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Chapter 1

Introdution

1.1 Forewords

Last entury witnessed the birth and growth of a new way of thinking about the

physial world. Our aim is not to make a history of modern physis: the present

setion is meant solely to motivate the reader to go through the work presented,

while expressing a few more personal onsiderations. The argumentation presented

are inspired by the reviews [49, 48℄, among the others.

The route the physial thought has followed in said period of time, has been

inuened in a very peuliar way by the theoretial novelties the physis ommunity

has disovered during this period. All of those oneptual steps the physial knowl-

edge of fundamental proesses has made, have been went along with orresponding

steps in mathematis. It is not oasional, nowadays, that some novel onept in

theoretial physis triggers a new investigation or disovery in mathematis, or vie

versa; anyway this oneptual oupling is not a prerogative of modern thought. In-

deed geometry in its early days was learly oriented to desribe the spae in whih

natural events take plae. After the very early works by Einstein upon General Rel-

ativity, the sope of the previous sentene has enlarged in an almost dramati fashion.

In the same period, it beame lear that physis on a smaller sale was di�erent

from what it appeared to be in everyday life (at human-size sale). It took several

years for most of the physial ommunity to aept the new-birth Quantum Mehan-

is. The appearane of unertainty in physis puzzled most of those physiists who

did not promptly aept it. It ompelled to shift the traditional view on physial

1



2 SECTION 1.2

phenomena, to a more indiret one: on a quantum system, there are several questions

that annot be asked any longer. This has been aepted long ago understanding

that the nature of physial phenomena is suh, and we must bear it. Also, this shift

in the attention, has beome a virtue, in physis, being it more abstrat and hene

allowing for further reahing work.

So in modern physis one just gets used to several abstrat onepts, being always

able to trae them bak to their very soures, by mean of the physial meaning of eah

of them. This needs to be the ase for the not-so-reent Nonommutative Geometry.

Already in the early times of Quantum Mehanis and Quantum Field Theory, [48℄,

the introdution, as oordinates, of objets whih did not ommute was onsidered

as a resoure in order to ure the in�nite self-energies that plagued Quantum Field

Theory, before the Renormalization had beome a well-established matter. This has

already been notied by Heisenberg in the 30's, and analysed thoroughly by Snyder

in 1947 [46℄.

More reently, mathematiians have studied this new geometry in several ways:

we will use mainly the point of view established by Alain Connes (see [7, 8℄ and

referenes therein), adhering in this way to the hoie of a fairly large part of the

physial ommunity (see [28℄, [30℄ and referenes therein).

1.2 Quantum Mehanis

The simplest physial instane of nonommutative geometry is that of the phase

spae of a mehanial system after quantization. The theory with whih we start is

desribed by (regular) funtions on the 2n-dimensional phase spae � of the system.

The spae � is endowed with a losed nondegenerate 2-form ! that de�nes the

Poisson brakets, whih an be seen as a bilinear antisymmetri funtional de�ned

on the algebra of observables (regular funtions) A

:

= C

r

(�). One an hoose loal

oordinates in whih the anonial expression of the Poisson braket between the

two observables f(q; p) and g(q; p) is

ff; gg

:

=

X

i

�f

�q

i

�g

�p

i

�

�g

�q

i

�f

�p

i

: (1.1)
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The standard quantization proedure requires to introdue the Hilbert spae H of

the physial states of the system, and map the algebra of observables A in an algebra

b

A of operators ating on H. The latter orrespondene is de�ned in suh a way that

the Poisson brakets (1.1) of any pair of observables f(q; p) and g(q; p) mapped into

the ommutator of the orresponding operators

^

f and ĝ:

i}

\

ff; gg =

^

f � ĝ � ĝ �

^

f

where the hat stands for the quantization map A 3 f 7�!

^

f 2

b

A.

1

In partiular the position and momentum observables q

i

and p

i

are mapped respe-

tively to the operators q̂

i

and p̂

i

whih have the anonial ommutation relation

[q

i

; p

j

℄ = i} Æ

ij

:

It is well known that from this relation, whih is an obstrution to �nd simulta-

neous eigenvetors of both the position and the momentum operators, there arise

the Heisenberg relations of unertainty on the measurements of the position and

momentum

(�q

i

)

2

(�p

i

)

2

&

1

4

}

2

; (1.2)

whih express quantitatively the loss of loalization of points in the phase spae �.

From the unertainty relations (1.2) one see that a point in the phase spae annot

be resolved in an area smaller that that of a Plank ell. This fat auses the loss

of the very notion of \point" in a quantized phase spae

2

. In Quantum Mehanis

physial properties are worked out, generially speaking, by algebrai relations among

operators, sine this allows to work in a more abstrat ontext. Therefore for a

physiist it is more pro�table to refer to the traditional physial lore of Quantum

Mehanis when onsidering the introdution of a nonommutative geometry in a

problem.

1.3 Quantization of Geometry

Sine the foundation of General Relativity by Einstein on 1916, the paradigm of

the physial theory of Gravity has been to identify the Gravity with the Geometry

1

To de�ne this quantization map properly, one need also to de�ne the quantization of any

symmetri produt of observables of A. We are not entering into any detail here, beause it would

be beyond the sope of this hapter.

2

Hene J. von Neumann happened to all that of a quantized phase spae a \pointless" geometry.
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of the Spae-Time. Hene, it is expeted on a general basis that quantization of

Gravity will lead to a nonommutative Spae-Time geometry. Starting by the diret

appliation of Heisenberg's priniple to the Einstein's Gravity, one an obtain by a

semi-lassial evaluation the unertainty relations for the oordinates in absene of

a strong external �eld [11℄:

X

i<j

�x

i

�x

j

& �

2

P

; (1.3)

whereas �

P

s 10

�33

m is the Plank length, and �x

i

are the unertainties on the

measurement of the oordinates. The argument to �nd the above goes as follows

[11℄. To perform a measurement of the loalization of an event, we give to our

test partiles en energy of order

h

a

where a is the minimum among the unertainties

�x

i

; at the loations of the test partiles the density of energy is

h

a

. We must

ensure that this energy density does not exeed the threshold for the formation of

a blak hole, beause otherwise the horizon will take the region around the event

away from the observation.

3

In [11℄ there an be found more details on how to

introdue an algebra of operators from whose ommutation relations one an obtain

the unertainty relations (1.3). For our purposes, we need only to notie that the

relations (1.3) require that the oordinate of the almost-Minkowski Spae-Time are

\promoted" to nonommuting operators

[x

�

; x

�

℄ = iQ

��

with �

P

s

p

jQj :

Therefore, very general arguments based on Quantum Mehanis and General Rela-

tivity lead, at a semi-lassial level, to nonommuting oordinates in the Spae-Time.

1.4 Strings and Branes

The arguments on the quantization of Spae-Time above an be improved by the

analysis of sattering amplitudes of strings at high energy (see setion 3.1 in [49℄ and

referenes therein). The out-oming Heisenberg relations between the unertainty

on position and momentum of the string, get a term due to the �nite spatial extent

of the string itself:

�x &

}

2

�

1

(�p)

+ `

2

s

(�p)

�

:

3

We an also restrit to stationary solutions of Einstein equation, when the unertainty on time

loalization is very large, obtaining that a must be smaller of the Shwarzshild radius relative to

the energy

h

a

.
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This in turn implies that the unertainty on the measurement of spatial distanes is

bounded from below by

�x & `

s

;

i.e. from the �nite length of the string. Therefore strings even at high energies annot

probe spae-time at distanes lower than the length of the strings themselves. This

is an e�et of the intrinsi non-loality of String Theory. To reah lower length sales

it is neessary to use D-brane as probes [49, 48℄.

1.4.1 Strings in a Magneti NS Bakground

From bosoni open string theory we an extrat a simple example of how nonom-

mutativity of oordinates arise in a fundamental ontext. This should display some

of the motivations behind the exitement Nonommutative Geometry auses in the

Theoretial Physis ommunity. Consider the ation of an open bosoni string mov-

ing in eulidean at Spae-Time, in presene of a bakground 2-form antisymmetri

B �eld [49℄

S =

1

4�`

2

s

Z

�

d

2

z (g

��

�

a

X

�

�

a

X

�

� 2�i`

2

s

�

ab

B

��

�

a

X

�

�

b

X

�

)

The ends of the open string are attahed on D-branes. The antisymmetri �eld B

��

plays the role of a magneti �eld on the D-branes. Let us restrit ourselves to the

onstant B

��

ase. Moreover we take the so alled Seiberg-Witten limit[45℄

g

��

s `

4

s

s " �! 0 while Bis �xed,

in whih the massive modes deouple and the bulk dynamis disappear, the theory

beoming topologial; only the boundary theory survives

4

S

B

= �

i

2

Z

��

dt B

��

Y

�

d

dt

Y

�

; (1.4)

where Y

�

:

= X

�

j

��

is the restrition to the boundary of the string maps X

�

. This is

just the theory of a harged partile in a strong uniform magneti �eld B, therefore

projeted on the lowest Landau level. The anonial Poisson brakets obtained by

the ation (1.4) are

fY

�

; Y

�

g = i�

��

where �

��

:

= �

1

2

(B

�1

)

��

:

4

Let us notie that sine `

s

�! 0 the Seiberg-Witten limit is also a point-partile limit of the

open string.
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Upon quantization, these brakets beome the ommutators de�ning the usual non-

ommutative R

n

eulidean spae. Therefore we obtain a quantum e�etive theory

desribing strings in the low energy Seiberg-Witten limit, whih is a Quantum Field

Theory on a Nonommutative spae.

1.5 Quantum Hall e�et

The famous Peierls' substitution [39℄ was introdued for the �rst time in the problem

of the motion of a eletrons on a plane, in a uniform magneti �eld B. As already

mentioned, the total ation of this system in the limit of strong magneti �eld B �!

1 (or small mass m �! 0) is

S =

Z

dt

eB

2

�

ab

x

a

(t) _x

b

(t) :

The anonial quantization leads us to the ommutation relations

[x

1

; x

2

℄ = i

}

eB

(1.5)

Also a oordinate depending potential V (x

a

) ould be added, without hanging the

anonial ommutation relations. This is maybe the easiest physial instane of

nonommutative plane, and will be analysed in detail in hapter 3. We only notie

here that the non-vanishing ommutator (1.5) implies that the eletron annot be

loalized with in�nite preision in the strong B limit.

1.5.1 Susskind's proposal

Inspired to the analogies between the physis of eletrons in a strong magneti �eld

and the properties of D-Branes in String Theory, Susskind [47℄ proposed a model

to desribe Laughlin inompressible uid. He derived a Nonommutative Chern-

Simons Field Theory starting from the Lagrange desription of the inompressible

uid, and onstruting a nonommutative extension of it: the key feature to make

this extension was that in the limit of high density the nonommutative theory

reprodued the equations of motion of the Lagrange inompressible uid (see hapter

4 of the present thesis for the detailed analysis).

The original proposal in [47℄ desribed the inompressible uid in its thermo-

dynami limit, i.e. it desribed the in�nite uid. To desribe a �nite sample, and

to avoid the problems of proper regularisation the in�nite uids theory presented,
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Polyhronakos [42℄ proposed a trunation of the model, introduing the so alled

Chern-Simons Matrix Quantum Mehanis. The theory exposed also the boundary

exitations, whih have always had a great importane in the study of the Quantum

Hall e�et (for a review see [51℄).

Polyhronakos model is a model of N � N (hermitian) matries. The truna-

tion has been arried on through the introdution of a N -dimensional auxiliary time

dependent vetor, whih orresponds to the boundary �elds of low energy edge ex-

itations [51℄. He showed that this model possesses a U(N) gauge invariane, and

redued it to a Calogero model of one-dimensional non-relativisti fermions with a

repulsive interation: the oordinates and momenta of these 1-dimensional fermions

where the eigenvalues of the matries of the original theory.

This model shares many features with Laughlin theory of Quantum Hall uid, but

the two models are not equivalent to eah other. More preisely, while the states of

the two models are isomorphi, the orrespondene is not isometri: the measure of

integration of Calogero model is real and one-dimensional, but the one of Laughlin

quantum Hall uid is omplex and two-dimensional.

Anyhow the lassial solutions of the matrix model presented the expeted feature

of the Hall uid and the frational harge vortex exitations as well. In [23, 22℄ the

expeted Hall ondutivity has been derived from the nonommutative theory.

Karabali and Sakita [27, 26℄ analysed the redution of the matrix theory to om-

plex eigenvalues using the oherent states of eletrons in the lowest Landau level

(Bargmann-Fok spae). Though they ould not disentangle the eletron oordinates

from the auxiliary variables of the boundary �elds, they performed some expliit al-

ulations at low N . They found that the overlaps of states ontain, along with the

Laughlin wavefuntion, a nontrivial measure fator whih modi�es the short distane

properties of the uid.

Hene the two authors onluded that either the matrix model did not desribe the

physis of Laughlin uid, or the orrespondene happened in an unknown set of

oordinates.

1.6 Plan of the Thesis

In hapter 2 it will be presented a onise review of the Nonommutative Geometry

in the Connes' paradigm. That hapter is not intended as a substitution of more
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lassial text, but as a handy review of the subjet; the whole hapter is mainly

based on the book [28℄, but there are many other books on the subjet, as well as

reviews written by both mathematiians and physiists (e.g. [7, 9, 8, 21, 50, 18℄ and

many others).

In hapter 3, we will �rst review several features of the problem of the eletron in

the Landau levels, stressing in partiular the important role of W

1

algebra of area

preserving di�eomorphisms [13℄ in the mathematial desription of the onditions

of inompressibility [6℄, and in the haraterisation of the quantum Hall uids and

their exitations. The W

1

algebra plays an important role in the matrix model as

well, sine the Hilbert spae of states of the system holds a representation of the this

algebra.

Also the topi of the projetion to the �rst n Landau levels is addressed, and it is

shown what is the result of this projetion on the algebra of observables of the system

(see also [32, 31℄).

Moreover it will be analysed a deformation of the algebra de�ning the Landau levels

inspired by a paper by Nair and Polyhronakos [38℄: the devie of Weyl quantiza-

tion map will be used to de�ne in the more abstrat way the expetation values of

produts observables of the theory. The whole mahinery will be employed to om-

pute the density expetation value and the density-density orrelation funtion on

the ground state of a droplet of Quantum Hall uid. The result will show that the

uid after the deformation of the algebra keeps its harateristi feature of (almost)

uniform density and of inompressibility. Also it will be provided a simple om-

putation whih will make expliit a physial e�et of nonommutativity, in terms of

an e�etive repulsion appearing when a two-body attrative potential is swithed on.

Chapter 4 will be devoted to the onise presentation of the work of Susskind

[47℄: the Lagrange desription of the the inompressible uid will be thoroughly

presented along with its extension to the nonommutative theory, following [47℄ and

[25℄. The resulting theory will be a theory with a onstraint, the Gauss' law, whih

ensures the nonommutativity of oordinates. The following hapter 5, will ontain

the statement of the trunation to �nite N of the nonommutative theory by the

introdution of the auxiliary time-depending omplex vetor 	. The quantization

of the model will employ the path integral, and the Faddeev-Popov proedure will

be used to �x the U(N) gauge symmetry, as ustomary in �eld theory. As a result,

together with the level quantization, we will obtain the redution of the problem
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to the one-dimensional Calogero model of non-relativisti fermions, with a repulsive

potential generated by the nonommutativity of oordinates. Also the salar produt

for the quantum theory will be written, in terms of the oherent states of the matrix

model, and the hange of statistis indued by the integration measure in the salar

produt.

The last part of the thesis, hapter 6, will present the Holomorphi quantization

of the Chern-Simons Matrix Quantum Mehanis [5℄. Complex (matrix) oordinates

X;X

y

will be introdued. A anonial transformation will be used to solve the Gauss'

law onstraint in terms of the eigenvalues of X: the path integral will be redued

to that of the eletrons in the lowest Landau level, the eletrons oordinates and

momenta being the omplex eigenvalues of X and their anonially onjugated vari-

ables.

In Shr�odinger representation, while the oordinates will have the obvious diagonal

form, the anonial momenta will get a term whih geometrially is interpreted as a

nontrivial aÆne onnetion; the appearane of this onnetion has an analogous in

the appearane of the statistial interation indued by the ordinary Chern-Simons

interation solved in terms of the soures (for a review see [53℄).

The inompressibility will be de�ned in terms of the matrix extension of the genera-

tors of W

1

algebra. In hapter 6 it is also performed the analysis of the realisation

of W

1

algebra in the Matrix Model, and the highest weight onditions de�ning in-

ompressibility [6℄ are proved to hold for the latter; also the �nite-size orretions

arising from the �niteness of dimensionality of the matries are taken into aount

and inluded into the set of generators of the W

1

algebra.

It is argued as well that from the W

1

symmetry of the model it is possible to om-

pute all the salar produts of the states of the Chern-Simons Matrix Model. The

problem of deiding whether the Chern-Simons Matrix Model desribes the Laugh-

lin theory of Quantum Hall uid has been redued to the proof that W

1

symmetry

holds for the Matrix theory. The latter has been done for its expression in general

gauge, but is still not omplete for the gauge �xed theory [5℄.
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Chapter 2

Brief introdution to

Nonommutative Geometry

This hapter is a onise review of the mathematial setting of Nonommutative

geometry, mostly based on the book [28℄, both for the logial order of the arguments,

and for the terminology used therein. Other soures [21, 50, 7, 8, 9℄ have been used

as well to get a more omplete view of this subjet.

2.1 A tehnial preamble

We are going to review some general de�nitions, needed to understand the mathe-

matial language of Nonommutative Geometry. We start by de�ning here the basi

objets.

De�nition 2.1 (Banah spaes) A vetor spae V, of arbitrary dimension, over

the �eld of omplex numbers C ,

1

equipped with a norm, i.e. an appliation

k � k : V �! R

whih is (8a 2 C ; v; w 2 V)

� ka vk = jaj kvk

� kvk � 0 ; kvk = 0 () v = 0

� kv + wk � kvk+ kwk

1

In this thesis, we will onsider only vetor spaes over C .

11
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With respet to this norm, the spae is required to be omplete, i.e. any Cauhy

sequene is a onvergent one, to some point of the spae.

