ is an hermitian matrix, the matrix M in the integral

is hermitian as well. When one 
onjugates the argument by an invertible matrix,

the proof of the invarian
e of the Æ goes on by 
onjugating M by the inverse of the

matrix. Sin
e the top form

[dM ℄

:

=

^

i;j

dM

ij

2

In terms of the equivalent Chern-Simons non
ommutative �eld theory, both these e�e
ts are

expressions of the gauge invarian
e of the A

�

CS a
tion.
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is invariant under 
onjugation, and the eigenvalues of M are invariant as well, the

integral de�ning the delta fun
tion still makes sense; so does the Æ fun
tion. One may


onsider it as a trivial example of holomorphi
 path integral [29℄. We 
an write down

the Æ fun
tion on the diagonal gauge a

ording to the 
omponents of the argument

Æ[[�;

~

�℄� 2� � � Æ

~

�℄ =

Y

i 6=j

Æ[(�

i

� �

j

)

~

�

ij

� �

i

~

�

j

℄

Y

i

Æ[2� + �

i

~

�

i

℄ =

=

Y

i 6=j

1

�

i

� �

j

Æ[

~

�

ij

�

�

i

~

�

j

�

i

� �

j

℄

Y

i

Æ[2� + �

i

~

�

i

℄

So the ja
obian determinant 
oming from the Æ 
an
els the part of �

FP

whi
h de-

pends on f�

i

g, that's to say the Faddeev-Popov determinant, just as in the hermitian


ase, gets 
ompletely 
an
elled out at last. Hen
e the path integral (6.7) at the very

end of the diagonalization pro
ess is

Z

D�D

~

�

Z

D�D

~

�e

iS

CS

[�;

~

�℄+iS

B

[�;

~

�℄

Y

i 6=j

Æ[

~

�

ij

�

�

i

~

�

j

�

i

� �

j

℄

Y

i

Æ[2� + �

i

~

�

i

℄ (6.8)

where

S

CS

[�;

~

�℄ = i

B

2

Z

dt

X

i

_

�

i

~

�

i

and

S

B

[�;

~

�℄ = �i

B

2

Z

dt

X

i

_

�

~

�

After the elimination of the � and

~

� auxiliary �elds, whose dynami
s is a
tually


ompletely 
onstrained, we see that the above is the path integral of the theory of

the ele
trons with the 
oordinates f(�

i

;

~

�

i

g, proje
ted at the lowest Landau level [5℄.

6.2 The Physi
al Hilbert spa
e

We already mentioned the fa
t that the 
onstraint

8

<

:

�

�

l

Æ

Æ�

l

+ 2B�

�

jPhysi = 0 ; 8 l

Æ

Æv

lm

jPhysi = 0 (= l 6= m

implies strong restri
tions on the form of the wavefun
tions of physi
al states. First

of all, making use of the relation

�

�v

ij

det(V � z I) = det(V � z I)

�

V

V � z I

�

ji

(6.9)
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we easily show that the only V -depending 
ovariant fa
tor (besides the 
onstant) we

may �nd in a wavefun
tion is detV , indeed, putting z = 0 in (6.9)

�

�v

ij

detV = detV

�

V

V

�

ji

= detV Æ

ij

= 0(= i 6= j

A result similar to (6.9)

�

�v

ij

det(V

n

� z I) = n det(V

n

� z I)

�

V

n

V

n

� z I

�

ji


an be used to show that in the general 
ase the same vanishing property holds for

detV

n

terms only.

The diagonal 
omponents imply instead that the wavefun
tion is homogeneous

of degree �2B� of any of the �

i

, so a generi
 wavefun
tion is of the form

3

�[X; V;�℄ = detV

k

 

Y

i

�

i

!

k

�[X℄ k

:

= �2B�

We have to impose further restri
tions on the redu
ed wavefun
tion �[X℄ in order to

determine it 
ompletely. To �nd out how, we must impose the physi
al 
ondition of

in
ompressibility, whi
h is doable in terms of representations of W

1

algebra.

