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Chapter 1

Introduction

1.1 Forewords

Last century witnessed the birth and growth of a new way of thinking about the
physical world. Our aim is not to make a history of modern physics: the present
section is meant solely to motivate the reader to go through the work presented,
while expressing a few more personal considerations. The argumentation presented

are inspired by the reviews [49, 48], among the others.

The route the physical thought has followed in said period of time, has been
influenced in a very peculiar way by the theoretical novelties the physics community
has discovered during this period. All of those conceptual steps the physical knowl-
edge of fundamental processes has made, have been went along with corresponding
steps in mathematics. It is not occasional, nowadays, that some novel concept in
theoretical physics triggers a new investigation or discovery in mathematics, or vice
versa; anyway this conceptual coupling is not a prerogative of modern thought. In-
deed geometry in its early days was clearly oriented to describe the space in which
natural events take place. After the very early works by Einstein upon General Rel-

ativity, the scope of the previous sentence has enlarged in an almost dramatic fashion.

In the same period, it became clear that physics on a smaller scale was different
from what it appeared to be in everyday life (at human-size scale). It took several
years for most of the physical community to accept the new-birth Quantum Mechan-
ics. The appearance of uncertainty in physics puzzled most of those physicists who
did not promptly accept it. It compelled to shift the traditional view on physical
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2 SECTION 1.2

phenomena, to a more indirect one: on a quantum system, there are several questions
that cannot be asked any longer. This has been accepted long ago understanding
that the nature of physical phenomena is such, and we must bear it. Also, this shift
in the attention, has become a virtue, in physics, being it more abstract and hence

allowing for further reaching work.

So in modern physics one just gets used to several abstract concepts, being always
able to trace them back to their very sources, by mean of the physical meaning of each
of them. This needs to be the case for the not-so-recent Noncommutative Geometry.
Already in the early times of Quantum Mechanics and Quantum Field Theory, [48],
the introduction, as coordinates, of objects which did not commute was considered
as a resource in order to cure the infinite self-energies that plagued Quantum Field
Theory, before the Renormalization had become a well-established matter. This has
already been noticed by Heisenberg in the 30’s, and analysed thoroughly by Snyder
in 1947 [46].

More recently, mathematicians have studied this new geometry in several ways:
we will use mainly the point of view established by Alain Connes (see [7, 8] and
references therein), adhering in this way to the choice of a fairly large part of the

physical community (see [28], [30] and references therein).

1.2 Quantum Mechanics

The simplest physical instance of noncommutative geometry is that of the phase
space of a mechanical system after quantization. The theory with which we start is
described by (regular) functions on the 2n-dimensional phase space I' of the system.
The space I' is endowed with a closed nondegenerate 2-form w that defines the
Poisson brackets, which can be seen as a bilinear antisymmetric functional defined
on the algebra of observables (regular functions) A = C"(I'). One can choose local
coordinates in which the canonical expression of the Poisson bracket between the

two observables f(q,p) and ¢(g,p) is

. N\~0f 99 0g0f
{f,9} = Z 5% 90~ B Bmr (1.1)




CHAPTER 1 3

The standard quantization procedure requires to introduce the Hilbert space H of
the physical states of the system, and map the algebra of observables A in an algebra
A of operators acting on H. The latter correspondence is defined in such a way that
the Poisson brackets (1.1) of any pair of observables f(g, p) and g(q, p) mapped into

the commutator of the corresponding operators f and ¢:
in{f. gt =r-9-9-f

where the hat stands for the quantization map A > f — f e Al
In particular the position and momentum observables ¢; and p; are mapped respec-

tively to the operators ¢; and p; which have the canonical commutation relation
gi, j] = ifidyj .

It is well known that from this relation, which is an obstruction to find simulta-
neous eigenvectors of both the position and the momentum operators, there arise
the Heisenberg relations of uncertainty on the measurements of the position and

momentum

(A¢i)*(Api)* 2 iﬁ? ; (1.2)

which express quantitatively the loss of localization of points in the phase space I'.
From the uncertainty relations (1.2) one see that a point in the phase space cannot
be resolved in an area smaller that that of a Planck cell. This fact causes the loss
of the very notion of “point” in a quantized phase space?. In Quantum Mechanics
physical properties are worked out, generically speaking, by algebraic relations among
operators, since this allows to work in a more abstract context. Therefore for a
physicist it is more profitable to refer to the traditional physical lore of Quantum
Mechanics when considering the introduction of a noncommutative geometry in a

problem.

1.3 Quantization of Geometry

Since the foundation of General Relativity by Einstein on 1916, the paradigm of
the physical theory of Gravity has been to identify the Gravity with the Geometry

ITo define this quantization map properly, one need also to define the quantization of any
symmetric product of observables of 4. We are not entering into any detail here, because it would

be beyond the scope of this chapter.
2Hence J. von Neumann happened to call that of a quantized phase space a “pointless” geometry.