De�nition 2.2 (Banah Algebra) A Banah spae A endowed with an internal

omposition law �

� : A�A �! A

suh that it is distributive with respet to the vetor spae addition. Moreover it is

required that

8v; w 2 A kv � wk � kvkkwk

A Banah algebra is said unital if it is endowed of a multipliative unit I, 8a 2

A a � I= I � a = a .

De�nition 2.3 (C

�

-algebra ) A Banah algebra equipped with an antilinear in-

volution � leaving the norm invariant a

��

= a; ka

�

k = kak, and suh that

ka

�

ak = kak

2

Notie that there is no requirement here about the ommutativity or the assoiativity

of the algebra produt.

De�nition 2.4 (Ideal of a Banah algebra A) A subspae I � A, with the prop-

erty that either

8a 2 A; g 2 I; a � g 2 I

for a left ideal, or

8a 2 A; g 2 I; g � a 2 I

for a right ideal. If both of the above are satis�ed, then we deal with a two-sided

ideal.

2

And ideal I is maximal if there is no proper ideal I

0

suh that I � I

0

( A.

If A is a C

�

-algebra , and I � A a two-sided losed �-ideal (i.e. it has an involution

indued by that of A), then the quotient A=I is a C

�

-algebra . A simple C

�

-algebra

has no nontrivial two-sided ideals.

2

If A has an involution (e.g. if it is a C

�

-algebra ) then its ideals are all two-sided.
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De�nition 2.5 (Resolvent set) Given a unital C

�

-algebra A, and a 2 A, the

resolvent set of a r(a) is the subset of C

r(a)

:

= fz 2 C j (a� z I) is invertibleg

For z 2 r(a), the operator (a� z I)

�1

is the resolvent of a at z.

The set �(a) = C nr(a) is the spetrum of a.

For a C

�

-algebra A, the spetrum of any a 2 A is nonempty and ompat.

De�nition 2.6 (Spetral radius of a 2 A) It is

�(a)

:

= supfjzj; z 2 �(a)g

Now, if A is a C

�

-algebra , then it holds the following

8a 2 A; kak

2

= �(a

�

a)

So we see that for a C

�

-algebra , the norm is unique and �xed by the algebrai

struture.

De�nition 2.7 (Morphism of C

�

-algebra ) A C -linear appliation � : A �! B

suh that

�(a

1

� a

2

) = �(a

1

) � �(a

2

)

When bijetive it is a �-isomorphism

A morphism � : A �! B is ontinuous and suh that

kak

A

� k�(a)k

B

Moreover it maps a C

�

-algebra in a C

�

-algebra .

De�nition 2.8 (Representation of a C

�

-algebra A) A pair (H; �), with H an

Hilbert spae, suh that

� : A �! B(H)

is a �-morphism in the spae of bounded operators on H.

3

It is a faithful representation ifKer � = f0g, or equivalently if 8a 2 A; k�(a)k =

kak.

It is an irreduible representation if there are no nontrivial losed subspaes of

3

Atually the latter turns out to be a C

�

-algebra as well
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H whih are invariant under the ation of �(A), or equivalently if the enter

4

of A

satis�es Z(A) = fz Ijz 2 C g.

Two representations (H

1

; �

1

) and (H

2

; �

2

) are said unitary equivalent represen-

tations if there exists an unitary operator U : H

1

�! H

2

suh that U�

1

� �

2

U.

De�nition 2.9 (Primitive ideal) A subspae I of the C

�

-algebra A suh that I =

Ker � for some irreduible (H; �) representation of A. It is obviously a two-sided

ideal.

The spae of primitive ideals of a C

�

-algebra A is alled Prim(A)

De�nition 2.10 (Compat operator) An operator T : H �! H on a Hilbert

spae mapping weakly onvergent sequenes of H in strongly onvergent ones. Equiv-

alently a ompat operator is an operator whih is approximable in norm by a

sequene fT

n

g of operators for whih the orthogonal omplement of eah of the ker-

nels Ker T

n

is �nite dimensional.

The spae of all ompat operators on an Hilbert spae H is usually alled K(H).

Now a few properties of ompat operators follow:

Proposition 2.1 (Polar deomposition) The spetrum of a ompat operator T :

H �! H is disrete and has no limit point in the omplex plane, eventually exept the

origin. Any nonzero eigenvalue has �nite multipliity. Moreover, it may be written

T =

X

m



m

(T ) 

m

Æ �

m

; R

+

3 

m

(T )& 0

with f 

m

g and f�

m

g two orthonormal sets.

Proposition 2.2 If T : H �! H is ompat and self-adjoint, then there exists an

orthonormal basis f 

m

g of H suh that T 

m

= �

n

 

m

with lim

m!1

�

m

= 0.

De�nition 2.11 (In�nitesimal) An in�nitesimal of order � 2 R

+

is a T 2 K(H)

suh that for m � 1 ; 

m

(T ) = O(1=m

�

)

It turns out that K(H) is the largest norm losed two-sided ideal of the spae of

limited operators B(H). It is also a (non-unital) C

�

-algebra having only one lass

of irreduible representations. Another important property of K(H) is that if a C

�

-

algebra A ats irreduibly on an Hilbert spae, and ontains some ompat operator,

then it ontains all of them: K(H) � A.

4

It is the subspae of elements of A ommuting with all the elements of A
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De�nition 2.12 (Liminal C

�

-algebra ) A C

�

-algebra A for whih the image of

any irreduible representation (H; �) is oinident with K(H).

Equivalently (see the above properties of ompat operators) A is a liminal C

�

-

algebra i� �(A) � K(H).

De�nition 2.13 (Postliminal C

�

-algebra ) A C

�

-algebra A for whih the image

of any irreduible representation (H; �) is ontained in K(H).

Equivalently (see above) A is a postliminal C

�

-algebra i� �(A) \ K(H) 6= ;.

For a postliminal C

�

-algebra the lasses of irreduible representations are uniquely

haraterised by their kernels.

Now we will need a new point of view about known things, suitable for extending

the theory of (ordinary) Geometry.

2.2 Commutative Spaes

Firstly, let us onsider a ommutative C

�

-algebra A. From the ommutativity

it follows that its irreduible representations are all (unitary equivalent to) one-

dimensional representations. So, every irreduible representation is a funtional

� : A �! C , whih preserves the algebra produt (being it a �-morphism). It

is ustomary to use the symbol

b

A for the spae of all suh funtionals, i.e. for

the spae of all the equivalene lasses of irreduible representations of A, the so

alled struture spae.

5

The spae

b

A an be endowed with the weak topology (the

Gel'fand Topology) �

w

, de�ned on the sequenes as follows

f�

n

g �

b

A; �

n

�! 0 (= 8a 2 A; �

n

(a) �! 0

It an be shown that with this topology

b

A is a T

2

topologial loally ompat spae

6

.

This is true if A is only a Banah ommutative �-algebra as well.

De�nition 2.14 (Gel'fand Transform) It is this orrespondene between a C

�

-

algebra A and the spae of omplex funtions

b

A �! C

^
� : A �!

b

A

0

a 7�! â

â(�)

:

= �(a); 8� 2

b

A

0

5

Suh a spae, for ommutative algebras, is the spae of all the haraters of A

6

In the ase A is an unital algebra, (

b

A; �

w

) is a ompat topologial spae.
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An important ase of this mapping is given by the algebra of measurable funtions

L

1

(R) endowed with its natural norm

kfk

1

:

=

Z

dx jf(x)j

and with the produt of onvolution as algebra produt

8f; g 2 L

1

(R) f ? g(x)

:

=

Z

dy f(x� y)g(y)

It is a Banah �-algebra with the omplex onjugation as involution, as it an be

easily shown with the standard mahinery of Banah algebra theory

7

. Moreover, any

irreduible representation of L

1

(R) is ontinuous and an be written in integral form

in the following fashion

�(a) =

Z

dx �(x)a(x)

with � a suitable funtion in L

1

(R) ' L

1

(R)

0

, the dual of our algebra. The on-

volution produt is mapped to the point-wise produt. The fat � is a representa-

tion, hene a �-morphism, i.e. �(a ? b) = �(a)�(b), implies (given � 2 L

1

(R) and

a; b 2 L

1

(R))

�(a ? b)

:

=

Z

dx �(x)

Z

dy a(x� y)b(y) =

Z Z

dxdy �(x+ y)a(x)b(y)

�(a) � �(b)

:

=

Z

dx �(x)a(x)

Z

dy �(y)b(y)

so that �(x + y) = �(x)�(y). This quali�es �(�) as the exponential map. From this

and from the limitedness it follows �(x) = exp(ikx) ; k 2 R. So eah representation is

identi�ed with a real number. Putting everything together, we �nd that the Gel'fand

transform of an element a 2 L

1

(R) evaluated on a representation � is

â(�)

:

= �(a) =

Z

dx a(x)e

ik

�

x

i.e. it is the Fourier transform of a 2 L

1

(R) at the frequeny k

�

. Notie that the

Gel'fand transform of a measurable funtion is a ontinuous funtion of the real line.

One an prove in general, that any Banah �-algebra A is mapped to the spae of

ontinuous funtions on the struture spae

b

A; if the latter is only loally ompat

(i.e. if A has no unit), it will be the spae C

0

(

b

A) of ontinuous funtions vanishing

at in�nity.

For a C

�

-algebra there is the following stronger statement

7

Let us notie that this algebra is a simple example of non-unital algebra, sine the unit of

onvolution produt is the Dira Æ funtion, whih is, of ourse, not a funtion but a distribution,

so it does not belong to L

1

(R).
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Theorem 2.1 (Gel'fand-Naimark) Given a ommutative unital C

�

-algebra A,

there exists a ompat Hausdor� spae X suh that the Gel'fand transform is an

isometri �-isomorphism between A and C(X). This orrespondene is �xed up to

homeomorphisms.

If the C

�

-algebra A is non-unital then the spae X will be only loally ompat.

8

So for the Gel'fand-Naimark theorem eah ommutative C

�

-algebra \is" the spae of

funtions of a Hausdor� spae. Hene, in priniple, any result of lassial geometry

an be translated in this algebrai framework, provided that we an write all the data,

suh as di�erential forms an so on. This requires more work, but in the meanwhile

we an render more material the orrespondene between algebra and geometry.

So suppose we have the spae C(X) of ontinuous funtions on the ompat T

2

spae

X. Let us introdue the evaluation map

8p 2 X  

p

: C(X) �! C  

p

(f)

:

= f(p)

So any point of X de�ne, roughly speaking, a morphism of C(X) to C . Using the

Gel'fand topology and the de�nitions for ommutative Banah algebras, one an

prove that these maps de�ne an homeomorphism  

�

between X and

\

C(X), and that

any maximal ideal of C(X) is the kernel of some map  

p

, whih in turn is by the

de�nitions identi�ed with a point p 2 X.

In example we an assoiate to eah point p 2 X the ideal of ontinuous funtions

vanishing on that point. The latter ideal is a maximal ideal of C(X), and is the kernel

of an irreduible representation of the algebra A ' C(X) itself. Thus we see that in

the ommutative ase the manifold X an be identi�ed with the maximal ideals of

the algebra of funtions de�ned on itself, and moreover given a generi ommutative

C

�

-algebra A we an �nd a spae whose points are ideals (indeed, primitive ideals)

of A itself. This fat is a useful generalisation, whih allows us to generalise the

de�nition of spae itself, as we shall see in the next setion.

2.3 Nonommutative Spaes

The above disussion is not adequate when we go on onsidering what happens when

one onsiders nonommutative C

�

-algebra A. Indeed, in this more general ase, it is

8

There is a nie orrespondene between the one-point ompati�ation of X and the unitaliza-

tion of A, in that the one point ompati�ation of the struture spae

b

A of a Banah �-algebra is

the struture spae of the algebra A+ fzI j z 2 C g (the unitalization of A).
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no more true that the irreduible representations are haraterised by their kernel.

Now we introdue a topology on both PrimA and

b

A.

Let us start with the former: a subset W � PrimA is losed if and only if

9

8I 2 WI � J =) J 2 W

With this topology the spae PrimA is T

0

.

10

It an be proven that if A is a liminal

C

�

-algebra , then PrimA is T

1

11

.

We an now pass to the struture spae

b

A by the anonial surjetion � 7�! Ker �.

We endow

b

A with the oarsest topology whih renders this surjetion ontinuous,

i.e. the quotient topology. In this topology the two objets

b

A and PrimA are

homeomorphi if and only if

b

A is T

0

as well as PrimA. This is e.g. the ase if the

C

�

-algebra A is postliminal.

Also in the nonommutative ase it is true that the struture spae

b

A of a C

�

-algebra

is loally ompat (ompat if it has a unit), and PrimA share this property.

Nonommutative Geometry is based on the extension of the lassial and familiar

onepts of geometry, and what we just saw is a basi example of how this is usually

done in this branh of mathematis. Starting from an ordinary (ommutative) spae,

we pass to desribe it in terms of the algebra of (ontinuous, smooth, et.) funtions

de�ned on it, knowing we an reover the ordinary quantities of geometry in a formal

way. Now it has been made possible to generalise this struture, without altering

the relation it has with the geometri onepts we may be interested in (i.e. points,

vetors and so on, as we shall see in the next setions). [8℄

In this more abstrat terms, there are two proposals for the identi�ation of points:

we an identify them with the primitive ideals of the C

�

-algebraA, or with the equiv-

alene lasses of irreduible representations of A, i.e. elements of

b

A, the struture

spae of A. We will restrit the analyses only to the ases in whih these two notions

are the same. As we saw this is the ase when e.g. the C

�

-algebra A is postliminal.

The treatment of more general ases is left to the literature (see [28℄ and referenes

9

Suh a topology is equivalent to the so alled Jaobson topology, more usual in this ontext.

We are introduing this one instead for the sake of simpliity.

10

A T

0

spae is suh when for any pair of points there is an open neighbourhood of one of them

whih does not ontain the other. This leads to a \lak of loalisation in a general T

0

spae, beause

there are points that \stik" to some other point. Also, not all points in a T

0

spae are losed.

This feature emerges when one studies the so alled Nonommutative latties.

11

In T

1

spae for any pair of points, any of them has an open neighbourhood not ontaining the

other one.
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therein). In the ommutative ase it was also the ase, and we saw how to identify

points by the ideals of funtions vanishing at those points.

The interested reader may �nd in referene [28℄ maybe the simplest example of a

nonommutative spae, the two-points spae; it turns out to be important for the

formulation made by Connes and Lott of the standard model of eletro-weak inter-

ations.

2.4 Modules

Till now we have dealt with algebrai strutures representing the geometrial objets,

roughly speaking, for themselves. Now we own only the basi tools to treat the

topology of a spae. In what follows we are going to introdue a kind of struture

generalising the onepts of vetor bundle geometry. Let us start with the basi

de�nitions

De�nition 2.15 (Module) A nonempty set E, endowed with an abelian omposi-

tion law + : E �E �! E, rendering it an abelian group, and an external omposition

law on a given ring R, � : R�E �! E, the latter having the following (assoiativity

and distributivity) properties

8a; b 2 R; �; � 2 E

(a+

R

b) � � = a � � +

E

b � �

a � (� +

E

�) = a � � +

E

a � �

(ab) � � = a � (b � �)

In this ase E is alled a left module over R. When the external omposition law

is in the form � : E � R �! E then E is alled right module.

12

It is learly apparent that this is just a generalisation of the usual onept of vetor

spae. The usual notion is learly restored when R ' C . We will make use of

modules over algebras, instead of rings. In this ase we expliitly require that the

module be a C -vetor spae as well. This is automati, of ourse, when the algebra

is unital.

Of ourse the distintion between left and right struture for a module is totally

12

We are being overnie here, in order to make lear, e.g. whih sum are we talking about in

writing a \+". Of ourse we will abandon this lumsy notation, just beause it is usually superuous

outside formal de�nitions.
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immaterial when only one kind of struture is hosen. Infat it is enough to onsider,

for any left (right) A-module E , the opposite algebra A

o

de�ned by the relation

(ab)

o

:

= b

o

a

o

, and so use the isomorphi right (left) A

o

-module struture over E .

This is not this the ase, instead, when dealing with bimodules, i.e. modules with

both a left and a right struture. In this ase we of ourse ould exhange the left

and right struture, but we must require the ompatibility between the two of them.

De�nition 2.16 (Bimodule over an algebra) A left and right module E over an

algebra A for whih it is satis�ed the relation

8� 2 E ; 8a; b 2 A (a�)b = a(�b)

i.e. the left and right strutures an be supported in a ompatible way.

Moreover a bimodule E over a �-algebra A is a �-bimodule if there is an involution

� : E �! E suh that 8a; b 2 A; � 2 E there is the identity (a�b)

�

= b

�

�

�

a

�

.

De�nition 2.17 (Modules morphism) Let A be an algebra, E, F two left (right)

A-modules. Then � : E �! E is a module morphism i� it is C -linear and A-

linear, i.e. it satis�es

8� 2 E ; a 2 Az 2 C

(

�(a�) = a � �(�)

�(z�) = z�(�)

De�nition 2.18 (Dual module) Given a left (right) module E over the algebra A,

its dual E

0

is

E

0

:

= Hom(E ;A) = f� : E �! A j � is a morphismg

It is also a right (left) A-module, de�ned by

8a 2 A; � 2 E

0

�(�) �

A�E

0

a

:

= (�(�))a

2.4.1 Modules from inside

Being the modules objets more general than the vetor spaes, there are many

subtleties about them. Now we begin to desribe the most elementary ones.

De�nition 2.19 (Generating family) Given E a left (right) module, a generating

family is a net fe

n

g � E with the property that 8v 2 E there exists another net

fa

n

g � A satisfying

v =

X

n

a

n

e

n

summing over a �nite subnet

The generating family fe

n

g is a basis if its elements are A-linearly independent.
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De�nition 2.20 (Free module) A module E whih admits a basis

De�nition 2.21 (Module of �nite type) A module E whih admits a basis of �-

nite ardinality. In general this ardinality has not universal meaning, in that one

is not assured there are no basis for E with di�erent �nite ardinality.

13

Modules of

�nite type are also alled �nite.