6.3 In
ompressibility

6.3.1 Matrix W

1

algebra

We now want to revive the dis
ussion of se
tion 3.2 regarding how to impose the

physi
al 
ondition of in
ompressibility on the Hilbert spa
e of states of the system.

What is in order now is to de�ne the matrix substitute of the algebra of area-

preserving di�eomorphisms. We re
all the de�nition of the generators L

st

of W

1

in

terms of the generators of magneti
 translations

L

st

:

= (b

y

)

s

b

t

Sin
e Chern-Simons matrix model lives in the limit B �! 1, we need only to

deal with the restri
tion to the lowest Landau level of the L

st

operators; in 
omplex


oordinates their many body �rst quantized expression is

L

st

j

n=0

=

X

�

z

s

�

(

d

dz

�

)

t

3

Re
all that due to the level quantization 
ondition, B� must be an integer number.
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The proposed matrix generalisation of the above operator is the following

4

L

(mat)

st

:

=

�

�

trX

s

(X

y

)

t

�

�

whi
h in the 
ase of normal matri
es redu
es to

L

(mat)

st

=

X

k

z

s

k

�z

t

k

�

X

i

z

s

k

�

�

�z

k

�

t

after 
anoni
al quantization. So we see that our de�nition of L

(mat)

st

redu
es to the

many body de�nition of the ordinary L

st

in the lowest Landau level.

We 
an generalise the in
ompressibility 
onditions (3.12) to our new operators L

(mat)

st

:

they must be imposed on the ground state of the theory as a ne
essary 
ondition for

des
ribing the quantum Hall ground state

L

(mat)

st

�

GS

= 0 s < t

In the 
ase of the matrix model generators, the algebra whi
h turns out 
omput-

ing the 
ommutators is di�erent by (3.10), and does not 
lose by itself, indeed the


ommutator

[L

(mat)

st

;L

(mat)

mn

℄

gets several 
orre
tions, whi
h we interpret as �nite size 
orre
tions,

5

whi
h are

produ
ts of terms having the following form

�

�

	

y

X

s

0

(X

y

)

t

0

	

�

�

(6.10)

The exa
t form of the W

1

algebra in this matrix version is still unknown, due to the

ever in
reasing 
omplexity of the dire
t 
omputation of 
ommutators between higher

order generators.

One 
an easily see that when performing the 
ommutator, if we started with two

operators L

(mat)

st

and L

(mat)

mn

to the both of whi
h the highest weight 
ondition (3.12)

applies (i.e. s < t and m < n), then, in the result, ea
h fa
tor of any addend would

present X and X

y

in the form

� � �X

s

0

(X

y

)

t

0

� � � with s

0

< t

0

4

The expression is normal ordered (

�

�

�

�

) in view of 
anoni
al quantization.

5

The fa
t (6.10) are �nite size 
orre
tion ofW

1

algebra 
an be seen working in a gauge in whi
h

the ve
tor 	 has the form (0; � � � ; 0; NB�). In this gauge only the entries of the last row and 
olumn

of X

s

(X

y

)

t

matrix enter into the P

(mat)

st

operators. In a proper N !1 weak limit only the \bulk"

of the matrix will 
ontribute, and moreover the 	 ve
tor need to disappear from the expressions,

so do the P

(mat)

st

operators.
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Sin
e we want the Lie subalgebra generated by the L

(mat)

st

with s < t to vanish on

the ground state for 
onsisten
y, we must join to the set of generators L

(mat)

st

the set

P

(mat)

s

0

t

0

:

=

�

�

	

y

X

s

0

(X

y

)

t

0

	

�

�

, with the 
onditions

L

(mat)

st

�

GS

= 0 s < t

P

(mat)

st

�

GS

= 0 s < t

(6.11)

Regarding the normal ordering, we 
an see that if both the (6.11) are met then

they hold also for any other normal ordering. This is due to the fa
t that in ea
h

reordering term

(X

y

)

t

X

s

= (X

y

)

t�1

XX

y

X

s�1

� (X

y

)

t�1

(� +		

y

)X

s�1

the powers of X and X

y

are de
reased by the same amount, ex
ept for the leading

term that, at the end of the 
omputation, be
omes X

s

(X

y

)

t

. So when imposing the


onditions of in
ompressibility (6.11) in a di�erent ordering, one may work re
ur-

sively, at ea
h step just having to 
are for the leading order 
ondition, be
ause lower

order ones are already satis�ed in virtue of the previous steps.