4 SECTION 1.4

of the Space-Time. Hence, it is expected on a general basis that quantization of
Gravity will lead to a noncommutative Space-Time geometry. Starting by the direct
application of Heisenberg’s principle to the Einstein’s Gravity, one can obtain by a
semi-classical evaluation the uncertainty relations for the coordinates in absence of

a strong external field [11]:

> A Az 2 A7, (1.3)

i<j
whereas A\p ~ 10733cm is the Planck length, and Az; are the uncertainties on the
measurement, of the coordinates. The argument to find the above goes as follows
[11]. To perform a measurement of the localization of an event, we give to our
test particles en energy of order % where @ is the minimum among the uncertainties
Ax;; at the locations of the test particles the density of energy is % We must
ensure that this energy density does not exceed the threshold for the formation of
a black hole, because otherwise the horizon will take the region around the event
away from the observation.®> In [11] there can be found more details on how to
introduce an algebra of operators from whose commutation relations one can obtain
the uncertainty relations (1.3). For our purposes, we need only to notice that the
relations (1.3) require that the coordinate of the almost-Minkowski Space-Time are

“promoted” to noncommuting operators

[z, 2] = 1Qu with Ap ~ /|Q)] .

Therefore, very general arguments based on Quantum Mechanics and General Rela-

tivity lead, at a semi-classical level, to noncommuting coordinates in the Space-Time.

1.4 Strings and Branes

The arguments on the quantization of Space-Time above can be improved by the
analysis of scattering amplitudes of strings at high energy (see section 3.1 in [49] and
references therein). The out-coming Heisenberg relations between the uncertainty
on position and momentum of the string, get a term due to the finite spatial extent

of the string itself:

roz G (a4 on)

3We can also restrict to stationary solutions of Einstein equation, when the uncertainty on time

localization is very large, obtaining that a must be smaller of the Schwarzschild radius relative to

the energy % .
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This in turn implies that the uncertainty on the measurement of spatial distances is
bounded from below by
Az 2 U,

i.e. from the finite length of the string. Therefore strings even at high energies cannot
probe space-time at distances lower than the length of the strings themselves. This
is an effect of the intrinsic non-locality of String Theory. To reach lower length scales

it is necessary to use D-brane as probes [49, 48].

1.4.1 Strings in a Magnetic NS Background

From bosonic open string theory we can extract a simple example of how noncom-
mutativity of coordinates arise in a fundamental context. This should display some
of the motivations behind the excitement Noncommutative Geometry causes in the
Theoretical Physics community. Consider the action of an open bosonic string mov-

ing in euclidean flat Space-Time, in presence of a background 2-form antisymmetric
B field [49]

S =

e /;FZ (90" X" 00X — 2wl By 00X 0, X

S
The ends of the open string are attached on D-branes. The antisymmetric field B,
plays the role of a magnetic field on the D-branes. Let us restrict ourselves to the

constant B, case. Moreover we take the so called Seiberg-Witten limit[45]

G ~ Lt~ — 0 while Bis fixed,

in which the massive modes decouple and the bulk dynamics disappear, the theory
becoming topological; only the boundary theory survives?

Sp=—= /6E dt BWY“%Y” , (1.4)
where Y# = X*#|yy is the restriction to the boundary of the string maps X*. This is
just the theory of a charged particle in a strong uniform magnetic field B, therefore
projected on the lowest Landau level. The canonical Poisson brackets obtained by
the action (1.4) are

1
YY"} =i0"  where O = —2(B7)".

4Let us notice that since £, — 0 the Seiberg-Witten limit is also a point-particle limit of the

open string.
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Upon quantization, these brackets become the commutators defining the usual non-
commutative R" euclidean space. Therefore we obtain a quantum effective theory
describing strings in the low energy Seiberg-Witten limit, which is a Quantum Field

Theory on a Noncommutative space.

1.5 Quantum Hall effect

The famous Peierls’ substitution [39] was introduced for the first time in the problem
of the motion of a electrons on a plane, in a uniform magnetic field B. As already
mentioned, the total action of this system in the limit of strong magnetic field B —

oo (or small mass m — 0) is

5= / dt?e“bxa(t):tb(t) |

The canonical quantization leads us to the commutation relations

(1] = ieiB (1.5)

Also a coordinate depending potential V'(x,) could be added, without changing the
canonical commutation relations. This is maybe the easiest physical instance of
noncommutative plane, and will be analysed in detail in chapter 3. We only notice
here that the non-vanishing commutator (1.5) implies that the electron cannot be

localized with infinite precision in the strong B limit.