The prototype for a free �nite module over the algebra A is A

m

�

=

C

m


A. the

following holds

Proposition 2.3 For any �nite module E over the algebra A, there is alwaysM 2 N

and a morphism � : A

M

�! E whih is onto. Then � maps a basis of A

M

on a

generating family of E, the latter eventually laking (when E is not free) of the linear

independene of its elements.

In the sequel we will deal only with �nite modules, even when we do not speify

it expliitly.

The fat a module E is not free is the translation of the non triviality of a vetor

bundle. The anonial example of this is the tangent bundle of the sphere S

2

, whih

is a module over the algebra C

1

(S

2

), but does not admit a basis, sine there does

not exist two global independent vetor �elds .

De�nition 2.22 (Projetive module) A left (right) module E over an algebra A

whih is a diret summand of a free module.

Equivalently a module E is projetive if for every module M, and every morphism

� : M �! E whih is onto, there exists its right inverse morphism f : E �! M,

i.e. � Æ f = I

E

.

14

Moreover, it is equivalent to the fat that for any morphism � : F �! G between

13

This fat, true only for modules of �nite type, depends on the algebra (more generally, on the

ring) on whih the module itself is de�ned. For a ring R with the invariant basis property the

modules R

n

and R

m

are isomorphi only if n = m: so the ardinality of a basis for a module on

suh a ring de�nes an invariant of the module we all the dimension (or rank) of the module itself.

In example this is the ase for ommutative rings, and for �nite dimensional algebras, or whenever

there is a ring map R �! K over a �eld, et. For a C

�

-algebra , the existene of a harater, i.e.

a �-morphism, and hene of a point in the geometry, entails the invariane of the dimension.

14

This fat is also referred to as the morphism � admitting a split, being f suh a split.
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modules, any morphism  admits a lift , i.e. the following diagram ommutes



F

% #

�

E

 

�! G

It an be shown of ourse that the three branhes of the above de�nition are indeed

equivalent statements.

For a �nite projetive module E over an algebraA one an show that, applying the

de�nitions, and the (2.3), there exist an idempotent � = �

2

: A

M

�! A

M

suh that

E

�

=

�A

M

. When the algebra A is a �-algebra (as is almost always our ase), then it

makes sense to de�ne an Hermitian struture over the A modules, i.e. a sesquilinear

form h�; �i : E

2

�! A whih is positive, i.e. h�; �i � 0 and h�; �i = 0 , � = 0. h�; �i

is said to be nondegenerate if 8� 2 E h�; �i : E �! E

0

is an isomorphism between the

module and its dual. If the �nite projetive module E admits an hermitian struture

(i.e. is an Hermitian module), then the idempotent � = �

2

is a true projetor (i.e.

is self-adjoint as well).

The following theorem shows what is the relation between vetor bundles and

�nite projetive modules.

Theorem 2.2 (Serre-Swan) Given a �nite dimensional ompat manifoldM, any

module E over C

1

(M) is isomorphi to the module of smooth setions of some bundle

E �!M if and only if E is projetive of �nite type.

2.5 Di�erential forms

Be A an (assoiative) algebra over C . Then we put the following de�nition

De�nition 2.23 (Universal di�erential forms) It is the graded algebra


A

:

=

M

p=0




p

A

where we de�ne

15

� The 0 degree is 


0

A

:

= A

15

Notie that eah degree has a natural left A module struture.
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� The grading on the �rst degree Æ : A �! 


1

A whih is a C -linear map suh

that (Leibniz rule)

Æ(ab) = Æ(a)b+ aÆ(b)

� The �rst degree 


1

A is the module generated by the image of the grading Æ

applied on the algebra A

� Higher degrees are de�ned as




p

A

:

= 


1

A


A

� � � 


A




1

A

| {z }

p

the produt being de�ned by simply writing all the fators in a row, and rear-

ranging them using the Leibnitz identity, so that e.g., we have (a

1

Æa

2

)(a

3

Æa

4

) =

a

1

Æ(a

2

a

3

)Æa

4

� a

1

a

2

Æa

3

Æa

4

, a

i

2 A.

� The grading Æ is extended to the higher degrees by using the rule

Æ(a

0

Æa

1

� � � Æa

p

)

:

= Æa

0

Æa

1

� � � Æa

p

Using in partiular the last property, we �nd (this is a onsequene of the de�nition)

Æ(!

1

!

2

) = Æ(!

1

)!

2

+ (�1)

deg(!

1

)

!

1

Æ(!

2

)

Æ

2

= 0

Notie also that the usual rule for the ommutation of di�erential forms simply does

not make sense in this ontext.

If A has an involution �, then we an extend the di�erential algebra struture with

(Æa)

�

:

= �Æ(a

�

)

(a

0

Æa

1

� � � Æa

q

)

�

:

= (Æa

q

)

�

� � � (Æa

1

)

�

a

�

0

The usual ohomology is uninteresting here, beause

(

Ker (Æ:


q

A�!


q+1

A)

Im (Æ:


q�1

A�!


q

A)

= 0 (= q � 1

Ker (Æ : 


0

A �! 


1

A) = C

;

i.e. it is trivial.

An interesting fat is now that the graded algebra we just de�ned is universal:
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Proposition 2.4 Suppose A is an assoiative algebra, and (

L

n

�

n

; d) is a graded

di�erential algebra; any morphism � : A �! �

0

an be extended in a unique way

to a morphism  : (
A; Æ) �! (

L

n

�

n

; d) of graded di�erential algebras, in suh a

way that for every ell the following diagram ommutes

 : 


q

A �! �

q

Æ # # d

 : 


q+1

A �! �

q+1

i.e. d Æ  =  Æ Æ.

The map is essentially de�ned by the following relation

 (a

0

Æa

1

� � � Æa

q

) = �(a

0

)d�(a

1

) � � �d�(a

q

)

Being A a unital algebra, we now instane the universal graded algebra 
A, with

the de�nitions:

�

0

:

= A

�

1

:

= Ker (j : A


C

A �! A ; a


C

b 7�! ab)

d : A �! A


C

A ; a 7�! a


C

I� I


C

a

We extend the above de�nition to the higher degrees by the immersion

�

q

:

= �

1




A

� � � 


A

�

1

| {z }

q

� A


C

� � � 


C

A

| {z }

q+1

suh that

16

a

0

da

1

� � �da

q

' a

0

(a

1




C

I� I


C

a

1

)


A

� � � 


A

(a

q




C

I� I


C

a

q

)

and that, being � and � respetively the internal and external multipliations

!

1




A

� � � 


A

!

q

� !

q+1




A

� � � 


A

!

q+p

:

= !

1




A

� � � 


A

!

q+p

a � !

1




A

� � � 


A

!

q

:

= (a!

1

)


A

� � � 


A

!

q

!

1




A

� � � 


A

!

q

� a

:

= !

1




A

� � � 


A

(!

q

a)

The derivation d is extended by using the Leibniz rule and the usual identity

d(a

0

da

1

� � �da

q

)

:

= da

0

da

1

� � �da

q

16

Words like a � b


C




A

g are rewritten as (ab)


C

(g), beause of the immersion.
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just as it has been done for the universal di�erential forms. This an be aomplished

due to the fat that

! 2 �

1

, ! =

X

i

a

i




C

b

i

with

X

i

a

i

b

i

= 0

We an de�ne a very simple graded universal algebra de�ned preisely along these

lines, whih is an algebra of funtions on a generi manifoldM.

An algebra of funtions.

We now want to present a simple example of the above kind, based on the algebra

A = C(M; C ) of funtions on a spae M. This is done with the identi�ation

A


C

� � � 


C

A; C(M� � � � �M)

and the multipliations

(f � g)(x

1

; : : : ; x

q+p

)

:

= f(x

1

; : : : ; x

q+1

)g(x

q+1

; : : : ; x

q+p

)

(h � f)(x

1

; : : : ; x

q+1

)

:

= h(x

1

)f(x

1

; : : : ; x

q+1

)

(f � h)(x

1

; : : : ; x

q+1

)

:

= f(x

1

; : : : ; x

q+1

)h(x

q+1

)

and the di�erential operator

df

:

= ( I


C

f � f 


C

I)

whih an be extended with

df(x

1

; : : : ; x

n

)

:

=

q+1

X

i=1

(�1)

i+1

f(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

q+1

)

on the spaes

�

q

:

= ff 2 C(M� � � � �M) j f(x

1

; : : : ; x

i�1

; x; x; x

i+1

; : : : ; x

q+1

= 0)

i=1;:::;q+1

g

2.6 Spetral Triple

De�nition 2.24 (Spetral Triple) A triple (A;H; =D) with H a Hilbert spae, A

a unital C

�

-algebra of bounded operators

17

on H,

18

and =D (the Dira operator) a self

adjoint operator on H satisfying

17

For tehnial reasons, we de�ne here the spetral triple only on unital algebras. The modi�a-

tions of the onditions for A nonunital may be found e.g. in [18℄, at setion 3 and the following.

18

Atually we should onsider a generi representation � : A �! B(H) of A on H. We will

usually omit the symbol �, exept in some ases, just for the sake of simpliity. We just notie that

the irreduible representations of A have a geometri meaning, see the disussion at setion (2.3)

of the generalisation of Gelfand-Naimark theorem to a nonommutative C

�

-algebra .
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1. 8z =2 R ; ( =D� z I)

�1

2 K(H)

2. 8a 2 A ; [ =D; a℄ 2 B(H)

De�nition 2.25 (Even Spetral triple) A spetral triple (A;H; =D) with a self-

adjoint unitary operator � : H �! H satisfying f�; =Dg = 0 and 8a 2 A ; [�; a℄ = 0.

If the grading � does not exist, the triple is an odd triple.

We now introdue the analog of dimension of a manifold into this abstrat framework.

De�nition 2.26 The spetral triple (A;H; =D) is said of dimension d if the op-

erator k =Dk

�d

is an in�nitesimal of �rst order (see def. (2.11)). The dimension is

intended to be nonnegative.

De�nition 2.27 (Real Spetral triple) An even spetral triple (A;H; =D;�) of

dimension d, with an antilinear isometry J : H �! H respeting the following

onditions

1. J

2

= �

1

(d) I

2. J =D = �

2

(d) =DJ

3. for even dimension J� = i

d

�J

4. [a; Jb

�

J

�

℄ = 0 a; b 2 A

5. [[ =D; a℄; Jb

�

J

�

℄ = 0

where the 8-tuples �

1;2

are

19

�

1

= (1; 1;�1;�1;�1;�1; 1; 1) �

2

= (1;�1; 1; 1; 1;�1; 1; 1)

In partiular the last ondition of the above ones is alled the �rst order axiom, i.e.

it is the generalisation of the fat the Dira operator =D is a �rst order di�erential

operator. Usually one requires also that, de�ned the derivation

Æ(�)

:

= [j =Dj; �℄

then 8a 2 A we have a; [ =D; a℄ 2

T

k

Dom(Æ

k

). Sine in the ommutative ase this

entails a 2 C

1

, this is alled the smoothness axiom.

19

The argument of �

1;2

is intended in Z

8

, of ourse.
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2.7 Connes' di�erentials

Given the spetral triple (A;H; =D), we de�ne the following representation of the

universal algebra 
A, indued by the representation � : A �! B(H) of the algebra

A

� : Æa 7�! [ =D; a℄

where � is extended as a morphism (and due to the self-adjointness of Dira operator,

also a �-morphism) of the omplex 
A, thrown by � in B(H). The usual rules for

the extension of the derivatives apply in this ase as well, i.e.

a

0

Æa

1

� � � Æa

q

7�! �(a

0

)[ =D; �(a

1

)℄ � � � [ =D; �(a

q

)℄

�(Æ(a

0

Æa

1

� � � Æa

q

)) 7�! [ =D; �(a

0

)℄[ =D; �(a

1

)℄ � � � [ =D; �(a

q

)℄

and the Leibniz rule.

But now some trouble ours, beause it is not true that the image of 
A by � is a

orret algebra of forms. Indeed we notie that there exist forms for whih �(!) = 0

and instead �(Æ(!) 6= 0, the so alled junk forms. Sine the things so far have

been kept very abstrat, it may be diÆult to visualise these objets. Atually, in

the ommutative ase, their arise is essentially due to the lak of nonommutativity

of the substitute of the Grassman produt, i.e. the formal produt we obtained just

writing the fators one by one, in a row. We want to show this onretely. Take a

manifold M and the triple (A

:

= C

1

(M);H

:

= L

2

(M;S); =D

:

= 

�

�

�

), with S the

spae of spinors. The Dira operator is just the usual one, well known from physis,

with 

�

the usual gamma matries (atually setions of Cli�ord bundle over M).

It an be shown that this triple (one it is made even and real, aording to our

de�nitions before) represents the usual Riemann geometry of spin manifolds. We

just want to show what junk forms are in this ontext. So we write (� is just the

representation by mean of multipliation by a funtion)

8f 2 A �(Æf) = [ =D; f ℄ = 

�

�

�

f

A generi 1-form is

!(x) =

X

k

f

k

(x)

�

(x)�

�

g

k

(x)

we notie that the 1-form of 


1

A

!

junk

:

= fÆf � (Æf)f = 2fÆf � Æ(f

2

)
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whih is learly non zero, is represented in this way

�(!

junk

) = f

�

�

�

f � (

�

�

�

f)f = 0

and its derivative instead is

�(Æ!

junk

) = 2[ =D; f ℄[ =D; f ℄ = 2

�



�

�

�

f�

�

f = �4g

��

�

�

f�

�

f I

whih is learly nonzero for non-onstant f(x). Notie that in the lassial Grass-

mann produt this \symmetri" part simply does not appear. The idea now is to

eliminate suh terms, in order to make nonommutative di�erential geometry analog

to ordinary one.

De�nition 2.28 (Connes' Di�erential Forms) The graded algebra de�ned by




=D

A

:

=


A

J

0

+ ÆJ

0

where we meant by J

0

the following objet

20

J

0

:

=

M

q

f! 2 


q

Aj�(!) = 0g

The representation of


A

J

0

+ÆJ

0

is just

�(
A)

�(ÆJ

0

)

, so that taking the quotient is the same as

to eliminate the forms Æ! for whih �(!) = 0 (beause ! 2 J

0

) and �(Æ!) 6= 0.

It an be shown rigorously that the Connes' algebra 


=D

A is isomorphi in the om-

mutative ase to the Grassmann algebra of di�erential forms, and so it is the non-

ommutative generalisation of the latter.

2.8 Connetions and Gauge �elds

Let us take a right �nite projetive A-module E . For the Serre-Swan theorem, when

A is ommutative, E is the module of setions of some bundle. Even when the algebra

is nonommutative, we want to give a meaning to the onept of onnetions on suh

\bundles".

20

It is easy to show that J

0

+ ÆJ

0

is a two sided ideal, with di�erential grading, so that the

quotient keeps the property of 
A.
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De�nition 2.29 (Universal Connetion) It is a C -linear map

r : E 


A




q

A �! E 


A




q+1

A

whih in addition follows the Leibniz rule

8! 2 
A; v 2 E 


A




q

A r(v � !) = rv � ! + (�1)

q

v � Æ!

Usually in �eld theory also the urvature needs to be de�ned. It is

R

:

= r

2

j

E

: E �! E 


A




2

A

It is easy to show that r

2

is also A-linear

r

2

(v � !) = (r

2

v) � !

and satis�es the Bianhi identity

[r;R℄ = 0

We want to expliitly write an alternative view over the onnetion r. We ould

view it as the map

[r; �℄ : End

A

E 


A




q

A �! End

A

E 


A




q+1

A

This is ustomary when physiists say something about ovariant derivatives in the

Nonommutative �eld theory. Now we state the important theorem

Theorem 2.3 Any module E is projetive if and only if it admits a onnetion.

For any �nite projetive A-module E it is de�ned a natural onnetion, the so alled

Grassmann onnetion; given the surjetion � : A

M

�! E as in the proposition (2.3),

and its right inverse  : E �! A

M

= C

M




C

A, and the projetion p : A

M

�! E ,

we may de�ne

21

r

Gr

:

= p Æ ( I
 Æ) Æ  : E 


A




q

A �! E 


A




q+1

A

with Æ the universal di�erential grading, and  as well as p have been extended in the

obvious way in order to be de�ned on the tensor produts with the algebra 
A. One

ould even write, for short r

Gr

= pÆ. It is easy to see that the di�erene between two

21

Both  and p exist due to the de�nition (2.22)
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onnetions, just like in ordinary geometry, is an A-linear operator, i.e. it belongs

to End

A

E 


A


A, so that we ould write a generi universal onnetion as

r = r

Gr

+ A A 2 End

A

E 


A


A

where we give A the natural name of gauge potential.

When the module E is given an Hermitian struture, we may demand the on-

netion to be ompatible with this struture. This is the requirement

8�; � 2 E Æh�; �i = h�;r�i � hr�; �i

and the sesquilinear form has been extended in the obvious way to the tensor produt

E 


A




1

A. It is easy to see that the Grassmann onnetion is ompatible, and that

for a general onnetion given by r

Gr

+A the ompatibility requires that the gauge

potential be hermitian: A = A

�

.

What we have done so far was aimed at the onnetions oming from the univer-

sal alulus. But the same formal things an be re-done verbatim for the Connes'

alulus, due to the universality properties previously stated. So to deal with the

di�erential alulus it is enough to onsider onnetions as maps

r : E 


A




q

=D

A �! E 


A




q+1

=D

A

following the rule

8! 2 


=D

A; v 2 E 


A




q

=D

A r(v � !) = rv � ! + (�1)

q

v � d!

with d(�)

:

= [ =D; �℄. A generi (ompatible) onnetion is now of ourse

r = r

Gr

+ A = pd+ A with A = A

�

and so on.

2.8.1 Gauge transformations, Di�eomorphisms

Given a (left) �nite projetive A-module E , the A linear transformations of E to itself

form the algebra of Endomorphisms of the module E . The latter is alled End

A

E

End

A

E

:

= f� : E �! E j 8a 2 Av 2 E ; �(a � v) = a � �(v)g

If the module is Hermitian we an de�ne End

A

E as an involutive algebra, with an

involution � given by the usual rule

hv

1

; Bv

2

i

:

= hB

�

v

1

; v

2

i
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Given the anonial isomorphism E ' pA

M

, with hermitian idempotent p, this

algebra is learly isomorphi to the \projeted" algebra p(A


C M

C

M

)p = p

M

A

M

p,

so that we ould identify the endomorphisms of E as all the matries b 2

M

A

M

whih

ommute with the projetor p Æ b = b Æ p.