6.3.2 Wavefun
tions for the CS Matrix Model

In order to �nd a general 
ovariant expression (i.e. one whi
h depends on X;X

y

and 	;	

y

) one 
an try to solve the 
onstraint (6.5), or alternatively one 
an use the

group theoreti
al properties of the states, exploiting the invarian
e under SU(N)

algebra generated by the hamiltonian 
onstraint G, as has been done in [42, 24℄; one

re
overs in su
h a way the wavefun
tions [24℄

�[X;	℄ = trX




1

� � � trX




k

�

�

i

1

���i

N

(X

0

	)

i

1

� � � (X

N�1

	)

i

N

�

k

(6.12)

Here the trX




�

fa
tors in the wavefun
tion 
reates the ex
itations, while the � part

of the fun
tion is the wavefun
tion of the ground state

�

GS

[X;	℄ = �

i

1

���i

N

(X

0

	)

i

1

� � � (X

N�1

	)

i

N

(6.13)

These expressions are obtained simply by 
ontra
ting all the indexes of any monomial

of the form

Y

a

X

i

a

j

a

 

l

a

with the invariant tensors of SU(N), namely Æ and �, to form a gauge invariant

expression. Moreover the Gauss' law 
onstraint (5.1) requires the total number of  
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to be k, �xing ultimately the form of the wavefun
tion.

Now we show our in
ompressibility 
onditions (6.11) are met. It is more easy to

work with antinormal ordered operators (we already showed after (6.11) this 
an be

safely done), writing (s < t)

trX

s

(X

y

)

t

�

i

1

���i

N

(X

0

	)

i

1

� � � (X

N�1

	)

i

N

where we use 
oordinate representation, i.e. X

y

ij

�

Æ

ÆX

ji

. When all of the derivatives

have a
ted on the fa
tors of the determinant, the indexes in the matrix produ
ts

get rearranged. But sin
e there are more derivatives with respe
t to X

ij

than mul-

tipli
ations by X

ij

, the total degree in X of the determinant is de
reased. So in

ea
h addend of the resulting polynomial at least two of the 
olumns of the matrix

[(X

i�1

	)j℄

i;j=1;:::;N

are made equal, making the determinant vanish.

A similar argument is true for the �nite size 
orre
tions:

	

y

X

s

(X

y

)

t

	 �

i

1

���i

N

(X

0

	)

i

1

� � � (X

N�1

	)

i

N

where in 
oordinate representation  

�

i

�

Æ

Æ 

i

. The only di�eren
e is that here after

the rearrangement of indexes some fa
tor loses some extra power of X be
ause there

appear terms of the form trX

h

for some h, due to the presen
e of 	 and derivatives

with respe
t to 	: of 
ourse the total degree in X of ea
h addend of the resulting

polynomial is de
reased and so they vanish sin
e they are determinants with two or

more equal 
olumns.

Noti
e that if s > t, the previous argument does not apply. So one 
an easily see by

dire
t 
omputation that L

(mat)

st

and P

(mat)

st

, with s > t, when applied on ground state

wavefun
tion make fa
tors of trX

h

for some h appear, so generating linear 
ombi-

nations of states like (6.12) from the ground state (6.13), i.e. 
reating ex
itations on

the ground state. This is exa
tly what happens in the framework of 
hapter 3 when

a
ting on the ground state with a generator L

st

with s > t. Therefore the Hilbert

spa
es of physi
al states is a representation of the matrix W

1

algebra.