1.5.1 Susskind’s proposal

Inspired to the analogies between the physics of electrons in a strong magnetic field
and the properties of D-Branes in String Theory, Susskind [47] proposed a model
to describe Laughlin incompressible fluid. He derived a Noncommutative Chern-
Simons Field Theory starting from the Lagrange description of the incompressible
fluid, and constructing a noncommutative extension of it: the key feature to make
this extension was that in the limit of high density the noncommutative theory
reproduced the equations of motion of the Lagrange incompressible fluid (see chapter
4 of the present thesis for the detailed analysis).

The original proposal in [47] described the incompressible fluid in its thermo-
dynamic limit, i.e. it described the infinite fluid. To describe a finite sample, and

to avoid the problems of proper regularisation the infinite fluids theory presented,
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Polychronakos [42] proposed a truncation of the model, introducing the so called
Chern-Simons Matriz Quantum Mechanics. The theory exposed also the boundary
excitations, which have always had a great importance in the study of the Quantum
Hall effect (for a review see [51]).

Polychronakos model is a model of N x N (hermitian) matrices. The trunca-
tion has been carried on through the introduction of a N-dimensional auxiliary time
dependent vector, which corresponds to the boundary fields of low energy edge ex-
citations [51]. He showed that this model possesses a U(N) gauge invariance, and
reduced it to a Calogero model of one-dimensional non-relativistic fermions with a
repulsive interaction: the coordinates and momenta of these 1-dimensional fermions
where the eigenvalues of the matrices of the original theory.

This model shares many features with Laughlin theory of Quantum Hall fluid, but
the two models are not equivalent to each other. More precisely, while the states of
the two models are isomorphic, the correspondence is not isometric: the measure of
integration of Calogero model is real and one-dimensional, but the one of Laughlin
quantum Hall fluid is complex and two-dimensional.

Anyhow the classical solutions of the matrix model presented the expected feature
of the Hall fluid and the fractional charge vortex excitations as well. In [23, 22] the
expected Hall conductivity has been derived from the noncommutative theory.

Karabali and Sakita [27, 26] analysed the reduction of the matrix theory to com-
plex eigenvalues using the coherent states of electrons in the lowest Landau level
(Bargmann-Fock space). Though they could not disentangle the electron coordinates
from the auxiliary variables of the boundary fields, they performed some explicit cal-
culations at low N. They found that the overlaps of states contain, along with the
Laughlin wavefunction, a nontrivial measure factor which modifies the short distance
properties of the fluid.

Hence the two authors concluded that either the matrix model did not describe the
physics of Laughlin fluid, or the correspondence happened in an unknown set of

coordinates.

1.6 Plan of the Thesis

In chapter 2 it will be presented a concise review of the Noncommutative Geometry

in the Connes’ paradigm. That chapter is not intended as a substitution of more
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classical text, but as a handy review of the subject; the whole chapter is mainly
based on the book [28], but there are many other books on the subject, as well as
reviews written by both mathematicians and physicists (e.g. [7, 9, 8, 21, 50, 18] and
many others).

In chapter 3, we will first review several features of the problem of the electron in
the Landau levels, stressing in particular the important role of W, algebra of area
preserving diffeomorphisms [13] in the mathematical description of the conditions
of incompressibility [6], and in the characterisation of the quantum Hall fluids and
their excitations. The W, algebra plays an important role in the matrix model as
well, since the Hilbert space of states of the system holds a representation of the this
algebra.

Also the topic of the projection to the first n Landau levels is addressed, and it is
shown what is the result of this projection on the algebra of observables of the system
(see also [32, 31]).

Moreover it will be analysed a deformation of the algebra defining the Landau levels
inspired by a paper by Nair and Polychronakos [38]: the device of Weyl quantiza-
tion map will be used to define in the more abstract way the expectation values of
products observables of the theory. The whole machinery will be employed to com-
pute the density expectation value and the density-density correlation function on
the ground state of a droplet of Quantum Hall fluid. The result will show that the
fluid after the deformation of the algebra keeps its characteristic feature of (almost)
uniform density and of incompressibility. Also it will be provided a simple com-
putation which will make explicit a physical effect of noncommutativity, in terms of

an effective repulsion appearing when a two-body attractive potential is switched on.

Chapter 4 will be devoted to the concise presentation of the work of Susskind
[47]: the Lagrange description of the the incompressible fluid will be thoroughly
presented along with its extension to the noncommutative theory, following [47] and
[25]. The resulting theory will be a theory with a constraint, the Gauss’ law, which
ensures the noncommutativity of coordinates. The following chapter 5, will contain
the statement of the truncation to finite N of the noncommutative theory by the
introduction of the auxiliary time-depending complex vector ¥. The quantization
of the model will employ the path integral, and the Faddeev-Popov procedure will
be used to fix the U(N) gauge symmetry, as customary in field theory. As a result,

together with the level quantization, we will obtain the reduction of the problem
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to the one-dimensional Calogero model of non-relativistic fermions, with a repulsive
potential generated by the noncommutativity of coordinates. Also the scalar product
for the quantum theory will be written, in terms of the coherent states of the matrix
model, and the change of statistics induced by the integration measure in the scalar
product.