The algebra End

A

E has a subgroup formed by all the unitary endomorphisms

(so that they are automorphisms)

U(E)

:

= fu 2 End

A

E j u

�

u = I= uu

�

g

For U(E) in partiular is true that given a �nite projetive A-module E

E ' pA

M

p; U(E) ' pU(A

M

)p

The ation of the unitary group U(E) on the universal ompatible onnetion r

is given by the natural law

u : r 7�! uru

�

It follows that the urvature transform in the same way as well

u : r

2

7�! ur

2

u

�

The gauge potential instead transforms

22

u : A 7�! uAu

�

+ upÆu

�

Of ourse this is true also when instead of the universal onnetion one onsiders

the Connes' onnetion, just in the same way it has been done above. For the

potential in partiular we rewrite the above transformation rule as

u : A 7�! uAu

�

+ updu

�

Now we take the unital C

�

-algebra A and onsider its group of automorphisms,

Aut(A). This group has a normal (i.e. invariant

23

) subgroup, made up by automor-

phisms of the form

8a 2 A �

u

: a 7�! uau

�

u 2 fu 2 A j uu

�

= I= u

�

ug

This normal subgroup is the group of Inner automorphisms Inn(A) C Aut(A). To

interpret the role of this automorphisms, we now get a ommutative unitalC

�

-algebra

22

We use short notations, in whih E has been identi�ed with pA

M

23

In the sense it is left invariant by any automorphism of A
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C

1

(M) for some ompat manifoldM. It an be proved by onsidering the appro-

priate pullbaks, that the automorphisms in this ase are just the di�eomorphisms,

i.e.:

Aut(C

1

(M)) ' Diff(M)

Of ourse, being this a ommutative C

�

-algebra , all the automorphisms are outer

ones Out(A)

:

= Aut(A)=Inn(A) = Aut(A), sine Inn(A) is trivial; for a nonom-

mutative C

�

-algebra the orret analog of the di�eomorphisms are the outer auto-

morphisms, indeed the normal subgroup Inn(A) leaves invariant eah irreduible

representation of A on H, i.e. any \point" in the (nonommutative) spae.

Anyway, given a real spetral triple (A;H; =D) of dimension d with real struture

J , where the C

�

-algebra A is represented by � : A �! B(H), we an see that any

u 2 U(A) generates an isomorphismwith the new spetral triple (A;H; =D+u[ =D; u

�

℄+

�

2

(d)Ju[ =D; u

�

℄J

�

) where the C

�

-algebra A is represented by another representation,

namely the omposition of the old one with the inner automorphism generated by

u, �

0

= � Æ �

u

. This gives an interpretation of the inner automorphisms as \gauge

transformations" of the nonommutative geometry, and in turn of the gauge degrees

of freedom as inner utuations of the nonommutative geometry.

2.9 Integration, or (Dixmier) Trae

Let T 2 K(H) be a ompat operator on some Hilbert spae. As in de�nition (2.11),

we an lassify T by the deay rate of the eigenvalues f

m

(T )g of its norm operator

p

T

�

T . If T

1

and T

2

are two in�nitesimals of order respetively �

1

and �

2

, then the

operator T

1

T

2

is of order not greater than �

1

+�

2

. Moreover the spae of in�nitesimal

onH form a two-sided ideal of B(H) Now onsider the (generally divergent) sequene

of partial sums

hT i

M

:

=

M

X

n=0



m

(T )

For �rst order in�nitesimals, the above sequene is logarithmially divergent. We

want our \nonommutative integral" to have non vanishing value only for in�nitesi-

mal of �rst order. The �rst step is to de�ne it on positive in�nitesimals of �rst order.

The one an extend it by linearity, beause of the fat the ideal of �rst order in�nites-

imal is generated by its positive part. Now let T be suh a positive in�nitesimal, we
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an de�ne an interpolation to non integer values of hT i

M

, and then the Cesaro mean

tr

�

(T )

:

=

1

log�

Z

�

e

dt

t

hT i

t

log t

whih is bounded due to the fat

hT i

t

� C log t

and moreover is asymptotially linear in the sense that

j tr

�

(T

1

+ T

2

)� tr

�

(T

1

)� tr

�

(T

2

) j � B

log log�

log�

So any limit point of tr

�

(T ) de�nes a linear positive trae, vanishing for in�nitesimals

of order greater than one. In most ases of physial interest (like Yang-Mills and

Gravity), tr

�

(T ) onverges, so that the integral does not depend on the limit point

one hoses (see [8℄ hapter VIII and [28℄ setion 6.2 and 6.3).
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Chapter 3

Landau levels

In this hapter we will analyse the problem of eletrons on�ned to move in a plane,

interating with an orthogonal magneti �eld (see [6℄). We will start with the usual

one body problem, and then we will show in detail the projetion to the lowest

level states, together with its generalisation to the lowest N +1 states, in partiular

explaining the onsequenes in terms of nonommutativity. Then we will show one

more deformation of the algebra de�ning the Landau levels, whih introdues a

nonommutative geometry as well, and presents some interesting physial features

for a system in a nonommutative spae, for the sake of physial intuition.

3.1 The one body problem

First we need the hamiltonian for an eletron in a uniform onstant magneti �eld.

The hamiltonian is written in the standard fashion

H =

1

2m

�

p�

e



A

�

2

(3.1)

We will hoose the so-alled symmetri gauge, for it keeps manifest the azimuthal

symmetry of the problem. So, in artesian oordinates

A =

B

2

(�x

2

; x

1

)

We may as well suppress the x̂

3

oordinate along whih the magneti �eld is direted.

The momentum operator

p = �ir

35
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will be onsidered ating on the �rst two oordinates of wave funtions. Let us

introdue omplex oordinates now. We pose

8

>

>

>

>

<

>

>

>

>

:

z = x

1

+ ix

2

�z = x

1

� ix

2

� =

1

2

(

�

�x

1

� i

�

�x

2

)

�

� =

1

2

(

�

�x

1

+ i

�

�x

2

)

It is also ustomary to use magneti units, de�ned by:

} = 1  = 1 ` =

r

2}

eB

= 1

The last quantity is alled the magneti length. It is a length sale of the problem

introdued by the presene of the magneti �eld.

The hamiltonian may be written in a harmoni osillator form, introduing the ladder

operators

1

a

:

=

z

2

+

�

� a

y

:

=

�z

2

� � (3.2)

They satisfy the usual ommutation relation

�

a ; a

y

�

= 1 (3.3)

So the hamiltonian takes the form

H = 2 a

y

a + 1 (3.4)

There is another onserved quantity, the angular momentum, whih is onserved

due to the rotational invariane, it is . To write it, we introdue two more ladder

operators, ommuting with the a's

b

:

=

�z

2

+ � b

y

:

=

z

2

�

�

� (3.5)

They satisfy the equation

�

b ; b

y

�

= 1 (3.6)

These operators an be shown to be the generators of the magneti translations[17,

15℄. The algebra of the latter ones is

[�̂

i

; �̂

j

℄ = iq �

ijk

B

k

where B

k

= B � x̂

k

is the magneti �eld

1

The a and a

y

operators are manifestly the ovariant derivatives.
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whih in our two dimensional ase, with B = B x̂

3

, beomes

2

[�̂

1

; �̂

2

℄ = i q B and �

3

� 0

or in omplex oordinates

[�̂;

^

��℄ =

B

2

(

�̂

:

=

1

2

(�̂

1

+ i�̂

2

)

^

��

:

=

1

2

(�̂

1

� i�̂

2

)

In magneti units this ommutator beomes that of b operators (3.6) Now we an

write the angular momentum

J = b

y

b � a

y

a (3.7)

We see that [H; J℄ = 0 so that a base for the Hilbert spae is given in term of

simultaneous eigenstates of both the operators, in this form

 

mn

:

=

b

ym

p

m!

a

yn

p

n!

 

0

(3.8)

with

(

H 

mn

= (2n+ 1)  

mn

J 

mn

= (m� n)  

mn

:

The states  

mn

are normalized by

h 

mn

j 

kl

i =

Z

d

2

z  

�

mn

(z; �z) 

kl

(z; �z)e

�jzj

2

The basi wavefuntion  

0

(z; �z) = hz; �z j 

0

i is solution of

aj 

0

i = 0 ; bj 

0

i

and therefore is gaussian:

hz; �z j 

0

i =  

0

(z; �z) =

1

p

�

e

�

jzj

2

2

k 

0

k

2

= 1:

We see that eah energy level (Landau levels) is in�nitely degenerate. Let us give a

look to the lowest Landau level, the level with n = 0. The wave funtions of these

states are

 

m0

(z; �z) =

1

p

�

z

m

p

m!

e

�

jzj

2

2

2

The �

3

� 0 onstraint is atually a seondary onstraint oming out by requiring the hamilto-

nian to be �rst lass.
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These are the wave funtions of partiles loalized in a \fuzzy" annulus, beause

the probability distribution is angle-independent and peaked at jzj

2

= m. So the

lowest level is made up by onentri layers. In the higher Landau levels, the wave

funtions present, besides the power fator, a generalised Laguerre polynomial fator.

We may ount the states in eah Landau level, in a dis

3

of radius R, their

number being n

e

=

R

2

`

2

=

�

�

0

being � = �R

2

B the magneti ux through the dis

and �

0

= �`

2

B the quantum of magneti ux. So we may say that in eah Landau

level there is one state for eah ux quantum through the dis.

3.2 W

1

algebra

By using the fat that the generators of magneti translation b, b

y

ommute with the

hamiltonian H, we an onstrut several obviously onserved quantities [6℄

L

nm

:

= (b

y

)

n

b

m

(3.9)

We may ask now whih N�other symmetry they generate. Their algebra is

[L

nm

;L

kl

℄ =

mfk

X

i=1

m!k!

(m� i)!(k � i)!i!

L

n+k�i;m+l�i

�

�

m$l

n$k

�

(3.10)

whih, up to higher quantum orretions (we restore for a moment }), reads

[L

nm

;L

kl

℄ = }(mk � nl)L

n+k�1;m+l�1

+O(}

2

) (3.11)

This is known to be the algebra of (lassial) area preserving di�eomorphisms, or

w

1

. The algebra de�ned by (3.10), like all the quantum generalisations of (3.11), is

alled W

1

algebra.

3.2.1 Seond quantization

We an give now a more intuitive desription of the generators of W

1

algebra (see

[6℄ and refs. therein) by using seond quantization. Namely, given the wavefuntions

(3.8), we de�ne the �eld operators

^

�(z; �z)

:

=

X

ln



ln

 

ln

(z; �z)

3

This on�guration is known as the Corbino dis geometry
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where we have used the Fok (fermioni) operators

[

ln

; 

y

km

℄

+

= Æ

lk

Æ

nm

as usual in �eld theory, ating on a Hilbert spae de�ned from a vauum j0i as the

(losure of the) linear span of the set

f

Y

i



y

k

i

n

i

j0ig

The seond quantized version of the L

st

operators is

L

st

:

=

Z

d

2

z

^

�

y

(z; �z)(b

y

)

n

b

m

^

�(z; �z) =

1

X

n=0

1

X

l=s



y

l;n



t+l�s;n

p

l!(t + l � s)!

(l � s)!

=

=

1

X

n=0

1

X

l=t



y

l;n



s+l�t;n

p

l!(s+ l � t)!

(l � t)!

It is manifest that Landau levels with di�erent prinipal quantum numbers (the

number of a

y

.s in the state) are not onneted by the L

st

operators. Eah term of

the sum



y

l;n



s+l�t;n

p

l!(s + l � t)!

(l � t)!

simply shu�es the partiles within the same (n-th) level, varying their angular mo-

mentum. When an eletron is shifted on an orbital with larger radius, then its

angular momentum is inreased, while it dereases if the radius of the �nal orbital

is smaller.

We are only interested now in the lowest Landau level (n = 0), and in the ation of

L

st

on the ground state. The latter is the state with the minimum angular moment,

whih is simply, for N partiles

j
i

:

= 

y

N;0

� � � 

y

0;0

j0i

Applying a generator ofW

1

to j
i, we notie immediately that it vanishes identially

if s < t, while it redues to a number in the ase s = t

(

L

st

j
i = 0 ( t > s

L

ss

j
i =

(N+1)!

(s+1)(N�s)!

j
i

So the only nontrivial ase is when s > t, in whih ase its e�et on the ground state is

that of inreasing the angular momentum of the ground state j
i by shifting eletrons

from inside the Fermi sphere to more external orbitals. So the inompressibility of
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the ground state is simply due to the fat it is the state with minimum angular

momentum, and an be written by the highest weight-like onditions ([6℄)

L

st

j
i = 0( s < t (3.12)

We stress here that the ommutation relations lose within the set of L

st

with s < t.

So the whole Lie subalgebra generated by fL

st

g

s<t

annihilates the ground state.

3.3 The trunation to a �nite number of Landau

levels

3.3.1 The theory in the lowest level

For B !1, we may wish to onsider only the states belonging to the lowest Landau

level. They have been written above, as a gaussian times an entire funtion of z.

Now we haraterise them by a projetor that maps any wavefuntion to its n = 0

omponent. Similarly any operator is sandwihed between two opies of the projetor

I

0

:

=

1

X

m=0

 

m0

Æ  

y

m0

(3.13)

This operator projets on the levels with n � N . To pik out the lowest at all, we

put N = 0.

We an see that the ommutation relations are not left unhanged by this (nonuni-

tary) transformation. In partiular, we may ompute that:

[z; �z℄ ; [z; �z℄

N

= �

P

1

m=0

 

m0

Æ  

y

m0

�

�;

�

�

�

;

�

�;

�

�

�

N

= �

1

4

P

1

m=0

 

m0

Æ  

y

m0

(3.14)

We see that the algebra of funtions of the oordinates of the problem, abelian at

the beginning, is made nonommutative by this projetion, as well as the algebra

generated by the derivatives. To be more spei�, we have obtained the algebra of

the nonommutative plane, generated by the projeted operators z

0

:

= I

0

z I

0

and

�z

0

:

= I

0

�z I

0

whih satis�es

[z

0

; �z

0

℄ = � I

0

For the derivative operators it is

[�

0

;

�

�

0

℄ = �

1

4

I

0
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3.3.2 Projetion to the �rst N + 1 Landau levels

This projetor is generalised to higher levels (see also [32, 31℄) with the de�nition

I

N

:

=

N

X

n=0

1

X

m=0

 

mn

Æ  

y

mn

(3.15)

In this way we �nd the following results

8

>

>

>

>

<

>

>

>

>

:

[z; �z℄

N

= �(N + 1)

P

1

m=0

 

mN

Æ  

mN

= �(N + 1)( I

N

� I

N�1

)

�

�;

�

�

�

N

= �

N+1

4

P

1

m=0

 

mN

Æ  

mN

= �

N+1

4

( I

N

� I

N�1

)

[�; z℄

N

=

�

�

�; �z

�

N

= I

N

�

N+1

2

P

1

m=0

 

mN

Æ  

mN

=

N�1

2

I

N

+

N+1

2

I

N�1

[�; �z℄

N

=

�

�

�; z

�

N

= 0

(3.16)

In this equations we do not �nd any longer the nonommutative plane algebra,

beause the ommutator [z

N

; �z

N

℄ is not proportional to the identity anymore. We

notie that as the number N is sent to in�nity, the sequene of a generi projeted

operator A

N

:

= I

N

A I

N

does not onverge operatorially to anything, as an be seen

by the fat the norm of the operator

P

1

m=0

 

mN

Æ  

mN

equals one for eah N .

Anyway, it onverges weakly, i.e., the onvergene is limited to any matrix element

between normalizable states. This is also a onsequene of the fat one annot de�ne

a derivative on a �nite rank matrix algebra, e.g. take X an hermitian N �N matrix

generating the algebra of (formal) power series

A = f

X

n

a

n

X

n

g

and take the derivative �

X

be suh that

[�

X

; X℄ = I

with I the N �N identity matrix. Then taking the trae of the above equation we

have a 0 = 1 inonsisteny, beause the trae of a �nite rank ommutator vanishes,

while this is obviously not the ase for the identity matrix. The only way out from

this, exists when the matries are \in�nite" dimensional so that the trae is divergent

(proteting the ommutator, roughly speaking, by the usual linear manipulations).

3.4 Deformed Landau levels

This setion is inspired by a work of Nair and Polyhronakos [38℄ about quantum

mehanis on nonommutative plane, we introdue e�ets of a nonommutative ge-
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ometry in the well known physial problem of the quantum mehanis of Landau

levels. We reonsider the algebra of the ladder operators a; a

y

and b; b

y

, and gener-

alise it as follows

8

>

>

<

>

>

:

�

a; a

y

�

= 1

�

b; b

y

�

= � 2 R

+

0

�

a; b

�

= 0 =

�

a; b

y

�

: (3.17)

We want to keep the interpretation of this algebra as that of the quantum mehanis

on a plane thread by the magneti �eld; therefore we take the a; a

y

operators as the

kinemati momenta with whih the Hamilton operator is made, and the b; b

y

as the

magneti translations on the plane. So we have

H = 2a

y

a+ 1 [b;H℄ = 0 = [b

y

;H℄

We still have an Hilbert spae built starting from a vauum j 

0

i, by the appliation

of both a and b. We use the same notation we employed before in the \ordinary"

ase, (3.8).

We an �x the form of the oordinate operators in terms of the a's and b's by

onsidering what the ommutation relations of the latter with z; �z must be. We have

the requirements

[z; a℄ = 0 ; [z; a

y

℄ = 1

just as in the ordinary ase, and

[b

y

; z℄ = 0 ; [b; z℄ = 1

beause of the transformation rules of the oordinates under magneti translations.

These relations �x the oordinates z; �z to be

(

z

:

= b

y

�� + a

�z

:

= b�� + a

y

(3.18)

Sine we want the rotational symmetry in our problem we must �x the form of the

angular momentum, J, suh that it both ommutes H, and transforms the oordinates

in the natural (vetor) fashion, i.e.