Working out the ground state wavefun
tion (6.13), we �nd its behaviour under a

similarity transformation X 7�! V XV

�1

�

GS

[X;	℄ 7�! �

GS

[V XV

�1

; V	℄ = detV

k

�

GS

[X;	℄

One thing 
lear here from the transformation rule is that the symmetry of the wave-

fun
tion under ex
hange of two 
oordinates is given essentially by the parity of the
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exponent k.

Using the above rule, by diagonalizing X, we �nd �

GS

to be equal to

�

GS

[X;	℄ = detV

k

�

GS

[�;�℄ = detV

k

 

Y

i

 

i

!

k

Y

i<j

(�

i

� �

j

)

k

Therefore, after the redu
tion to the eigenvalues, in physi
al 
omplex 
oordinates,

the wavefun
tion (6.13) manifestly redu
es to a Laughlin wavefun
tion.

6.3.3 S
alar produ
t

In 
omplex 
oordinate the s
alar produ
t between wavefun
tions is expressed in a

di�erent form than that of se
tion 5.2. What makes the di�eren
e is a
tually the

form the amplitudes of the 
oherent states assume when expressed in terms of the

basi
 operators X and X

y

, namely while in se
tion 5.2 we had

jQi

:

= e

trQ

b

X

1

j0i hQjQ

0

i = Æ[Q�Q

0

℄

j�i

:

= e

tr�

b

X

2

j0i h�j�

0

i = Æ[�� �

0

℄

and the wavefun
tion is hQj�i =

1

2�

e

itr�Q

now that we have swit
hed to 
omplex quantization we get

jQ

y

i

:

= e

trQ

y

b

X

j0i

hQj

:

= h0je

trQ

b

X

y

the wavefun
tion equals hQ

1

jQ

y

2

i = e

trQ

1

Q

y

2

Moreover we will need to in
orporate in the s
alar produ
t the 	, 	

y

as well. We do

it by de�ning

j	

y

i

:

= e

tr	

y

b

	

j0i

h	j

:

= h0je

tr	

b

	

y

with h	

1

j	

y

2

i = e

tr	

1

	

y

2

When we diagonalize the matrix X, and 
orrespondingly transform the matrix X

y

as

X = V �V

�1

X

y

= V

~

�V

�1
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then the 
oherent states gets de�ned by the 
hain of relations

hXj

:

= h0je

trX

b

X

y

= h0je

tr�(V

�1

b

X

y

V )

:

= hh�j

jX

y

i

:

= e

trX

y

b

X

j0i = e

tr

~

�(V

�1

b

XV )

j0i

:

= j

~

�ii

where we have used the transformation rule on the 
anoni
al momentum operators

X

y


aused by the diagonalization of 
oordinate X as was shown in se
tion 6.1.1. In

the same se
tion we saw that this transformation leaves the 
anoni
al 
oordinates

invariant, being it the quantum version of a 
anoni
al transformation. So all the

properties of 
oherent states are still in 
harge with the gauge �xed 
oordinates and

operators, we just need to keep tra
k of the GL(N; C ) 
onjugations.

Di�erently from the hermitian 
oordinate situation, here we have to insert the

proje
tor on the physi
al states in the s
alar produ
t itself. This is due to the

fa
t that, in 
ovariant notation (i.e. before �xing the gauge) the dependen
e of a

wavefun
tion on the matrix X, on imaginary 
onjugation ji

�

= hj is swit
hed to the

dependen
e on X

y

, so that the resolution of identity by 
oherent states involves both

the 
oordinates and the momenta at �xed time. So the equation we must work on

is now

h1j2i =

Z

Y

i

d 

i

d 

�

i

Z

Y

ij

dX

ij

dX

y

ij

e

�trXX

y

�	

y

	

h1jX

y

;	

y

ihX;	j2iÆ[[X;X

y

℄�2��	Æ	

y

℄

We have for the s
alar produ
t

h1j2i =

Z

Y

i

d�

i

d

~

�

i

e

�Nk

Y

i

Æ[�

i

~

�

i

+ 2�℄�

�

Z

d�d

~

� e

�tr�

~

�

h1j

~

�;

~

�ii hh�;�j2i

Y

i 6=j

Æ[

~

�

ij

�

�

i

~

�

j

�

i

� �

j

℄

(6.14)

From here we 
an see that the property

h�

1

jtrX

s

(X

y

)

t

�

2

i = htrX

t

(X

y

)

s

�

1

j�

2

i

beholds also in the diagonal gauge, when we a

ount for the nontrivial 
ovariant

derivative.