The last part of the thesis, chapter 6, will present the Holomorphic quantization
of the Chern-Simons Matrix Quantum Mechanics [5]. Complex (matrix) coordinates
X, X' will be introduced. A canonical transformation will be used to solve the Gauss’
law constraint in terms of the eigenvalues of X: the path integral will be reduced
to that of the electrons in the lowest Landau level, the electrons coordinates and
momenta being the complex eigenvalues of X and their canonically conjugated vari-
ables.

In Schrodinger representation, while the coordinates will have the obvious diagonal
form, the canonical momenta will get a term which geometrically is interpreted as a
nontrivial affine connection; the appearance of this connection has an analogous in
the appearance of the statistical interaction induced by the ordinary Chern-Simons
interaction solved in terms of the sources (for a review see [53]).

The incompressibility will be defined in terms of the matrix extension of the genera-
tors of W, algebra. In chapter 6 it is also performed the analysis of the realisation
of W4 algebra in the Matrix Model, and the highest weight conditions defining in-
compressibility [6] are proved to hold for the latter; also the finite-size corrections
arising from the finiteness of dimensionality of the matrices are taken into account
and included into the set of generators of the W, algebra.

It is argued as well that from the W, symmetry of the model it is possible to com-
pute all the scalar products of the states of the Chern-Simons Matrix Model. The
problem of deciding whether the Chern-Simons Matrix Model describes the Laugh-
lin theory of Quantum Hall fluid has been reduced to the proof that W, symmetry
holds for the Matrix theory. The latter has been done for its expression in general

gauge, but is still not complete for the gauge fixed theory [5].
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Chapter 2

Brief introduction to

Noncommutative Geometry

This chapter is a concise review of the mathematical setting of Noncommutative
geometry, mostly based on the book [28], both for the logical order of the arguments,
and for the terminology used therein. Other sources [21, 50, 7, 8, 9] have been used

as well to get a more complete view of this subject.

2.1 A technical preamble

We are going to review some general definitions, needed to understand the mathe-
matical language of Noncommutative Geometry. We start by defining here the basic

objects.

Definition 2.1 (Banach spaces) A vector space V, of arbitrary dimension, over

the field of complex numbers C, ! equipped with a norm, i.e. an application

[-][:V—R
which is (Va € C,v,w € V)
o Jla oll = lalJo]
e ol 20, ol =0 <= v=0

o [lv+wll <ol + [[wl]

'In this thesis, we will consider only vector spaces over C.

11
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With respect to this norm, the space is required to be complete, i.e. any Cauchy

sequence is a convergent one, to some point of the space.

Definition 2.2 (Banach Algebra) A Banach space A endowed with an internal

composition law -

AXA— A

such that it is distributive with respect to the vector space addition. Moreover it is

required that
Vo,we A o w| < loff[w]

A Banach algebra is said unital if it is endowed of a multiplicative unit I, Va €
A a-I=1-a=a.

Definition 2.3 (C*-algebra ) A Banach algebra equipped with an antilinear in-

volution x leaving the norm invariant a** = a, ||a*|| = ||a||, and such that

la*al] = [|a]l*

Notice that there is no requirement here about the commutativity or the associativity

of the algebra product.

Definition 2.4 (Ideal of a Banach algebra A) A subspace Z C A, with the prop-
erty that either

Vae A,geZ, a-geT

for a left ideal, or

Vae A,geZ, g-a€Tl

for a right ideal. If both of the above are satisfied, then we deal with o two-sided
ideal .?

And ideal T is maximal if there is no proper ideal ' such that T C T' C A.

If Ais a C*-algebra , and Z C A a two-sided closed -ideal (i.e. it has an involution
induced by that of A), then the quotient A/Z is a C*-algebra . A simple C*-algebra

has no nontrivial two-sided ideals.

2If A has an involution (e.g. if it is a C*-algebra ) then its ideals are all two-sided.
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Definition 2.5 (Resolvent set) Given a unital C*-algebra A, and a € A, the

resolvent set of a r(a) is the subset of C
r(a) ={z € C| (a — z1) is invertible}

For z € r(a), the operator (a — z1)~! is the resolvent of a at z.

The set o(a) = C\r(a) is the spectrum of a.
For a C*-algebra A, the spectrum of any a € A is nonempty and compact.

Definition 2.6 (Spectral radius of a € A) It is
p(a) = supf|z],z € o(a)}

Now, if A is a C*-algebra , then it holds the following
Va€ A, |la]* = p(aa)

So we see that for a C*-algebra , the norm is unique and fixed by the algebraic

structure.