�

J;H

�

= 0

�

J; z

�

= z

�

J; �z

�

= ��z

With this properties J an be found to be

J =

b

y

b

�

� a

y

a
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Of ourse the normalized eigenvetors of H and J are modi�ed in the following way

 

mn

:

=

b

ym

p

m!�

m

a

yn

p

n!

 

0

(3.19)

From the (3.18) the nonommutativity relation of the oordinates an be omputed

to be

[z; �z℄ = 1�

1

�

Of ourse when � = 1 the original ommutative theory is reovered. When � 6= 1,

these oordinates do not have a straightforward meaning, beause they are not -

numbers: let us disuss this point in more detail. In the study the quantum mehanis

of a point harge in ordinary Landau levels. Usually what one does, is to pik up

a pair of funtions from A (sine we are on a plane), and identify any value of the

pair of oordinates, with a point on the plane. In the quantum theory, there exists

the position operator, and to eah point of the plane orresponds to a vetor in an

orthonormal omplete set fjz; �zig of eigenstates of position operator. As we have

said in the setion 2.2, in the more abstrat algebrai framework, a point on a spae

is basially an equivalene lass of irreduible representations of the algebra A of

(C

r�0

) funtions on that spae. From the same point of view of the above lines,

eah one of these equivalene lasses is labelled by the eigenvalues of the oordinate

operator, whih are just -numbers. The operators (3.18), do not form a omplete

system of operators, beause they annot be simultaneously diagonalized, and do not

lead to pairs of oordinates. Hene, one obtains a less detailed information from the

oordinates only.

3.4.1 The Weyl transform

When nonommutativity of oordinates has been introdued, we annot desribe

physial quantities using pairs of oordinates. An idea is to onsider Wigner fun-

tions. Basially we want to study the matrix element

�

 

l;0

0

Æ

Æ

Æ(p� �z)Æ(q � z)

Æ

Æ

 

m;0

�

between two one-partile states of the lowest Landau level; here

Æ

Æ

� � �

Æ

Æ

means we are

taking the symmetri (Weyl) ordering, that avoids ambiguities in the de�nition of

the above equation. Another reason is the following. Let us introdue now the Weyl

transform whih maps funtions to operators. Take the algebra of funtions on the
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plane, and take the algebra (nonommutative plane) A

�

generated by the operators

x

i

satisfying

�

x

i

; x

j

�

= ��

ij

; i; j = 1; 2

We an assoiate to eah funtion f : R

2

�! C on the plane the operator of A

�

U [f ℄

:

=

1

(2�)

2

Z

d

2

k

Z

d

2

� e

ik�(x��)

f(�) (3.20)

This is a \nonommutative generalisation" of the Dira Æ relation

f(x) =

Z

dy Æ(x� y)f(y)

so that we an write, using omplex oordinates:

U [f ℄ =

Z

d

2

� f(�)

Æ

Æ

Æ(�

z

� z)Æ(�

�z

� �z)

Æ

Æ

(3.21)

This formula gives a preise meaning to the idea of \substituting" an operator for

a oordinate in an ordinary funtion; indeed it allows us to write eah operator of

A

�

in an unambiguous form. Moreover the equation (3.20) does automatially the

job of ordering operator monomials in the most symmetri way. Now one an ask if

it is possible to rewrite the produt of two suh operators in the same way, i.e. as

a \operatorial" kernel smeared with a \lassial" funtion. In partiular we would

like the produt of the smearing funtions be at least assoiative. By plugging in the

de�nition of the Weyl operators, and using the Campbell-Baker-Hausdor� lemma,

we an �nd that it is indeed possible, and that the produt is given in terms of the

following onvolution

U [f ℄U [g℄ =

1

(2�)

2

Z

d

2

k e

ik�x

Z

d

2

� e

�ik��

f ? g(�) = U [f ? g℄ ; (3.22)

whih de�nes the Moyal produt ?

f ? g(�)

:

= f(�) e

�

2

 

�

i

�

ij

!

�

j

g(�)

and the derivatives are meant to at on � variables aording to the diretion of the

overset arrows. Of ourse this produt is not ommutative.

Every operatorial ordering of (3.21) de�nes a di�erent quantization of the algebra of

regular funtions on the plane, but all of these quantizations are equivalent. Thus,

we are free to hose the symmetri ordering, being the most natural one. In this ase

we have the algebra generated by the operators z; �z satisfying

[z; �z℄ = 1�

1

�
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The expression of the matrix element is:

�

 

l;0

0

Æ

Æ

Æ(q � z)Æ(p� �z)

Æ

Æ

 

m;0

�

:

=

Z

dxdy

(2�)

2

�

 

l;0

0

e

i(qx+py)�i(zx+�zy)

 

m;0

�

=

=

Z

dxdy

(2�)

2

e

i(qx+py)

�

e

i�ya

 

l;0

0

e

�

i
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Here we used the fat that in the lowest Landau level the a operator vanishes,

a 

l;0

= 0. The omputation leads for the matrix elements
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(3.24)

where m f l

:

= min fm; lg. Notie that this is just a polynomial in x and y times

the overall exponential. Now we an put it bak into (3.23) and take the Fourier

transform obtaining
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We an go on omputing an alternative form that does not ontain derivatives
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The above formula allow us to write any expetation value of the form
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as an integral on a \quasilassial phase spae" (q; p)
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Now, let us write down the expression of the wavefuntions of the �rst Landau level

for � = 1
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(z; �z) =

z

l

p
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e
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jzj

2

2

After resaling of the last integral, we an reognise it as the matrix element between

the wavefuntions of appropriate states in the lowest Landau level for � = 1
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(3.28)

We see that (3.27) an be written as a linear ombination of the analogous matrix

element for � = 1, involving just the states with lower angular momentum ( 

l

0

;0

with

lower l

0

). This implies that the deformation of the algebra onsidered here, does

not violate the inompressibility de�ned in terms of W

1

algebra (see setion (3.2)):

the matrix elements of any observables are indeed written in terms of � = 1 matrix

elements between states of equal or lower angular momentum. In this interpretation,

putting

~
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3.4.2 Seond quantization and density

Now we ome bak for a moment to the � = 1 situation, i.e. to the ommutative

ase, for the theory projeted to the �rst Landau level. In this ontext, one has the

wavefuntions

 

�=1

l;0

(z; �z) =

z

l

p

� l!

e

�

jzj

2

2

As disussed earlier, we introdue the seond quantization, using a set of ladder

(fermioni) operators
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and the Fok spae generated starting from the vauum state j0i as the losure of

the span of

(

Y

l



y

k

l

j0i; 8l; k

l

2 N ; k

l�1

< k

l

)

with h0j0i = 1. The �eld �(z; �z) in seond quantization is

�(z; �z) =

X

l



l
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(z; �z)

We need the ground state of the inompressible uid of N + 1 eletrons

j
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Now we want to evaluate the expetation value of the density operator � of the �eld

� on this fundamental state j
i. The density is
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This an be written as
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For � 6= 1, we repeat the previous steps, obtaining the following relation
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where � is a omplex number whih represents the point where we omputed the

density in the � = 1 framework of above. We an apply now our formula (3.29) to

get the result after some manipulation
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where U(a; ; z) is the Triomi funtion (hypergeometri onuent of the seond

kind).

We an now put the omplex oordinates of any point in the plae of � and ��,

so that we an see that the expetation value of the density on the lowest Landau

level is rotational invariant. We an plot it for various values of � and at �xed N

(see �gure 3.1).

2 4 6 8 10 12

0.05

0.1

0.15

0.2

0.25

0.3

Figure 3.1: Density plot for various values of �

When one varies the number of partiles, we expet that the droplet expands

without hanging its plateaux density, beause the �lling fration of the deformed

Landau level is

�

1�2�

. We an see this to happen when � =

1

2

in �gure 3.2.

The orrelation funtion h�(x)�(y)i

We turn bak for a moment to � = 1, in order to show the form of the density-

density orrelation funtion on the inompressible ground state h
j�(z

1

)�(z

2

)j
i.

We will work out a form whih holds also for � 6= 1, and now try to ompute the

orrelation funtion h�(x)�(y)i




. A straightforward omputation leads for generi �,
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Figure 3.2: Density plot for various numbers of partiles

in the same way as before, to the result
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Operating on this expression, we an see the last two terms are
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One an see that the two terms above are both real, and moreover they are both

invariants under simultaneous rotations of z

1

and z

2

on the omplex plane
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We an onsiderably simplify the formula for the orrelation funtion by omputing

it for z

1

= 0 and with z
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on the real line � = z
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, away from the origin � = 0.
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(3.31)

The shape of the funtion as we vary the number of partiles N , is left basially

invariant within a harateristi length, the latter being basially the only objet

whih varies with N . This is exatly what happens in ommutative ase. As it is

apparent from �gures 3.4 and 3.5, in the nonommutative ase (� 6= 1) the two points

orrelation funtion of the density has an unommon feature near the origin, beause

it beomes negative. This is an e�et of nonommutative deformation of the algebra

of Landau levels. To understand it in physial terms, we an do the following: we

swith on a small perturbation, in the form of a two body potential

^

V (x; y)

:

=

^

 (x)

^

 

�

(x)V (x� y)

^

 (y)

^

 

�

(y)
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Figure 3.3: Plot of the orrelation funtion of the density with itself for various

numbers of partiles for � = 1 (ommutative ase).

and we ompute the �rst order perturbation on the unperturbed ground state. The

result is (for simpliity we do the omputation at x = 0, y = �y = r)

V(r)

:

= V(0; r) = h
jU [�(0)℄V (0; r)U [�(r)℄j
i

In the ase of the harmoni potential V (0; r) =

1

2

r

2

, we obtain for the e�etive

potential V(r) a shape whih has a minimum at r 6= 0, as shown by �gures (3.6) and

(3.7). It means that the attration between the partiles due to

^

V is balaned by an

e�etive \repulsion" that is related to the loss of loalization on the nonommutative

plane (see also the introdutory hapter of this thesis and [28℄).
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Figure 3.4: Plot of the orrelation funtion of the density with itself for various

numbers of partiles � =

1

2

(nonommutative ase with � = �1).
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Figure 3.5: Plot of the orrelation funtion of the density with itself for N = 20

partiles, � =

1

2

.
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Figure 3.6: E�etive potential for various � 2 [0:5; 1:5℄

20 40 60 80
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Figure 3.7: Loations of minima of the e�etive potential as a funtion of � 2

[0:2; 0:99℄.
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Chapter 4

From Lagrange inompressible

uid to Nonommutative

Chern-Simons theory

4.1 Inompressible uid

At high values of the magneti �eld, and at low temperature, the two-dimensional

eletrons of the quantum Hall e�et form an inompressible uid, the density of

whih is uniform and orresponds to the observed plateaus [44, 34℄. The uid is

inompressible beause the density waves have a gap, whih is in�nite in the limit of

in�nite magneti �eld [47℄. We shall be interested in this limit only.

The inompressibility of the uid implies that the theory is invariant under trans-

formations leaving invariant the volume element, i.e. under the Area-preserving Dif-

feomorphisms. Having a granular piture of the uid in mind, one may view this

transformations just as a relabelling of the partiles of the uid.

4.2 Lagrange oordinates

The basi objet in the Lagrange desription of uids [25℄ is the set of \omoving

oordinates" X(t;x), i.e. a set of vetor valued funtions of the time, eah of them

\following" the time-evolution of a partile. Eah funtion of this set is labelled by

an initial ondition for the position of the partile it is following, i.e. X(t = 0;x) = x

(see �g. 4.1).

55
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Figure 4.1: Comoving oordinates following a partile

Using the omoving oordinates we may express quantities depending on �xed

points in the spae

1

, suh as the uid density and the urrent, in the following way

�(t; r) =

Z

dx �

0

(x) Æ(X(t;x)� r) =

�

0

det

�

�X(t;x)

�x

�

x=�(t;r)

(4.1)

j(t; r) = �

0

Z

dx

_

X(t;x) Æ(X(t;x)� r) (4.2)

Here �

0

is a referene uniform density in the \spae of labels". We now write the

Lagrangian for the inompressible uid in omoving oordinates

L

0

=

Z

dx �

0

�

1

2

_

X

2

(t;x)� V

�

det

�

�X(t;x)

�x

���

(4.3)

We an see that the theory de�ned by this lagrangian is invariant under transforma-

tions suh that

(

x 7�! x+ f(x)

X(t;x) 7�! X(t;x) + (f � r)X(t;x)

with f

i

(x) / �

ij

�

j

�(x) (4.4)

We see that X(t;x) are salar �elds under these transformations. In two dimensions

these ones are the most general area-preserving transformations.

4.3 Interation with a magneti �eld

We are now going to add to this lagrangian the interation with an external magneti

�eld

L

0

=

eB

2

Z

dx �

0

�

ab

_

X

a

X

b

(4.5)

1

This is the standard Euler desription of uid mehanis, in whih the observer just \sits"

at a point in the spae, measuring the quantities of the uid as this passes by.
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It's easy to see that L

0

is invariant under (4.4) as well. Using N�other theorem we

may see that the onserved quantity deriving from this symmetry is

det

�X

�x

(t;x) =

1

2

�

ab

�

ij

�

�x

i

X

a

�

�x

j

X

b

This is proportional to the inverse of the density of the uid, in omoving oordinates.

So we an say that the density of an element of the uid is a onstant when we follow

its motion. At the equilibrium we put as a onstraint

det

�X

�x

(t;x) = 1 (4.6)

In the limit in whih the magneti �eld is in�nite only the magneti term and the

onstraint survive. So we are left with the lagrangian
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� fX
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(4.7)

where we have introdued the Poisson brakets notation

fA;Bg

:

=

1

�

0

�

ij

�

�x

i

A

�

�x

j

B (4.8)

and the Lagrange multiplier A

0

(x). The term in urly brakets plays the role of a

ovariant time derivative: it is part of the Gauss-law onstraint (4.6), that will be

important to ensure the invariane of the theory.

4.3.1 Introdution of nonommutativity

Some onsiderations are in order. The number of states of two-dimensional ele-

trons in eah Landau level is the ratio between the total magneti ux threading the

surfae and the elementary quantum of ux �

0

:

=

2�~

e

. This means that, in eah

Landau level, there is a state for eah one of these \uxons", so that the uid shows

somehow a \granularity". In the setions 2.2 and 2.3, we saw that the introdution

of a nonommutative algebra in the plae of the algebra of funtions on a manifold,

auses the loss of the notion of points of the spae. Atually one is left with the

lasses of irreduible representations of the algebra itself, whih ontain less infor-

mation. We may view this also from a simple point of view, going bak to the basi

interpretation of quantum theory: one onsiders the unertainty relation generated

by the ommutator of the oordinates of the nonommutative plane

[x; y℄ = i� (�x)

2

(�y)

2

&

1

2

�

2
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This means that in a nonommutative theory the points are somehow \blurred", or

fuzzy. Thus introduing the nonommutativity is a lean way to introdue a sort

of deloalization of points of the spae. One way to ahieve this, is to onsider the

Lagrange oordinates as time dependent matries. In this approah, the integral is

substituted by the trae, and the role of the Poisson brakets (4.8) is taken by the

ommutator

f; g i[; ℄

After resaling of the Lagrangian, we obtain with these substitutions

L(X

a

; A

0

) =

B

2

tr

h�

_

X

a

+ i[X

a

; A

0

℄

�

X

b

�

ab

+ 2�A

0

i

(4.9)

where we have introdued the onstant � = 1=�

0

. The equation of motion for A

0

is

just a onstraint, beause it appears into the Lagrangian without time derivatives,

like a Lagrange multiplier, and it is the so said Gauss law onstraint

X

a

X

b

�X

b

X

a

= i� �

ab

� (4.10)

whih has to be read as a matrix equation. Beause of the reality of the oordinates

X(t;x), the matries whih substitute them has to be taken hermitian. The model

(4.9) an be alled Chern-Simons Matrix Quantum mehanis. The reason of this

name an be understood in the following way [4℄. Take the theory (4.9) as a theory

of utuations of the matries X

a

on a �xed bakground x

a

. So we ould write,

introduing the utuation matries A

a

X

a

= x

a

+ � �

ab

A

b

(4.11)

where the bakground x

a

satisfy the ommutation relation [x

1

; x

2

℄ = i�. We ould

also view this form of X

a

as if we had written the displaement from the initial

referene positions of eah uid element by the displaement vetor ��

ab

A

b

. So we

just need to substitute (4.11) into (4.9), to obtain

L(A) =

B�

2

tr

�

�

���

�

A

�

�

�

A

�

+

2

3

A

�

A

�

A

�

��

(4.12)

where the derivative �

�

has been de�ned as

�

0

�

:

=

�

�t

�

�

i

�

:

=

h

�i

x

i

�

; �

i

i = 1; 2
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As it is apparent, equation (4.12) is the nonommutative generalization of the Chern-

Simons Lagrangian. We ould rewrite the ation in terms of the appropriate Moyal

produt in this way

S

0

(A) =

B�

2

Z

d

3

x �

���

�

~

A

�

? �

�

~

A

�

+

~

A

�

?

~

A

�

?

~

A

�

�

where now the

~

A

�

are spae-time funtions, in the spirit of setion 3.4.1. We an

now write down the equations of motion for

~

A

�

, up to the �rst order in � to �nd [47℄

�

ab

�

�

a

A

b

�

1

2

fA

a

; A

b

g

�

= 0

This is the equation of the uid whose dynamis is given by the ation (4.7) in whih

we substituted (4.11) meant as a ommutative expression, i.e. in terms of ommuta-

tive x and A(x; t). Of ourse this fat says nothing about the inverse path from the

ommutative to the nonommutative theory. This must be done, as we did, hoosing

the most natural (in a sense minimal) matrix ation. Having said all this about

the ation (4.12), we are free to ome bak to the form (4.9) instead, whih will be

onsidered in the following. This is the so alled \Chern-Simons Matrix Quantum

Mehanis".