We 
an write in example the s
alar produ
t (6.14) in the 
ase of N = 2, obtaining

hGS

k

jGS

k

i = N

Z

d�

1

d�

2

d

~

�

1

d

~

�

2

e

�

P

2

i=1

�

i

~

�

i

�

~

�

1

�

~

�

2

+

2k

�

1

� �

2

�

k

(�

1

� �

2

)

k

where N is the 
onstant obtained by the integration over � and

e

�. The form of the

above integral, due to the already mentioned twisted 
onjugation (i.e. the presen
e of
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a nontrivial parallel transport term), di�ers from the standard form for the overlaps

of Laughlin wavefun
tions in the Quantum Hall e�e
t:

hGS

k

jGS

k

i = N

Z

d�

1

d�

2

d

�

�

1

d

�

�

2

e

�

P

2

i=1

�

i

�

�

i

�

�

�

1

�

�

�

2

�

k

(�

1

� �

2

)

k

:

Anyhow the quantities whi
h possess a physi
al meaning are the values of the (nor-

malized) s
alar produ
ts. These are numbers, and only in their terms one 
an 
om-

pare the Matrix Model with the physi
s of Laughlin wavefun
tions. In addition we

noti
e that for � �! 0 we have

~

�

i

�!

�

� ;

but the s
alar produ
t does not manifestly redu
e itself to the ordinary normal matrix

integral ([33, 19, 54℄)

Z

d

2

�

1

d

2

�

2

�

�

�

1

�

�

�

2

�

(�

1

� �

2

) :

This is due to the presen
e of the Æ fun
tion enfor
ing the 
onstraint. Usually when

de�ning the normal matrix integral, it is said that the 
onditions

[X;X

y

℄

ij

= 0

are not independent. Indeed if one uses a Æ fun
tion to enfor
e the above 
ondition,

one gets very soon into troubles. These troubles are apparent already in the N = 2

model, let us use the following de
omposition for X ([54, 52℄)

X = U(� +R)U

y

with U 2 U(2); � = diag(�

1

; �

2

); R =

 

0 r

0 0

!

to write the above 
onstraint

[X;X

y

℄ = U

 

jrj

2

r(

�

�

2

�

�

�

1

)

�r(�

2

� �

1

) �jrj

2

!

U

y

Manifestly the four 
onditions are not independent. If we 
hose the of diagonal ones,

to put into a Dira
 Æ fun
tion, we would obtain a ja
obian determinant whi
h is the

same we obtained in our 
omputation j�

1

� �

2

j

�2

, whi
h 
an
els the Vandermonde

determinant of the measure indu
ed by the immersion of the set of normal matri
es

into the bigger set of arbitrary 
omplex ones [33, 19℄. If instead one uses one of

the diagonal entries of the 
onstraint, one gets no ja
obian, and so there is still a

measure in the integrand, whi
h is just the usual Vandermonde. When 
omputing
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the integral over normal matri
es, one 
an over
ome this ambiguity just indu
ing the

measure from the 
at measure of 
omplex matri
es, by the in
lusion

� = diag(�

i

) ,! X = U�U

y

But this just 
orresponds to a pe
uliar matrix quantum me
hani
s. Indeed in our

model we are for
ed to put a Dira
 Æ fun
tion into the integral in order to enfor
e

the 
onstraint, be
ause it is a remnant of the Chern-Simons gauge theory in the

temporal gauge, in whi
h the 
omponent A

0

of the CS gauge �eld a
ts as a Lagrange

multiplier (see (4.7), (4.9) and (4.12), and dis
ussion about them). Integration over

A

0

gives the Dira
 delta. With the introdu
tion of the 	 the entries of the 
onstraint

be
ome independent. Indeed we see for N = 2 the 
onstraint is

 

jrj

2

� j 

1

j

2

r(

�

�

2

�

�

�

1

)�  

1

 

�

2

�r(�

2

� �

1

)�  

2

 

�

1

�jrj

2

� j 

2

j

2

!