Definition 2.7 (Morphism of C*-algebra ) A C-linear application ¢ : A — B
such that

¢(a1 : a2) = ¢(a1) : ¢(a2)

When bijective it is a *-isomorphism

A morphism ¢ : A — B is continuous and such that

lalla = ll¢(a)ls

Moreover it maps a C*-algebra in a C*-algebra .

Definition 2.8 (Representation of a C*-algebra A) A pair (H,n), with H an
Hilbert space, such that
7: A— B(H)

is a x-morphism in the space of bounded operators on H. 3
It is a faithful representation if Ker m = {0}, or equivalently if Va € A, ||7(a)| =
lall-

It is an irreducible representation if there are no nontrivial closed subspaces of

3 Actually the latter turns out to be a C*-algebra as well
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H which are invariant under the action of w(A), or equivalently if the center* of A
satisfies Z(A) = {z I|z € C}.
Two representations (H1,m) and (Ha, T) are said unitary equivalent represen-

tations if there exists an unitary operator U : Hy — Ho such that Umry = mU.

Definition 2.9 (Primitive ideal) A subspace I of the C*-algebra A such that T =
Ker 7 for some irreducible (H, ) representation of A. It is obviously a two-sided
ideal.

The space of primitive ideals of a C*-algebra A is called Prim(.A)

Definition 2.10 (Compact operator) An operator T : H — H on a Hilbert
space mapping weakly convergent sequences of H in strongly convergent ones. Equiv-
alently a compact operator is an operator which is approximable in norm by a
sequence {T,} of operators for which the orthogonal complement of each of the ker-
nels Ker T, is finite dimensional.

The space of all compact operators on an Hilbert space H is usually called IC(H).

Now a few properties of compact operators follow:

Proposition 2.1 (Polar decomposition) The spectrum of a compact operator T :
H — H is discrete and has no limit point in the complex plane, eventually except the

origin. Any nonzero eigenvalue has finite multiplicity. Moreover, it may be written
T= Z'Vm(T)wm °dm 5 Ry D7u(T) N0
m
with {1} and {p,} two orthonormal sets.

Proposition 2.2 If T : H — H s compact and self-adjoint, then there exists an
orthonormal basis {1} of H such that T, = \ytbp, with lim,, . Ay = 0.

Definition 2.11 (Infinitesimal) An infinitesimal of order p € R, is a T € K(H)
such that for m ~ oo , v, (T) = O(1/m*)

It turns out that /C(#H) is the largest norm closed two-sided ideal of the space of
limited operators B(H). It is also a (non-unital) C*-algebra having only one class
of irreducible representations. Another important property of IC(#) is that if a C*-
algebra A acts irreducibly on an Hilbert space, and contains some compact operator,
then it contains all of them: K(H) C A.

41t is the subspace of elements of A commuting with all the elements of A
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Definition 2.12 (Liminal C*-algebra ) A C*-algebra A for which the image of
any irreducible representation (H,m) is coincident with IC(H).

Equivalently (see the above properties of compact operators) A is a liminal C*-
algebra iff 7(A) C K(H).

Definition 2.13 (Postliminal C*-algebra ) A C*-algebra A for which the image
of any irreducible representation (H, ) is contained in KC(H).
Equivalently (see above) A is a postliminal C*-algebra iff 7(A)NIK(H) # 0.

For a postliminal C*-algebra the classes of irreducible representations are uniquely
characterised by their kernels.
Now we will need a new point of view about known things, suitable for extending

the theory of (ordinary) Geometry.

2.2 Commutative Spaces

Firstly, let us consider a commutative C*-algebra A. From the commutativity
it follows that its irreducible representations are all (unitary equivalent to) one-
dimensional representations. So, every irreducible representation is a functional
¢ : A — C, which preserves the algebra product (being it a *-morphism). It
is customary to use the symbol A for the space of all such functionals, i.e. for
the space of all the equivalence classes of irreducible representations of A, the so
called structure space.® The space A can be endowed with the weak topology (the

Gel’fand Topology) o,, defined on the sequences as follows
{6} CA ¢ —0 = Yac A, ¢u(a) —0

It can be shown that with this topology Aisa T, topological locally compact space®.

This is true if A is only a Banach commutative x-algebra as well.