4.4 Matrix Chern-Simons theory

We will use, in the sequel, the Matrix Chern-Simons theory de�ned by the ation

S(X

a

; A

0

) =

B

2

Z

dt tr

h�

_

X

a

+ i[X

a

; A

0

℄

�

X

b

�

ab

+ 2�A

0

i

(4.13)

As mentioned before, the equation of motion of the Lagrange multiplier A

0

is just

the Gauss law onstraint

X

a

X

b

�X

b

X

a

� i� �

ab

� 0 (4.14)

or in omponents

G

ik

:

= X

1

il

X

2

lk

�X

2

il

X

1

lk

� i� Æ

ik

� 0 (4.15)

The anonial oordinate-momentum pairs obtained from the above �rst-order la-

grangian are

(X

(1)

ij

;

B

2

X

(2)

ji

) � (X

(1)

ij

;�i

Æ

ÆX

(1)

ij

) and (X

(2)

ij

;

B

2

X

(1)

ji

) � (X

(2)

ij

;�i

Æ

ÆX

(2)

ij

)
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We have to perform a hoie of polarization by adding to the kineti term of the

lagrangian a total derivative term. In this way we have the anonial pairs

(X

(1)

ij

; BX

(2)

ji

) � (X

(1)

ij

;�i

Æ

ÆX

(1)

ij

)

The anonial ommutation relations are onsequently

[X

(1)

ik

; X

(2)

lm

℄ =

1

B

Æ

im

Ækl

The onstraint (4.14) annot be solved by �nite rank matries. To see this it is

enough taking the trae of both sides of the equation, and notiing that the trae of

a ommutator between �nite rank matries is always zero. So we must searh the

solutions in the spae of operators or, to say this roughly, of in�nite rank matries. Of

ourse this an mean problems, when one needs to do atual omputations, beause

we need at least some ondition about the behaviour of the matrix elements restrited

to orthogonal omplements of inreasing odimension in the Hilbert spae on whih

operators are de�ned. Indeed we will see in the next setion a onstrutive way of

trunating the oordinate operators while keeping a onsistent Gauss' law onstraint.
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Finite N Nonommutative

Chern-Simons

In view of the problems mentioned in setion 4.4, we need a trunation of the model

to �nite dimensional N . We now will follow the work [42℄, but using funtional

integral tehniques. The ation for in�nite N is (remember that X

a

are hermitian

matries)

S(X

a

; A

0

) =

B

2

Z

dt tr

h�

_

X

a

+ i[X

a

; A

0

℄

�

X

b

�

ab

� 2�A

0

i

and the equation of the motion of the Lagrange multiplier A

0

, i.e. the Gauss law

onstraint, is

G

ik

:

= X

1

il

X

2

lk

�X

2

il

X

1

lk

� i� Æ

ik

� 0

or

X

a

X

b

�X

b

X

a

� i� �

ab

� 0

We now modify this equation in the following way

X

a

X

b

�X

b

X

a

� i� �

ab

�K � 0 (5.1)

where all the matries here are N -dimensional, and we have introdued K suh that

the �nite N inonsisteny disappears

trK = �i� N

An important thing to notie, before we pass to the funtional integral for this model,

is that the above onstraint is invariant under the U(N) gauge group if together with

the X

a

, we vary the K matrix itself, in the same matrix fashion

K 7�! U K U

y

61
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To modify the ation in order to obtain the onsistent Gauss law onstraint, we ould

add to the ation a term of the form

�i

Z

dt tr fKA

0

g

At this point, we want to write the partition funtional for the theory, onsidering

for now K as an external �eld. We now will use the ation for the X

a

matries

S

CS

[X; Y ℄ = B

Z

dt tr

�

_

XY

�

with

(

X

:

= X

1

Y

:

= X

2

whih orrespond to the hoie of polarization orresponding to the anonial pairs

(X

ij

; BY

ji

) � (X

ij

;�i

Æ

ÆX

ij

)

and the ommutation relations

[X

ik

; Y

lm

℄ =

1

B

Æ

im

Æ

kl

The ation S

CS

di�ers from the kineti term of (4.13) for a total time derivative. We

must onstrain the funtional integration only to matries satisfying the Gauss law

onstraint (5.1). This is done by integrating out the Lagrange multiplier A

0

, thus

obtaining a Dira delta funtion into the (redued) partition funtional

e

Z[K℄ =

Z

DXDY e

iS

CS

[X;Y ℄

Æ

�

[X; Y ℄� i� � �K

�

(5.2)

Now we notie that the ation, still preserving global gauge invariane (i.e. invariane

under time independent U(N) transformations), is not invariant under an U(t) 2

U(N) depending on time. Infat, if we perform a (time dependent) U(N) gauge

transform U(t) on the X, Y we obtain

S

CS

[X; Y ℄ 7�!B

Z

dt tr

�

d

dt

�

UXU

y

�

UY U

y

�

=

=B

Z

dt tr

_

XY +B

Z

dt trU

y

_

U [X; Y ℄ =

=S

CS

[X; Y ℄ +B

Z

dt trU

y

_

UK + iB�

Z

dt trU

y

_

U

(5.3)

Where we used the onstraint and the usual properties of the trae. The last integral

is

I

U

= iB�

Z

dt trU

y

_

U = iB�

Z

dt

d

dt

ln detU = �B� arg detU

�

�

�

t

2

t

1
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where we ould eventually put the integration limits to in�nity. If we take a gauge

transformation trivial at the limit times, then I

U

is just an integer multiple of 2�,

being it just a natural representation of �

1

(U(N)) = Z. Sine in the path integral this

term enters as the argument of an exponential, the produt B� must be an integer

number, in order to have a onsistent de�nition of an U(N)-invariant measure of the

path integral: we have just found the ondition for the quantization of the number

B�, analogous of the level of the ordinary Chern-Simons �eld theory. From the

original de�nition of � in terms of the Lagrange uid, we �nd

Z 3 B� =

B

�

0

=

1

�

where � is the �lling fration of the Hall uid, i.e. the density resaled by the square

of the magneti length `

2

= B. So in physial terms, we �nd the quantization of the

�lling fration.

Now let us look at the seond integral in the last row of (5.3)

B

Z

dt tr

_

UKU

y

We write K as a matrix whih olumns are arbitrary linear ombinations of, say, M

vetors of C

N

. We only need to make it an anti-hermitian matrix; we write K in the

form

K

:

= iA � J �A

y

A 2

N

C

M

; J 2

M

C

M

(5.4)

For simpliity we take J = I. Under a gauge transformation on X; Y the retangular

matrix A hanges by a left translation

(

X

U

7�! UXU

y

A

U

7�! UA

(5.5)

In this way the onstraint is left invariant. Consider now the ation [42, 35℄

S

0

[A℄

:

= iB

Z

dt trA

y

_

A

This form of the ation of (A;A

y

) gives as anonial pairs

(A

ia

; BA

�

ia

) � (A

ia

;�i

Æ

ÆA

ia

)

so the relative ommutation relations are

1

[A

ia

; A

�

kb

℄ =

1

B

Æ

ik

Æ

ab

1

Notie that in ase of a more general F we would rather have [A

ia

;

P



F

b

A

�

k

℄ =

1

B

Æ

ik

Æab being

B

P



F

b

A

�

k

the anonial momentum of A

kb

.
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Its hange after a gauge transformation (5.5) is given by

Z

dt trA

y

_

A 7�!

Z

dt trA

y

_

A+

Z

dt tr

_

UAA

y

U

y

We an see that the last term is exatly the hange of S

CS

we saw in (5.3). Now,

anyway, we will onsider only the \minimal" version of the substitution (5.4), i.e.

when A 2 C

N 2

K

:

= i		

y

K

ij

= i  

i

 

�

j

and the ation we should add to S

CS

to render it invariant is

S

B

[	℄ = �iB

Z

dt tr	

y

_

	

So that the total ation is given by

S

T

= S

CS

[X; Y ℄ + S

B

[	℄ (5.6)

Of ourse in the partition funtional we must onsider also the integration over these

new degrees of freedom, the 	's. We hoose for them a at measure, so that

Z =

Z

D	D	

y

DX DY e

iS

CS

[X;Y ℄+iS

B

[	℄

Æ

�

[X; Y ℄� i� � �i		

y

�

(5.7)

This is the Chern-Simons MAtrix Model introdued by Polyhronakos in [42℄. This

funtional integral is invariant under U(N) gauge transformations, intended as ating

in the following way

8

>

>

<

>

>

:

X

U

7�! UXU

y

Y

U

7�! UY U

y

	

U

7�! U	

U = U(t) 2 U(N) (5.8)

5.1 Faddeev-Popov quantization

We want to treat the partition funtional (5.7) with the standard tehniques of

Gauge Field Theory [12℄. To do this, we �rst need a onvenient gauge hoie. The

�rst oming to mind is obviously the gauge in whih matries are diagonal. Anyway

this is not ompletely possible. We annot diagonalize both X and Y (at �xed t)

with a single U(N) transformation, beause of the onstraint. Hene we will hoose

2

See [35℄ for a more omplete disussion of the general substitution for K, and its interpretation

in terms of multi-layered uid physis.
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to diagonalize just one matrix, and the other one will have some degrees of freedom

�xed by the onstraint, while the integration will be free on the others.

As a starting point, we will use the following identity

1 =

Z

�(U)Æ[UXU

y

� �℄�

FP

[�℄ (5.9)

where �(U) is an invariant measure on the group of unitary time depending trans-

formations, � is a diagonal matrix whih is the gauge �xed form of X. By standard

Field Theory arguments, the Faddeev-Popov determinant depends only on gauge in-

variant quantities.

We insert now the identity (5.9) in the integral (5.7), and we obtain

Z =

Z

�(U)

Z

D	D�DY e

iS

CS

[�;UY U

y

℄+iS

B

[U	℄

Æ

�

[�; UY U

y

℄�i���i U		

y

U

y

�

�

FP

[�℄

where we used the invariane of the total ation (provided the quantization ondition

on B� is met) and of the Dira delta. Now we an use the fat the measures on X, Y

and 	 an be de�ned to be unitary invariant, and write the funtional in the gauge

�xed form

Z =

�

Z

�(U)

�

Z

D	D�DY e

iS

CS

[�;Y ℄+iS

B

[	℄

Æ

�

[�; Y ℄� i� � �i		

y

�

�

FP

[�℄

(5.10)

Of ourse the volume of the gauge group is not relevant for the physis. We need

now to ompute the determinant �

FP

[�℄. It an be done rewriting the identity (5.9)

in the following way

1 =

Z

�(U)Æ[UXU

y

� �℄�

FP

[�℄ =

Z

�(U)Æ[UX � �U ℄�

FP

[�℄

using the invariane of right shift of the argument of the delta.

3

Now the above integral an be reognized, in the standard way, to be

�

FP

[�℄ =

�

Z

�(U)Æ[UX � �U ℄

�

�1

= Det

0

Æ(UX � �U)

ÆU

The funtional derivative of the gauge �xing funtional is

�

Æ(UX � �U)(t)

ab

ÆU(t

0

)

ik

�

(ik)(ab)

= Æ

ai

(X

kb

� �

a

Æ

kb

)Æ(t� t

0

)

3

Any Jaobian arising by the shift an be reabsorbed in the measure �(U), in that it depends

only by the transformation U , and not by �.
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The determinant an be easily seen (e.g. introduing ghost �elds) to be

Det

0

(Æ

ai

(X

kb

� �

a

Æ

kb

)Æ(t� t

0

)) = exp

(

Z

dt ln

Y

a

Y

k 6=a

det

0

(X � �

a

�)

)

=

= exp

(

Z

dt ln

Y

i�k

(�

i

(t)� �

k

(t))

2

)

where det

0

means we are exluding null modes, i.e. the determinant det

0

is not per-

formed on the eigenspaes relative to eigenvalue �

a

. This is the obvious generalization

of the Vandermonde determinant

Q

i�k

(�

i

� �

k

)

2

for time depending matries. We

an put this result into the partition funtion, obtaining

Z = 


U(N)

Z

D	D�DY e

iS

CS

[�;Y ℄+iS

B

[	℄

Æ

�

[�; Y ℄� i� � �i		

y

�

�

� exp

(

Z

dt ln

Y

i�k

(�

i

(t)� �

k

(t))

2

)

We an still elaborate on this expression, rewriting the argument of the Dira delta

as follows

�

[�; Y ℄� i� � �i		

y

�

ik

= (�

i

� �

k

)Y

ik

� i�Æ

ik

� i  

i

 

�

k

=

=

(

(�

i

� �

k

)(Y

ik

� i

 

i

 

�

k

�

i

��

k

) for i 6= k

�i�Æ

ik

� i 

i

 

�

k

for i = k

In this way we may well see that the the delta deomposes into a \diagonal" part

depending just on the absolute values of the omponents of 	 and �, and a more

ompliated \o�-diagonal" part

Y

i

Æ[� + j 

i

j

2

℄

Y

i 6=k

Æ

�

(�

i

� �

k

)(Y

ik

� i

 

i

 

�

k

�

i

� �

k

)

�

The �rst fator simply onstrains the integral over 	, to be an N -fold integration

over omplex unimodular numbers. The seond part is now a onstraint for the o�-

diagonal entries of the matrix Y . But it is not linear in Y

ik

. We an rewrite it in a

way it be of the form Æ(y � a)

Y

i 6=k

(DetÆ(t� t

0

)(�

i

� �

k

))

�1

Æ

�

Y

ik

� i

 

i

 

�

k

�

i

� �

k

�

=

= expf�

Z

dt ln

Y

i 6=k

(�

i

(t)� �

k

(t))gÆ

�

Y

ik

� i

 

i

 

�

k

�

i

� �

k

�

g
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This fator anel the Faddeev-Popov determinant, to give the gauge �xed partition

funtion

4

Z = 


U(N)

Z

D	

Y

i

Æ[�+j 

i

j

2

℄ e

iS

B

[ 

i

℄

Z

Y

i

D�

i

Dy

i

e

iS

CS

[�

i

;y

i

℄

Y

i 6=k

Æ

�

Y

ik

�i

 

i

 

�

k

�

i

� �

k

�

(5.11)

where the Chern-Simons ation is

S

CS

[�; Y ℄ = S[�

i

; y

i

℄ = B

X

i

Z

dt

_

�

i

y

i

The orrelation funtion of any gauge invariant funtional of the X, Y , in partiular

the addition to the ation of any invariant potential, an be obtained by insertion

into the (5.11). Notie that the Hamiltonian of this Chern-Simons Matrix Quantum

Mehanis, just as in the ordinary ase, is vanishing; moreover we see that (5.11) is

just a (onstrained) phase spae path integral, in the onjugate oordinates (�

i

; y

i

).

We will disuss the meaning of these onjugate pairs afterwards.

Considering the fat this model is the matrix model generalization of an inompress-

ible uid, and that we just ut it o� to have a �nite number of degrees of freedom,

physially we expet that in absene of a on�ning potential, the density of the par-

tiles (or quasi-partiles), whih are in a �nite number, must fall o� to zero, beause

they are spread on an nonompat spae. The simplest on�ning potential is the

quadrati one (see [42℄)

V[X; Y ℄ =

!

2

Z

dttr (X

2

+ Y

2

) (5.12)

This is manifestly U(N) invariant. In our � gauge, it an be written

V[�; Y ℄ =

!

2

X

i

Z

dt (y

2

i

+ �

2

i

) +

!

2

X

i 6=k

Z

dt

�

2

(�

i

� �

k

)

2

(5.13)

where we have imposed also the gauge ondition j 

i

j

2

= ��. Inserting this into

(5.11), we an see that the partition funtional for the problem with the on�ning

potential beomes

Z[V℄ = 


U(N)

Z

	

Z

Y

i

D�

i

Dy

i

e

iS

CS

[�

i

;y

i

℄�iV[�

i

;y

i

℄

(5.14)

By diret inspetion, we see that the dynamis of the eigenvalues is given in terms of

the Calogero model Hamiltonian V[�

i

; y

i

℄ of the (unidimensional) problem desribed

by the onjugate pairs of oordinates (q

i

; p

i

)

:

= (�

i

; y

i

).

4

For a di�erent omputation of the Calogero model in the framework of 1-dimensional matrix

models, the reader an see the �rst part of the paper [20℄.
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5.2 Salar produt

By using the same tehnology we used to ompute the funtional integral of the

model, we an ompute also the salar produt between states of the matrix model.

We are not interested now in the atual expliit expression of the wavefuntions sat-

isfying the onstraint (5.1), beause in the next setion we will have them omputed

in a more interesting gauge hoie, namely by passing to omplex oordinates: that

will be the point at whih the omparison with Laughlin theory of quantum Hall

e�et will be made.

The salar produt between two states j�

1

i and j�

2

i an be rewritten in the form

h�

1

j�

2

i =

Z

Y

ij

dX

ij

h�

1

jXihXj�

2

i

where it has been inserted in the salar produt the resolution of identity in terms

of oherent states

5

I=

Z

Y

ij

dX

ij

jXihXj jXi

:

= e

trX

b

X

1

j0i (5.15)

Applying the same mahinery we used before, the salar produt redues to the

integral over eigenvalues

h�

1

j�

2

i =

Z

Y

i

d�

i

Y

i<j

(�

i

� �

j

)

2

h�

1

jf�

l

gihf�

l

gj�

2

i (5.16)

The Vandermonde fator in the integrand an be ast in the de�nition of the wave-

funtions in this way

�[X℄;

Y

i<j

(�

i

� �

j

)�[X℄ (5.17)

so that the wavefuntions hanges it symmetry under exhange of eigenvalues (i.e.

partiles). With this identi�ation the salar produt redued to the eigenvalues

beomes an integral with a at R

N

measure.

The (5.16) an be used to ompute the Green funtion by funtional integration

in the usual way. The basi expression is of the form

6

G[X

0

; X; t℄ = hX

0

; tjX; 0i = hX

0

je

iHt

jXi

5

Aording to the typographial traditions of Quantum Mehanis the hat in the symbol

b

X

1

is

showing its operatorial nature as opposed to the -number nature of X .