= 0

This breaks up into four Æ-like fa
tors

Y

ij

Æ([X;X

y

℄

ij

� 

i

 

�

j

) = Æ(jrj

2

�j 

1

j

2

)Æ(jrj

2

+j 

2

j

2

)Æ

C

(r(

�

�

2

�

�

�

1

)� 

1

 

�

2

)Æ

C

(�r(�

2

��

1

)� 

2

 

�

1

)

Now all the entries of the 
onstraint matrix are independent from ea
h other, and

we see the last two Æ fa
tors drop a ja
obian. Therefore, as we stated above, the

integrand in the limit in whi
h � vanishes does not redu
e itself to the integrand of

usual normal matrix model, but we must 
onsider only the values of the integrals

normalized to the norm of the ground state as the 
orre
t physi
al quantities to be


ompared with those 
oming from Laughlin theory of the Quantum Hall e�e
t. As

we already showed in the se
tion 6.3.1, the Hilbert spa
e of physi
al states realizes

a representation of matrix W

1

algebra. Thus we state that the s
alar produ
ts 
an

be 
omputed algebrai
ally by using the 
ommutation relations de�ning the matrix

W

1

algebra itself.

As argued by other authors [27, 26℄, the expression for the wavefun
tion of the

ground state in hermitian 
oordinates 
an be written in terms of

X

y

ij

= X

(1)

ij

�

2

B

�

�X

(1)

ji

in the same form of (6.13) be
ause of the antisymmetry of the expression, being it a

determinant, so that in terms of the eigenvalues of X

(1)

, in the hermitian gauge we

have the wave fun
tion

�[X

(1)

℄ /

Y

i<j

(x

i

� x

j

)

k
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whi
h be
omes, after the shift (5.17)

�[X

(1)

℄;

Y

i<j

(x

i

� x

j

)

k+1

So we �nd in this hermitian gauge the shift several authors already found [42, 43, 4℄

in other ways

6

.

6.4 Con
lusions

We have studied here the matrix model derived from the many body a
tion of ele
-

trons in the �rst Landau level, both in hermitian and in 
omplex 
oordinates. We

worked out the path integral and the s
alar produ
t of the theory in both 
ases: in

the latter one, in parti
ular, we performed a holomorphi
 quantization in order to

spe
ify the diagonal gauge 
hoi
e; it is useful to stress on
e more the importan
e of

introdu
ing the 
onstraint in the de�nition of physi
al s
alar produ
t. The 
onstraint

in this gauge has been solved expli
itly, showing the general form of the gauge �xed

wavefun
tions.

In this diagonal gauge the derivative (momentum) operators get a term of parallel

transport, as we saw in se
tion 6.1.1; this term spoils the expli
it form of hermitian


onjugation, as we saw, the o�-diagonal entries of X

y

on the diagonal gauge are �xed

by the 
onstraint in terms of the physi
al degrees of freedom (i.e. the eigenvalues

of X, f�

i

g and the auxiliary � and

~

�), while the diagonal ones keep the dynami
al

meaning of 
anoni
al momenta of the redu
ed system.