Definition 2.14 (Gel’fand Transform) It is this correspondence between a C*-
algebra A and the space of complex functions A—sC
S A — A
a — a

a(¢) = o), Voel

5Such a space, for commutative algebras, is the space of all the characters of A

6In the case A is an unital algebra, (,Zl\, o) is a compact topological space.
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An important case of this mapping is given by the algebra of measurable functions

L'(R) endowed with its natural norm

e / dz | (2)

and with the product of convolution as algebra product

Vig e L'(R) f*g(z) = / dy f(z — y)g(y)

It is a Banach *-algebra with the complex conjugation as involution, as it can be
easily shown with the standard machinery of Banach algebra theory’. Moreover, any
irreducible representation of L' (R) is continuous and can be written in integral form

in the following fashion

o(0) = [ do dlz)ata)
with ¢ a suitable function in L>(R) ~ L'(R)’, the dual of our algebra. The con-
volution product is mapped to the point-wise product. The fact ¢ is a representa-
tion, hence a *-morphism, i.e. ¢(axb) = ¢(a)p(b), implies (given ¢ € L*(R) and
a,b € L'(R))

olant) = [ olo) [ dy ato—9)oty) = [ [ dody o6+ o)
b(a) - B(b) = / dr §(x)a(x) / dy $(y)b(y)

so that ¢(z +y) = ¢(x)¢(y). This qualifies ¢(-) as the exponential map. From this
and from the limitedness it follows ¢(z) = exp(ikx) , k € R. So each representation is
identified with a real number. Putting everything together, we find that the Gel’fand

transform of an element a € L'(R) evaluated on a representation ¢ is

i(6) = bla) = / d a(z)eer

i.e. it is the Fourier transform of a € L'(R) at the frequency k4. Notice that the
Gel’'fand transform of a measurable function is a continuous function of the real line.

One can prove in general, that any Banach %-algebra A is mapped to the space of
continuous functions on the structure space ./zl\; if the latter is only locally compact
(i.c. if A has no unit), it will be the space Co(.A) of continuous functions vanishing
at infinity.

For a C*-algebra there is the following stronger statement

"Let us notice that this algebra is a simple example of non-unital algebra, since the unit of
convolution product is the Dirac § function, which is, of course, not a function but a distribution,
so it does not belong to L!(R).
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Theorem 2.1 (Gel’fand-Naimark) Given a commutative unital C*-algebra A,
there exists a compact Hausdorff space X such that the Gel’fand transform is an
isometric x-isomorphism between A and C(X). This correspondence is fized up to

homeomorphisms.

If the C*-algebra A is non-unital then the space X will be only locally compact.®
So for the Gel’fand-Naimark theorem each commutative C*-algebra “is” the space of
functions of a Hausdorff space. Hence, in principle, any result of classical geometry
can be translated in this algebraic framework, provided that we can write all the data,
such as differential forms an so on. This requires more work, but in the meanwhile
we can render more material the correspondence between algebra and geometry.

So suppose we have the space C(X) of continuous functions on the compact Ty space

X. Let us introduce the evaluation map

Vpe X 4 C(X) —C 4(f) = f(p)

So any point of X define, roughly speaking, a morphism of C(X) to C. Using the
Gel’fand topology and the definitions for commutative Banach algebras, one can
prove that these maps define an homeomorphism . between X and C/()?), and that
any maximal ideal of C(X) is the kernel of some map 1,, which in turn is by the
definitions identified with a point p € X.

In example we can associate to each point p € X the ideal of continuous functions
vanishing on that point. The latter ideal is a maximal ideal of C'(X), and is the kernel
of an irreducible representation of the algebra A ~ C(X) itself. Thus we see that in
the commutative case the manifold X can be identified with the maximal ideals of
the algebra of functions defined on itself, and moreover given a generic commutative
C*-algebra A we can find a space whose points are ideals (indeed, primitive ideals)
of A itself. This fact is a useful generalisation, which allows us to generalise the

definition of space itself, as we shall see in the next section.

2.3 Noncommutative Spaces

The above discussion is not adequate when we go on considering what happens when

one considers noncommutative C*-algebra A. Indeed, in this more general case, it is

8There is a nice correspondence between the one-point compactification of X and the unitaliza-
tion of A, in that the one point compactification of the structure space A of a Banach x-algebra is

the structure space of the algebra A+ {zI | z € C} (the unitalization of A).
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no more true that the irreducible representations are characterised by their kernel.
Now we introduce a topology on both Prim.A and A.
Let us start with the former: a subset W C Prim.A is closed if and only if?

VIeWICT = JecW

With this topology the space Prim.A is T(.!Y It can be proven that if A is a liminal
C*-algebra , then PrimA is T .

We can now pass to the structure space A by the canonical surjection 7 — Ker .
We endow A with the coarsest topology which renders this surjection continuous,
i.e. the quotient topology. In this topology the two objects A and PrimA are
homeomorphic if and only if A is T, as well as Prim.A. This is e.g. the case if the
C*-algebra A is postliminal.