6

We allow here also for the inlusion of a potential as in (5.12) and (5.13) in the hamiltonian of

the system.
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Now we insert the identities

I=

Z

Y

ij

dQ

ij

jQihQj jQi

:

= e

trQ

b

X

1

j0i

I=

Z

Y

ij

d�

ij

j�ih�j j�i

:

= e

tr�

b

X

2

j0i

with hQj�i =

1

2�

e

itr�Q

at intermediate times 0 = t

0

< t

1

< � � � < t

N�1

< t

N

= t and the onstraint

(5.1), whih must be ast essentially in the de�nition of the evolution operator in

the obvious way

7

e

iHt

:

= P

Phys

e

iHt

P

Phys

What we obtain is of ourse nothing else than the partition funtional we had in

(5.11) or (5.14) (see also [20℄).

7

This is the evolution operator making only the gauge invariant (physial) states evolve.
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Chapter 6

Complex Coordinates for the

Chern-Simons Matrix Model

In the previous hapter we have found the path integral of trunated Chern-Simons

matrix model. In partiular the fat that a 2-dim model ends up in the quantization

of a 1-dim one may be puzzling. Anyhow, in a nonommutative geometry, one

usually annot give sense to the onept of loalization of points in terms of n-tuples

of oordinates, in the same way as in the phase spae of a system after quantization.

As in the ordinary Quantum Mehanis, disussed in hapter 3, one may adopt

Wigner representation (i.e. Weyl transform and Moyal produt) in order to use

oordinates in the desription of physial problems on a nonommutative geometry.

In the previous hapter we performed the quantization of the model in hermitian

oordinates. The redution to the eigenvalues led to a model desribed in terms of

real, one dimensional oordinates of the eletrons. To have a more diret physial

interpretation of the result, we prefer working with omplex eigenvalues. Hene we

need to introdue the analogous of the quantization in omplex oordinates.

What we now desribe is the \Holomorphi quantization" of the model [5℄. We

an de�ne omplex oordinates for our matrix model

X

:

= X

1

+ iX

2

X

y

:

= X

1

� iX

2

With these oordinates the ation beomes

S

CS

[X;X

y

℄ + S

B

[	℄ =

iB

2

Z

dt tr

�

_

XX

y

�

�

iB

2

Z

dt tr	

y

_

	 (6.1)

while the onstraint is

G

:

= [X;X

y

℄� 2� � 	 Æ	

y

� 0 (6.2)
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and as before the onsisteny ondition on 	 is

2N� +

X

i

 

�

i

 

i

= 0

As a result the partition funtional is

Z =

Z

D	D	

y

DXDX

y

e

iS

CS

[X;X

y

℄+iS

B

[	℄

Æ

�

[X;X

y

℄� 2� � �		

y

�

(6.3)

This path integral is still U(N) invariant. But now, for a general � 6= 0, any matrix

satisfying the Gauss' law onstraint annot be diagonalized by a U(N) gauge trans-

formation. This is beause of the fat that neessary and suÆient ondition for a

omplex matrix X to be diagonalizable by U(N) transformation is [X;X

y

℄ = 0, i.e.

X is a Normal Matrix.

When � = 0, instead, we have lassially from the Gauss' law onstraint

[X;X

y

℄ = 	 Æ	

y

and

X

i

j 

i

j

2

= 0

So 	 � 0 and [X;X

y

℄ i.e. X is normal.

Thus the lassial expetation is that for � = 0 our path integral beomes an

integral over normal matries. Though, as we will see in the sequel, the natural

measure we will be lead to is not that indued from the at measure over omplex

matries by the natural inlusion. This is of ourse due to the presene of the Dira

Æ funtion enforing the onstraint, whih in turn naturally arises as a result of

integration over the Lagrange multiplier A

0

.

6.1 Diagonalization

In the spae of omplex matries the subset of matries with distint eigenvalues is

the highest dimensional invariant subset. This means, the sets of matries with two

or more degenerate eigenvalues is negligible in the sense of Lebesgue measure.

Sine a matrix X 2

N

C

N

with N distint eigenvalues is always diagonalizable by

an invertible transformation of basis vetors, we an write any omplex matrix X,

besides a null-measure set of matries, as

X = V �V

�1

V 2 GL(N; C ) � = diag(�

1

; : : : ; �

N

) (6.4)



CHAPTER 6 73

6.1.1 Canonial oordinates

The kineti �rst order ation integral

iB

2

Z

dt tr

�

_

XX

y

�

�

iB

2

Z

dt tr	

y

_

	

implies the anonial hamiltonian oordinates to be

(X

ij

;

iB

2

X

�

ij

) � (X

ij

;�i

Æ

ÆX

ij

)

( 

l

;�

iB

2

 

�

l

) � ( 

l

;�i

Æ

Æ 

l

)

These last equations in turn imply the ommutation relations

[X

ik

; X

�

lm

℄ =

2

B

Æ

il

Æ

km

[ 

k

;  

�

l

℄ = �

2

B

Æ

kl

With these relations one may rewrite the Gauss' law onstraint (5.1) in Shr�odinger

representation in the following normal ordered form

G

ik

= X

is

Æ

ÆX

ks

�X

sk

Æ

ÆX

si

� 2B�Æ

ik

�  

i

Æ

Æ 

k

(6.5)

Performing the diagonalization (6.4) we obtain the obvious result on X

ij

and  

l

:

X

ij

= V

il

�

l

V

�1

lj

 

k

= V

kl

�

l

These fatorisations indue a deomposition on the otangent spae at a point in

(X;	) manifold. These deomposition may be found, and in turn this implies the

deomposition of derivative (momentum) operators on tangent spae. The deom-

position on otangent spae is

dX

ij

=V

il

(d�

l

Æ

lm

� [�; dv℄

lm

)V

�1

mj

d 

k

=V

kl

(d�

l

+ dv

lm

�

m

)

where we de�ned

dv

ij

:

= V

�1

il

dV

lj
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Requiring that the anonial pairing is invariant what we obtain for the momenta

is

1

Æ

ÆX

ij

=V

�1

li

�

Æ

lm

Æ

Æ�

l

+

1� Æ

lm

�

l

� �

m

�

�

l

Æ

Æ�

m

�

Æ

Æv

lm

��

V

jm

Æ

Æ 

k

=V

�1

lk

Æ

Æ�

l

Sine the anonial pairing is left invariant, also the ommutators of the new vari-

ables are still anonial.

One ould be puzzled by the fat that with this diagonalization we have twisted the

usual (and handy) relation between the matrix X and its hermitian onjugate X

y

.

This an be seen as though the introdution of nonommutativity (i.e. swithing on

� 6= 0) made up for the appearane of a bakground into the �rst-quantized theory.

On the other hand, in the next setion the path integral formulation will make lear

that the hermitiity of the hamiltonian of the present system is spoilt by this diago-

nalization. This is not bad, in regard of the unitarity of the model and positivity of

the norm (e.g. see [3℄), as far as the hamiltonian preserves PT symmetry. The non-

hermitiity of the hamiltonian auses by itself the fat the onjugate of the matrix

X after the diagonalization is not the onjugate of the diagonalized matrix anymore

(see e.g. [14℄). We will not onsider this in the more general framework now, beause

it goes beyond the sope of the present work.

However, we have reovered the rule of onjugation in the form of a ovariant deriva-

tive term, similar to the e�et of some bakground introdued by nonommutativity.

We will see how the expressions for the new anonial operators will work properly:

in partiular the operators that are the matrix extensions of the generators of W

1

(see setion 3.2) will have the orret behaviour under omplex onjugation, when

the ovariant derivative term is taken into aount.

An important thing to notie is that the Gauss' law onstraint (6.2) is redued,

after normal ordering, to the following form

G

ij

= V

il

�

Æ

lm

�

��

l

Æ

Æ�

l

� 2B�

�

� (1� Æ

lm

)

Æ

Æv

lm

�

V

�1

mj

(6.6)

Applying the onstraint to physial states we get

G

ij

jPhysi = 0()

8

<

:

�

�

l

Æ

Æ�

l

+ 2B�

�

jPhysi = 0 ; 8 l

Æ

Æv

lm

jPhysi = 0 (= l 6= m

1

These results are nothing more than the ontragredient rule plus the fat the deomposition by

an invertible matrix ause a nontrivial form of parallel transport.
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The non-diagonal omponents �xes the ovariane of physial states under GL(N; C )

transformations, preisely they imply that the wavefuntions of physial states must

depend on V only by terms of the form detV

n

; the diagonal ones are the remaining

nontrivial part of the onstraint, and we will give more on this later.

In ase of a more general auxiliary term A

ia

, as in (5.4), we an perform the

previous deomposition mutatis mutandis, to obtain as a result for the diagonal part

of the onstraint

8 l ;

 

X

s

A

ls

Æ

ÆA

ls

+ 2B�

!

jPhysi = 0

6.1.2 Path Integral (Faddeev-Popov adapted)

For � 6= 0, the GL(N; C ) diagonalization we just performed is not a gauge transfor-

mation in the path integral, indeed any gauge invariant term of the ation transforms

non-trivially; e.g. any term of the kind of

trXX

y

= tr�(V

y

V )

�1

�

y

(V

y

V )

The point here is to make a GL(N; C ) transformation inside the path integral re-

adsorbing in some way the non-invariant term. The strategy to do this is the follow-

ing:

J =

Z

DXDX

y

F [X;X

y

℄ =

Z

DXDX

y

Z

diag

D�D�

y

�

FP

�

�

Z

GL(N;C )

�(V ) Æ

C

[V

�1

XV � �℄Æ

C

[V

y

X

y

V

y�1

� �

y

℄F [X;X

y

℄

Here, in the Fadeev-Popov identity the Æ

C

funtions are intended not as the usual Æ,

but as a \omplex argument" Æ

C

, de�ned in a way that

Æ

C

[M ℄Æ

C

[M

y

℄ � Æ[M ℄

Working out the integral above we obtain [12℄

J =

Z

GL(N;C )

�(V )

Z

diag

D�D�

y

�

FP

[�;�

y

℄F [�; (V

y

V )

�1

�

y

(V

y

V )℄�

�

Z

DXDX

y

Æ

C

[X � �℄Æ

C

[V

y

V X

y

(V

y

V )

�1

� �

y

℄ =

=

Z

GL(N;C )

�(V )

Z

diag

D�D�

y

Z

D

~

��

FP

Æ

C

[

~

�� (V

y

V )

�1

�

y

(V

y

V )℄F [�;

~

�℄
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The quantity �

FP

may be omputed in the usual way being it a jaobian determinant,

just keeping in mind that now the oordinates are omplex, so that we essentially

obtain the square of the determinant we already had for hermitian matries, namely

�

FP

=

Y

t

Y

i<j

j�

i

� �

j

j

4

Now we only need to integrate out the GL(N; C ) transformation. When we do this

integration, the integration over

~

� is redued to the integration over matries whih

have the same eigenvalues of �

y

(beause it is an integral over a onjugay lass of

�

y

). The determinant we obtain performing the integration

Z

�(V )

Z

D

~

� Æ

C

[

~

��W�

y

W

�1

℄ with W

:

= V

y

V

is

Y

t

Y

i<j

(�

�

i

� �

�

j

)

�2

This anels part of the Faddeev-Popov determinant, atually the one depending on

f�

�

i

g only; let us write now the omplete path integral, putting altogether

Z

D�D

~

�

Z

D�D

~

�

Y

t

Y

i<j

(�

i

� �

j

)

2

e

iS

CS

[�;

~

�℄+iS

B

[�;

~

�℄

Æ[[�;

~

�℄� 2� � � Æ

~

�℄ (6.7)

where the hange of variables from 	 to � has been made in order to re-adsorb the

hange of the ation after the GL(N; C ) transformation. Another onsequene of this

hange of variables, as is already lear from the general framework of this theory, is

to keep the onstraint invariant.

2

A lari�ation on the Æ funtion in the omplete partition funtion is in order

here. The original path integral had in it

Æ[[X;X

y

℄� 2� �	 Æ	

y

℄ =

Z

DMe

itrM([X;X

y

℄�2��	Æ	

y

)

Sine the argument of the Æ is an hermitian matrix, the matrix M in the integral

is hermitian as well. When one onjugates the argument by an invertible matrix,

the proof of the invariane of the Æ goes on by onjugating M by the inverse of the

matrix. Sine the top form

[dM ℄

:

=

^

i;j

dM

ij

2

In terms of the equivalent Chern-Simons nonommutative �eld theory, both these e�ets are

expressions of the gauge invariane of the A

�

CS ation.
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is invariant under onjugation, and the eigenvalues of M are invariant as well, the

integral de�ning the delta funtion still makes sense; so does the Æ funtion. One may

onsider it as a trivial example of holomorphi path integral [29℄. We an write down

the Æ funtion on the diagonal gauge aording to the omponents of the argument

Æ[[�;

~

�℄� 2� � � Æ

~

�℄ =

Y

i 6=j

Æ[(�

i

� �

j

)

~

�

ij

� �

i

~

�

j

℄

Y

i

Æ[2� + �

i

~

�

i

℄ =

=

Y

i 6=j

1

�

i

� �

j

Æ[

~

�

ij

�

�

i

~

�

j

�

i

� �

j

℄

Y

i

Æ[2� + �

i

~

�

i

℄

So the jaobian determinant oming from the Æ anels the part of �

FP

whih de-

pends on f�

i

g, that's to say the Faddeev-Popov determinant, just as in the hermitian

ase, gets ompletely anelled out at last. Hene the path integral (6.7) at the very

end of the diagonalization proess is

Z

D�D

~

�

Z

D�D

~

�e

iS

CS

[�;

~

�℄+iS

B

[�;

~

�℄

Y

i 6=j

Æ[

~

�

ij

�

�

i

~

�

j

�

i

� �

j

℄

Y

i

Æ[2� + �

i

~

�

i

℄ (6.8)

where

S

CS

[�;

~

�℄ = i

B

2

Z

dt

X

i

_

�

i

~

�

i

and

S

B

[�;

~

�℄ = �i

B

2

Z

dt

X

i

_

�

~

�

After the elimination of the � and

~

� auxiliary �elds, whose dynamis is atually

ompletely onstrained, we see that the above is the path integral of the theory of

the eletrons with the oordinates f(�

i

;

~

�

i

g, projeted at the lowest Landau level [5℄.

6.2 The Physial Hilbert spae

We already mentioned the fat that the onstraint

8

<

:

�

�

l

Æ

Æ�

l

+ 2B�

�

jPhysi = 0 ; 8 l

Æ

Æv

lm

jPhysi = 0 (= l 6= m

implies strong restritions on the form of the wavefuntions of physial states. First

of all, making use of the relation

�

�v

ij

det(V � z I) = det(V � z I)

�

V

V � z I

�

ji

(6.9)
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we easily show that the only V -depending ovariant fator (besides the onstant) we

may �nd in a wavefuntion is detV , indeed, putting z = 0 in (6.9)

�

�v

ij

detV = detV

�

V

V

�

ji

= detV Æ

ij

= 0(= i 6= j

A result similar to (6.9)

�

�v

ij

det(V

n

� z I) = n det(V

n

� z I)

�

V

n

V

n

� z I

�

ji

an be used to show that in the general ase the same vanishing property holds for

detV

n

terms only.

The diagonal omponents imply instead that the wavefuntion is homogeneous

of degree �2B� of any of the �

i

, so a generi wavefuntion is of the form

3

�[X; V;�℄ = detV

k

 

Y

i

�

i

!

k

�[X℄ k

:

= �2B�

We have to impose further restritions on the redued wavefuntion �[X℄ in order to

determine it ompletely. To �nd out how, we must impose the physial ondition of

inompressibility, whih is doable in terms of representations of W

1

algebra.

6.3 Inompressibility

6.3.1 Matrix W

1

algebra

We now want to revive the disussion of setion 3.2 regarding how to impose the

physial ondition of inompressibility on the Hilbert spae of states of the system.

What is in order now is to de�ne the matrix substitute of the algebra of area-

preserving di�eomorphisms. We reall the de�nition of the generators L

st

of W

1

in

terms of the generators of magneti translations

L

st

:

= (b

y

)

s

b

t

Sine Chern-Simons matrix model lives in the limit B �! 1, we need only to

deal with the restrition to the lowest Landau level of the L

st

operators; in omplex

oordinates their many body �rst quantized expression is

L

st

j

n=0

=

X

�

z

s

�

(

d

dz

�

)

t

3

Reall that due to the level quantization ondition, B� must be an integer number.
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The proposed matrix generalisation of the above operator is the following

4

L

(mat)

st

:

=

�

�

trX

s

(X

y

)

t

�

�

whih in the ase of normal matries redues to

L

(mat)

st

=

X

k

z

s

k

�z

t

k

�

X

i

z

s

k

�

�

�z

k

�

t

after anonial quantization. So we see that our de�nition of L

(mat)

st

redues to the

many body de�nition of the ordinary L

st

in the lowest Landau level.

We an generalise the inompressibility onditions (3.12) to our new operators L

(mat)

st

:

they must be imposed on the ground state of the theory as a neessary ondition for

desribing the quantum Hall ground state

L

(mat)

st

�

GS

= 0 s < t

In the ase of the matrix model generators, the algebra whih turns out omput-

ing the ommutators is di�erent by (3.10), and does not lose by itself, indeed the

ommutator

[L

(mat)

st

;L

(mat)

mn

℄

gets several orretions, whih we interpret as �nite size orretions,

5

whih are

produts of terms having the following form

�

�

	

y

X

s

0

(X

y

)

t

0

	

�

�

(6.10)

The exat form of the W

1

algebra in this matrix version is still unknown, due to the

ever inreasing omplexity of the diret omputation of ommutators between higher

order generators.

One an easily see that when performing the ommutator, if we started with two

operators L

(mat)

st

and L

(mat)

mn

to the both of whih the highest weight ondition (3.12)

applies (i.e. s < t and m < n), then, in the result, eah fator of any addend would

present X and X

y

in the form

� � �X

s

0

(X

y

)

t

0

� � � with s

0

< t

0

4

The expression is normal ordered (

�

�

�

�

) in view of anonial quantization.