The o�-diagonal entries are generated geometri
ally as a nontrivial parallel transport

in the manifold of the variables (X	) when the diagonalization is performed: they

appear in gauge �xed variables as some sort of ba
kground the whi
h arises when

non
ommutativity is swit
hed on. Let us look at the gauge �xed a
tion

S

CS

j

gf

/

Z

dt

X

i

_

�

i

~

�

i

(X;X

y

); (�;

e

� = diag(

~

�

i

) +A(�;�

e

�))

As we saw also before, the non
ommutativity of 
oordinates gives rise to a \ba
k-

ground" A(�;�;

e

�) whi
h is just the expression of the fa
t we 
annot �nd a basis

of simultaneous eigenve
tors of both X and X

y

. This ba
kground terms, do not

enter into the a
tion dire
tly, sin
e their 
anoni
ally 
onjugated variables, i.e. the

6

Noti
e, however, that the wavefun
tion here is expressed in terms of the x

i

, the real eigenvalues

of X

(1)

only, whi
h is hermitian, not in terms of the eigenvalues �

i

of the 
omplex matrix X .
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o�-diagonal entries of �, vanish due to the gauge 
ondition (auxiliary 
ondition in

the sense of ref. [12℄). Hen
e we are left with the a
tion of ele
trons in the lowest

Landau level, with 
oordinates f(�

i

;

~

�

i

)g [5℄.

One more key to understand the appearan
e of this \
ovariant derivative term" is

the analogy with the so 
alled statisti
al intera
tion of Fradkin and Lopez [16℄.

Moreover we analysed a matrix version of the W

1

algebra generators, rephrasing

the in
ompressibility 
onditions in terms of them, keeping tra
k of the �nite size


orre
tions. The already known ground state wavefun
tion [24℄, whi
h are re
ognised

to be Laughlin states, turned out to be in
ompressible in the sense of these new

operators. The in
ompressibility 
onditions 
an be imposed in the model at �xed

(diagonal) gauge. The dire
t 
omputation proves itself very hard to perform; one


an anyway expli
itly see it at N = 2 for example, and low exponents s; t in L

(mat)

st

,

�nding for the simplest 
ases [5℄

L

(mat)

n1

=

X

i

�

n

i

�

��

i

L

(mat)

n2

=

X

i

�

n

i

"

�

2

��

2

i

�

X

n 6=i

k

2

+ k

(�

n

� �

i

)

2

#

applying these operators to the ground state

�

GS

/

Y

i<j

(�

i

� �

j

)

`

we see the in
ompressibility 
onditions require that ` = k + 1. The apparent dis-


repan
y of the above with the Gauss law 
onstraint may be solved by 
onsidering

that the out
ome of the diagonalization we performed is a nonlinear expression in

the physi
al variables: there 
an be subtleties about the proper normal ordering of

the operator at �xed gauge. Indeed, if one 
onsiders, into the operator L

(mat)

n2

above

when redu
ed to its gauge �xed form, the a
tion of

�

�v

ij

on the V

kl

and V

�1

st

employed

for the diagonalization, one 
an 
he
k that it annihilates the ground state with ` = k.

On this argument about normal ordering troubles, see also [5℄.

We stress on
e more that there is not yet a 
omplete 
ontrol of the algebra of the

L

(mat)

and P

(mat)

, and that the latter ones in parti
ular 
an arise as des
endants of

the operators L

(mat)

into the in
ompressibility 
onditions.

We fo
used here on the properties of the ground state, but we saw also that the

ex
ited states 
an be obtained by applying nontrivial L

(mat)

st

and P

(mat)

st

operators. So

the overlaps 
an be 
omputed in prin
iple in a purely algebrai
 way. The manifest
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form of the integrand of the s
alar produ
t 
ould be formally 
hanged, so one 
annot

unambiguously identify the physi
al feature of the model without a
tually perform-

ing the integrals: only the amplitudes indeed are physi
ally sensitive obje
ts; they


an be 
omputed 
ompletely using the fa
t the physi
al Hilbert spa
e is a representa-

tion of W

1

algebra, thus obtaining a 
oordinate invariant des
ription of the physi
s

of the present model. In this way one 
an 
ompare the results 
oming from the

matrix model and the standard Quantum Hall 
omputations, 
ompletely 
larifying

the physi
al 
ontent of Chern-Simons matrix model.
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