Also in the noncommutative case it is true that the structure space Aofa C*-algebra
is locally compact (compact if it has a unit), and Prim.A share this property.
Noncommutative Geometry is based on the extension of the classical and familiar
concepts of geometry, and what we just saw is a basic example of how this is usually
done in this branch of mathematics. Starting from an ordinary (commutative) space,
we pass to describe it in terms of the algebra of (continuous, smooth, etc.) functions
defined on it, knowing we can recover the ordinary quantities of geometry in a formal
way. Now it has been made possible to generalise this structure, without altering
the relation it has with the geometric concepts we may be interested in (i.e. points,
vectors and so on, as we shall see in the next sections). [§]

In this more abstract terms, there are two proposals for the identification of points:
we can identify them with the primitive ideals of the C*-algebra A, or with the equiv-
alence classes of irreducible representations of A, i.e. elements of _,Zf, the structure
space of A. We will restrict the analyses only to the cases in which these two notions
are the same. As we saw this is the case when e.g. the C*-algebra A is postliminal.

The treatment of more general cases is left to the literature (see [28] and references

9Such a topology is equivalent to the so called Jacobson topology, more usual in this context.

We are introducing this one instead for the sake of simplicity.
10A Ty space is such when for any pair of points there is an open neighbourhood of one of them

which does not contain the other. This leads to a “lack of localisation in a general Ty space, because
there are points that “stick” to some other point. Also, not all points in a T space are closed.

This feature emerges when one studies the so called Noncommutative lattices.
1Tn T, space for any pair of points, any of them has an open neighbourhood not containing the

other one.
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therein). In the commutative case it was also the case, and we saw how to identify
points by the ideals of functions vanishing at those points.

The interested reader may find in reference [28] maybe the simplest example of a
noncommutative space, the two-points space; it turns out to be important for the
formulation made by Connes and Lott of the standard model of electro-weak inter-

actions.

2.4 Modules

Till now we have dealt with algebraic structures representing the geometrical objects,
roughly speaking, for themselves. Now we own only the basic tools to treat the
topology of a space. In what follows we are going to introduce a kind of structure
generalising the concepts of vector bundle geometry. Let us start with the basic

definitions

Definition 2.15 (Module) A nonempty set £, endowed with an abelian composi-
tion law + : E XE — &, rendering it an abelian group, and an external composition
law on a given ring R, - : R x £ — &, the latter having the following (associativity

and distributivity) properties

Ya,b € R;n, £ € &
(a+rb)-n = a-n+eb-n
a-(n+ef) = a-ntea-§
(ab)-m = a-(b-n)

In this case & is called a left module over R. When the external composition law

is in the form - : £ x R — &€ then & is called right module.'?

It is clearly apparent that this is just a generalisation of the usual concept of vector
space. The usual notion is clearly restored when R ~ C. We will make use of
modules over algebras, instead of rings. In this case we explicitly require that the
module be a C-vector space as well. This is automatic, of course, when the algebra
is unital.

Of course the distinction between left and right structure for a module is totally

12We are being overnice here, in order to make clear, e.g. which sum are we talking about in
writing a “4”. Of course we will abandon this clumsy notation, just because it is usually superfluous

outside formal definitions.
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immaterial when only one kind of structure is chosen. Infact it is enough to consider,
for any left (right) A-module £, the opposite algebra A° defined by the relation
(ab)® = b°a®, and so use the isomorphic right (left) A°-module structure over .
This is not this the case, instead, when dealing with bimodules, i.e. modules with
both a left and a right structure. In this case we of course could exchange the left

and right structure, but we must require the compatibility between the two of them.

Definition 2.16 (Bimodule over an algebra) A left and right module £ over an
algebra A for which it is satisfied the relation

Vn e & Va,be A (an)b = a(nb)

i.e. the left and right structures can be supported in a compatible way.
Moreover a bimodule £ over a x-algebra A is a x-bimodule if there is an involution

x: & — & such that Ya,b € A;n € € there is the identity (anb)* = b*n*a*.

Definition 2.17 (Modules morphism) Let A be an algebra, £, F two left (right)
A-modules. Then ¢ : € — £ is o« module morphism iff it is C-linear and A-

linear, i.e. it satisfies

¢lan) = a-¢(n)

o(zn) = zo(n)

Definition 2.18 (Dual module) Given a left (right) module £ over the algebra A,
its dual &' is

Vne&,ae Az e C {

E'"=Hom(E,A)={¢p:E — A| ¢ is a morphism}
It is also a right (left) A-module, defined by
Vae A, pe & (o) axer a = (¢(0))a

2.4.1 Modules from inside

Being the modules objects more general than the vector spaces, there are many

subtleties about them. Now we begin to describe the most elementary ones.