5

The fat (6.10) are �nite size orretion ofW

1

algebra an be seen working in a gauge in whih

the vetor 	 has the form (0; � � � ; 0; NB�). In this gauge only the entries of the last row and olumn

of X

s

(X

y

)

t

matrix enter into the P

(mat)

st

operators. In a proper N !1 weak limit only the \bulk"

of the matrix will ontribute, and moreover the 	 vetor need to disappear from the expressions,

so do the P

(mat)

st

operators.
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Sine we want the Lie subalgebra generated by the L

(mat)

st

with s < t to vanish on

the ground state for onsisteny, we must join to the set of generators L

(mat)

st

the set

P

(mat)

s

0

t

0

:

=

�

�

	

y

X

s

0

(X

y

)

t

0

	

�

�

, with the onditions

L

(mat)

st

�

GS

= 0 s < t

P

(mat)

st

�

GS

= 0 s < t

(6.11)

Regarding the normal ordering, we an see that if both the (6.11) are met then

they hold also for any other normal ordering. This is due to the fat that in eah

reordering term

(X

y

)

t

X

s

= (X

y

)

t�1

XX

y

X

s�1

� (X

y

)

t�1

(� +		

y

)X

s�1

the powers of X and X

y

are dereased by the same amount, exept for the leading

term that, at the end of the omputation, beomes X

s

(X

y

)

t

. So when imposing the

onditions of inompressibility (6.11) in a di�erent ordering, one may work reur-

sively, at eah step just having to are for the leading order ondition, beause lower

order ones are already satis�ed in virtue of the previous steps.

6.3.2 Wavefuntions for the CS Matrix Model

In order to �nd a general ovariant expression (i.e. one whih depends on X;X

y

and 	;	

y

) one an try to solve the onstraint (6.5), or alternatively one an use the

group theoretial properties of the states, exploiting the invariane under SU(N)

algebra generated by the hamiltonian onstraint G, as has been done in [42, 24℄; one

reovers in suh a way the wavefuntions [24℄

�[X;	℄ = trX



1

� � � trX



k

�

�

i

1

���i

N

(X

0

	)

i

1

� � � (X

N�1

	)

i

N

�

k

(6.12)

Here the trX



�

fators in the wavefuntion reates the exitations, while the � part

of the funtion is the wavefuntion of the ground state

�

GS

[X;	℄ = �

i

1

���i

N

(X

0

	)

i

1

� � � (X

N�1

	)

i

N

(6.13)

These expressions are obtained simply by ontrating all the indexes of any monomial

of the form

Y

a

X

i

a

j

a

 

l

a

with the invariant tensors of SU(N), namely Æ and �, to form a gauge invariant

expression. Moreover the Gauss' law onstraint (5.1) requires the total number of  
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to be k, �xing ultimately the form of the wavefuntion.

Now we show our inompressibility onditions (6.11) are met. It is more easy to

work with antinormal ordered operators (we already showed after (6.11) this an be

safely done), writing (s < t)

trX

s

(X

y

)

t

�

i

1

���i

N

(X

0

	)

i

1

� � � (X

N�1

	)

i

N

where we use oordinate representation, i.e. X

y

ij

�

Æ

ÆX

ji

. When all of the derivatives

have ated on the fators of the determinant, the indexes in the matrix produts

get rearranged. But sine there are more derivatives with respet to X

ij

than mul-

tipliations by X

ij

, the total degree in X of the determinant is dereased. So in

eah addend of the resulting polynomial at least two of the olumns of the matrix

[(X

i�1

	)j℄

i;j=1;:::;N

are made equal, making the determinant vanish.

A similar argument is true for the �nite size orretions:

	

y

X

s

(X

y

)

t

	 �

i

1

���i

N

(X

0

	)

i

1

� � � (X

N�1

	)

i

N

where in oordinate representation  

�

i

�

Æ

Æ 

i

. The only di�erene is that here after

the rearrangement of indexes some fator loses some extra power of X beause there

appear terms of the form trX

h

for some h, due to the presene of 	 and derivatives

with respet to 	: of ourse the total degree in X of eah addend of the resulting

polynomial is dereased and so they vanish sine they are determinants with two or

more equal olumns.

Notie that if s > t, the previous argument does not apply. So one an easily see by

diret omputation that L

(mat)

st

and P

(mat)

st

, with s > t, when applied on ground state

wavefuntion make fators of trX

h

for some h appear, so generating linear ombi-

nations of states like (6.12) from the ground state (6.13), i.e. reating exitations on

the ground state. This is exatly what happens in the framework of hapter 3 when

ating on the ground state with a generator L

st

with s > t. Therefore the Hilbert

spaes of physial states is a representation of the matrix W

1

algebra.

Working out the ground state wavefuntion (6.13), we �nd its behaviour under a

similarity transformation X 7�! V XV

�1

�

GS

[X;	℄ 7�! �

GS

[V XV

�1

; V	℄ = detV

k

�

GS

[X;	℄

One thing lear here from the transformation rule is that the symmetry of the wave-

funtion under exhange of two oordinates is given essentially by the parity of the
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exponent k.

Using the above rule, by diagonalizing X, we �nd �

GS

to be equal to

�

GS

[X;	℄ = detV

k

�

GS

[�;�℄ = detV

k

 

Y

i

 

i

!

k

Y

i<j

(�

i

� �

j

)

k

Therefore, after the redution to the eigenvalues, in physial omplex oordinates,

the wavefuntion (6.13) manifestly redues to a Laughlin wavefuntion.

6.3.3 Salar produt

In omplex oordinate the salar produt between wavefuntions is expressed in a

di�erent form than that of setion 5.2. What makes the di�erene is atually the

form the amplitudes of the oherent states assume when expressed in terms of the

basi operators X and X

y

, namely while in setion 5.2 we had

jQi

:

= e

trQ

b

X

1

j0i hQjQ

0

i = Æ[Q�Q

0

℄

j�i

:

= e

tr�

b

X

2

j0i h�j�

0

i = Æ[�� �

0

℄

and the wavefuntion is hQj�i =

1

2�

e

itr�Q

now that we have swithed to omplex quantization we get

jQ

y

i

:

= e

trQ

y

b

X

j0i

hQj

:

= h0je

trQ

b

X

y

the wavefuntion equals hQ

1

jQ

y

2

i = e

trQ

1

Q

y

2

Moreover we will need to inorporate in the salar produt the 	, 	

y

as well. We do

it by de�ning

j	

y

i

:

= e

tr	

y

b

	

j0i

h	j

:

= h0je

tr	

b

	

y

with h	

1

j	

y

2

i = e

tr	

1

	

y

2

When we diagonalize the matrix X, and orrespondingly transform the matrix X

y

as

X = V �V

�1

X

y

= V

~

�V

�1
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then the oherent states gets de�ned by the hain of relations

hXj

:

= h0je

trX

b

X

y

= h0je

tr�(V

�1

b

X

y

V )

:

= hh�j

jX

y

i

:

= e

trX

y

b

X

j0i = e

tr

~

�(V

�1

b

XV )

j0i

:

= j

~

�ii

where we have used the transformation rule on the anonial momentum operators

X

y

aused by the diagonalization of oordinate X as was shown in setion 6.1.1. In

the same setion we saw that this transformation leaves the anonial oordinates

invariant, being it the quantum version of a anonial transformation. So all the

properties of oherent states are still in harge with the gauge �xed oordinates and

operators, we just need to keep trak of the GL(N; C ) onjugations.

Di�erently from the hermitian oordinate situation, here we have to insert the

projetor on the physial states in the salar produt itself. This is due to the

fat that, in ovariant notation (i.e. before �xing the gauge) the dependene of a

wavefuntion on the matrix X, on imaginary onjugation ji

�

= hj is swithed to the

dependene on X

y

, so that the resolution of identity by oherent states involves both

the oordinates and the momenta at �xed time. So the equation we must work on

is now

h1j2i =

Z

Y

i

d 

i

d 

�

i

Z

Y

ij

dX

ij

dX

y

ij

e

�trXX

y

�	

y

	

h1jX

y

;	

y

ihX;	j2iÆ[[X;X

y

℄�2��	Æ	

y

℄

We have for the salar produt

h1j2i =

Z

Y

i

d�

i

d

~

�

i

e

�Nk

Y

i

Æ[�

i

~

�

i

+ 2�℄�

�

Z

d�d

~

� e

�tr�

~

�

h1j

~

�;

~

�ii hh�;�j2i

Y

i 6=j

Æ[

~

�

ij

�

�

i

~

�

j

�

i

� �

j

℄

(6.14)

From here we an see that the property

h�

1

jtrX

s

(X

y

)

t

�

2

i = htrX

t

(X

y

)

s

�

1

j�

2

i

beholds also in the diagonal gauge, when we aount for the nontrivial ovariant

derivative.

We an write in example the salar produt (6.14) in the ase of N = 2, obtaining

hGS

k

jGS

k

i = N

Z

d�

1

d�

2

d

~

�

1

d

~

�

2

e

�

P

2

i=1

�

i

~

�

i

�

~

�

1

�

~

�

2

+

2k

�

1

� �

2

�

k

(�

1

� �

2

)

k

where N is the onstant obtained by the integration over � and

e

�. The form of the

above integral, due to the already mentioned twisted onjugation (i.e. the presene of
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a nontrivial parallel transport term), di�ers from the standard form for the overlaps

of Laughlin wavefuntions in the Quantum Hall e�et:

hGS

k

jGS

k

i = N

Z

d�

1

d�

2

d

�

�

1

d

�

�

2

e

�

P

2

i=1

�

i

�

�

i

�

�

�

1

�

�

�

2

�

k

(�

1

� �

2

)

k

:

Anyhow the quantities whih possess a physial meaning are the values of the (nor-

malized) salar produts. These are numbers, and only in their terms one an om-

pare the Matrix Model with the physis of Laughlin wavefuntions. In addition we

notie that for � �! 0 we have

~

�

i

�!

�

� ;

but the salar produt does not manifestly redue itself to the ordinary normal matrix

integral ([33, 19, 54℄)

Z

d

2

�

1

d

2

�

2

�

�

�

1

�

�

�

2

�

(�

1

� �

2

) :

This is due to the presene of the Æ funtion enforing the onstraint. Usually when

de�ning the normal matrix integral, it is said that the onditions

[X;X

y

℄

ij

= 0

are not independent. Indeed if one uses a Æ funtion to enfore the above ondition,

one gets very soon into troubles. These troubles are apparent already in the N = 2

model, let us use the following deomposition for X ([54, 52℄)

X = U(� +R)U

y

with U 2 U(2); � = diag(�

1

; �

2

); R =

 

0 r

0 0

!

to write the above onstraint

[X;X

y

℄ = U

 

jrj

2

r(

�

�

2

�

�

�

1

)

�r(�

2

� �

1

) �jrj

2

!

U

y

Manifestly the four onditions are not independent. If we hose the of diagonal ones,

to put into a Dira Æ funtion, we would obtain a jaobian determinant whih is the

same we obtained in our omputation j�

1

� �

2

j

�2

, whih anels the Vandermonde

determinant of the measure indued by the immersion of the set of normal matries

into the bigger set of arbitrary omplex ones [33, 19℄. If instead one uses one of

the diagonal entries of the onstraint, one gets no jaobian, and so there is still a

measure in the integrand, whih is just the usual Vandermonde. When omputing
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the integral over normal matries, one an overome this ambiguity just induing the

measure from the at measure of omplex matries, by the inlusion

� = diag(�

i

) ,! X = U�U

y

But this just orresponds to a peuliar matrix quantum mehanis. Indeed in our

model we are fored to put a Dira Æ funtion into the integral in order to enfore

the onstraint, beause it is a remnant of the Chern-Simons gauge theory in the

temporal gauge, in whih the omponent A

0

of the CS gauge �eld ats as a Lagrange

multiplier (see (4.7), (4.9) and (4.12), and disussion about them). Integration over

A

0

gives the Dira delta. With the introdution of the 	 the entries of the onstraint

beome independent. Indeed we see for N = 2 the onstraint is

 

jrj

2

� j 

1

j

2

r(

�

�

2

�

�

�

1

)�  

1

 

�

2

�r(�

2

� �

1

)�  

2

 

�

1

�jrj

2

� j 

2

j

2

!

= 0

This breaks up into four Æ-like fators

Y

ij

Æ([X;X

y

℄

ij

� 

i

 

�

j

) = Æ(jrj

2

�j 

1

j

2

)Æ(jrj

2

+j 

2

j

2

)Æ

C

(r(

�

�

2

�

�

�

1

)� 

1

 

�

2

)Æ

C

(�r(�

2

��

1

)� 

2

 

�

1

)

Now all the entries of the onstraint matrix are independent from eah other, and

we see the last two Æ fators drop a jaobian. Therefore, as we stated above, the

integrand in the limit in whih � vanishes does not redue itself to the integrand of

usual normal matrix model, but we must onsider only the values of the integrals

normalized to the norm of the ground state as the orret physial quantities to be

ompared with those oming from Laughlin theory of the Quantum Hall e�et. As

we already showed in the setion 6.3.1, the Hilbert spae of physial states realizes

a representation of matrix W

1

algebra. Thus we state that the salar produts an

be omputed algebraially by using the ommutation relations de�ning the matrix

W

1

algebra itself.

As argued by other authors [27, 26℄, the expression for the wavefuntion of the

ground state in hermitian oordinates an be written in terms of

X

y

ij

= X

(1)

ij

�

2

B

�

�X

(1)

ji

in the same form of (6.13) beause of the antisymmetry of the expression, being it a

determinant, so that in terms of the eigenvalues of X

(1)

, in the hermitian gauge we

have the wave funtion

�[X

(1)

℄ /

Y

i<j

(x

i

� x

j

)

k
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whih beomes, after the shift (5.17)

�[X

(1)

℄;

Y

i<j

(x

i

� x

j

)

k+1

So we �nd in this hermitian gauge the shift several authors already found [42, 43, 4℄

in other ways

6

.

6.4 Conlusions

We have studied here the matrix model derived from the many body ation of ele-

trons in the �rst Landau level, both in hermitian and in omplex oordinates. We

worked out the path integral and the salar produt of the theory in both ases: in

the latter one, in partiular, we performed a holomorphi quantization in order to

speify the diagonal gauge hoie; it is useful to stress one more the importane of

introduing the onstraint in the de�nition of physial salar produt. The onstraint

in this gauge has been solved expliitly, showing the general form of the gauge �xed

wavefuntions.

In this diagonal gauge the derivative (momentum) operators get a term of parallel

transport, as we saw in setion 6.1.1; this term spoils the expliit form of hermitian

onjugation, as we saw, the o�-diagonal entries of X

y

on the diagonal gauge are �xed

by the onstraint in terms of the physial degrees of freedom (i.e. the eigenvalues

of X, f�

i

g and the auxiliary � and

~

�), while the diagonal ones keep the dynamial

meaning of anonial momenta of the redued system.

The o�-diagonal entries are generated geometrially as a nontrivial parallel transport

in the manifold of the variables (X	) when the diagonalization is performed: they

appear in gauge �xed variables as some sort of bakground the whih arises when

nonommutativity is swithed on. Let us look at the gauge �xed ation

S

CS

j

gf

/

Z

dt

X

i

_

�

i

~

�

i

(X;X

y

); (�;

e

� = diag(

~

�

i

) +A(�;�

e

�))

As we saw also before, the nonommutativity of oordinates gives rise to a \bak-

ground" A(�;�;

e

�) whih is just the expression of the fat we annot �nd a basis

of simultaneous eigenvetors of both X and X

y

. This bakground terms, do not

enter into the ation diretly, sine their anonially onjugated variables, i.e. the

6

Notie, however, that the wavefuntion here is expressed in terms of the x

i

, the real eigenvalues

of X

(1)

only, whih is hermitian, not in terms of the eigenvalues �

i

of the omplex matrix X .
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o�-diagonal entries of �, vanish due to the gauge ondition (auxiliary ondition in

the sense of ref. [12℄). Hene we are left with the ation of eletrons in the lowest

Landau level, with oordinates f(�

i

;

~

�

i

)g [5℄.

One more key to understand the appearane of this \ovariant derivative term" is

the analogy with the so alled statistial interation of Fradkin and Lopez [16℄.

Moreover we analysed a matrix version of the W

1

algebra generators, rephrasing

the inompressibility onditions in terms of them, keeping trak of the �nite size

orretions. The already known ground state wavefuntion [24℄, whih are reognised

to be Laughlin states, turned out to be inompressible in the sense of these new

operators. The inompressibility onditions an be imposed in the model at �xed

(diagonal) gauge. The diret omputation proves itself very hard to perform; one

an anyway expliitly see it at N = 2 for example, and low exponents s; t in L

(mat)

st

,

�nding for the simplest ases [5℄

L

(mat)

n1

=

X

i

�

n

i

�

��

i

L

(mat)

n2

=

X

i

�

n

i

"

�

2

��

2

i

�

X

n 6=i

k

2

+ k

(�

n

� �

i

)

2

#

applying these operators to the ground state

�

GS

/

Y

i<j

(�

i

� �

j

)

`

we see the inompressibility onditions require that ` = k + 1. The apparent dis-

repany of the above with the Gauss law onstraint may be solved by onsidering

that the outome of the diagonalization we performed is a nonlinear expression in

the physial variables: there an be subtleties about the proper normal ordering of

the operator at �xed gauge. Indeed, if one onsiders, into the operator L

(mat)

n2

above

when redued to its gauge �xed form, the ation of

�

�v

ij

on the V

kl

and V

�1

st

employed

for the diagonalization, one an hek that it annihilates the ground state with ` = k.

On this argument about normal ordering troubles, see also [5℄.

We stress one more that there is not yet a omplete ontrol of the algebra of the

L

(mat)

and P

(mat)

, and that the latter ones in partiular an arise as desendants of

the operators L

(mat)

into the inompressibility onditions.

We foused here on the properties of the ground state, but we saw also that the

exited states an be obtained by applying nontrivial L

(mat)

st

and P

(mat)

st

operators. So

the overlaps an be omputed in priniple in a purely algebrai way. The manifest
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form of the integrand of the salar produt ould be formally hanged, so one annot

unambiguously identify the physial feature of the model without atually perform-

ing the integrals: only the amplitudes indeed are physially sensitive objets; they

an be omputed ompletely using the fat the physial Hilbert spae is a representa-

tion of W

1

algebra, thus obtaining a oordinate invariant desription of the physis

of the present model. In this way one an ompare the results oming from the

matrix model and the standard Quantum Hall omputations, ompletely larifying

the physial ontent of Chern-Simons matrix model.
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