Definition 2.19 (Generating family) Given £ a left (right) module, a generating
family is a net {e,} C & with the property that Yv € & there exists another net
{a,} C A satisfying

v = E an€, summing over a finite subnet

n

The generating family {e,} is a basis if its elements are A-linearly independent.
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Definition 2.20 (Free module) A module & which admits a basis

Definition 2.21 (Module of finite type) A module & which admits a basis of fi-
nite cardinality. In general this cardinality has not universal meaning, in that one
is not assured there are no basis for & with different finite cardinality.'®> Modules of

finite type are also called finite.

The prototype for a free finite module over the algebra A is A™ =2 C" ® A. the
following holds

Proposition 2.3 Forany finite module £ over the algebra A, there is always M € N
and a morphism ¢ : AM — & which is onto. Then ¢ maps a basis of AM on a
generating family of £, the latter eventually lacking (when £ is not free) of the linear

independence of its elements.

In the sequel we will deal only with finite modules, even when we do not specify
it explicitly.

The fact a module £ is not free is the translation of the non triviality of a vector
bundle. The canonical example of this is the tangent bundle of the sphere S?, which
is a module over the algebra C>(S?), but does not admit a basis, since there does

not exist two global independent vector fields .

Definition 2.22 (Projective module) A left (right) module € over an algebra A
which s a direct summand of a free module.

Equivalently a module £ is projective if for every module M, and every morphism
¢ : M — & which is onto, there exists its right inverse morphism f : € — M,
ie. pof=1Ig.H

Moreover, it is equivalent to the fact that for any morphism ¢ : F — G between

13This fact, true only for modules of finite type, depends on the algebra (more generally, on the
ring) on which the module itself is defined. For a ring R with the invariant basis property the
modules R™ and R™ are isomorphic only if n = m: so the cardinality of a basis for a module on
such a ring defines an invariant of the module we call the dimension (or rank) of the module itself.
In example this is the case for commutative rings, and for finite dimensional algebras, or whenever
there is a ring map R — K over a field, etc. For a C*-algebra , the existence of a character, i.e.

a #-morphism, and hence of a point in the geometry, entails the invariance of the dimension.
14This fact is also referred to as the morphism ¢ admitting a split, being f such a split.
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modules, any morphism ¥ admits a lift v, i.e. the following diagram commutes

. F
S0
& Y g

It can be shown of course that the three branches of the above definition are indeed

equivalent statements.

For a finite projective module £ over an algebra A one can show that, applying the
definitions, and the (2.3), there exist an idempotent 7 = 72 : AM — AM such that
£ =2 1AM, When the algebra A is a x-algebra (as is almost always our case), then it
makes sense to define an Hermitian structure over the A modules, i.e. a sesquilinear
form (-,-) : £ — A which is positive, i.e. (n,7) > 0and (n,7)=0&n=0. ()
is said to be nondegenerate it V¢ € € ((,-) : € — &' is an isomorphism between the
module and its dual. If the finite projective module £ admits an hermitian structure

2

(i.e. is an Hermitian module), then the idempotent 7 = 7¢ is a true projector (i.e.

is self-adjoint as well).

The following theorem shows what is the relation between vector bundles and

finite projective modules.

Theorem 2.2 (Serre-Swan) Given a finite dimensional compact manifold M, any
module £ over C* (M) is isomorphic to the module of smooth sections of some bundle

E — M if and only if £ is projective of finite type.

2.5 Differential forms

Be A an (associative) algebra over C. Then we put the following definition

Definition 2.23 (Universal differential forms) It is the graded algebra

OA = @QPA

p=0

where we define'®

o The 0 degree is °A = A

!5Notice that each degree has a natural left A module structure.
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o The grading on the first degree § : A — QYA which is a C-linear map such
that (Leibniz rule)

d(ab) = 6(a)b+ ad(b)

o The first degree Q' A is the module generated by the image of the grading &
applied on the algebra A

e Higher degrees are defined as

QP_Aigl_A@A...@AQlA

~-
p

the product being defined by simply writing all the factors in a row, and rear-
ranging them using the Leibnitz identity, so that e.g., we have (a;0a3)(azday) =

a10(asaz)day — ayazdasday, a; € A.
e The grading 60 is extended to the higher degrees by using the rule

d(apday - - - day,) = dagday - - - day,

Using in particular the last property, we find (this is a consequence of the definition)

(5(&)1&)2) = 5(w1)w2—|—(—l)deg(“’l)wlé(MQ)
2 = 0

Notice also that the usual rule for the commutation of differential forms simply does
not make sense in this context.

If A has an involution *, then we can extend the differential algebra structure with

(0a)* = —d(a”)
(agday - -+ dag)* = (day)* -+ (0ar)*aj

The usual cohomology is uninteresting here, because

Im (5:Q271-1A4A-—QeA)

Ker (§:09A4-—QIt'4) 0 <= gq2>1
{ Ker (0: QA —Q'A) = C

i.e. it is trivial.

An interesting fact is now that the graded algebra we just defined is universal:
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Proposition 2.4 Suppose A is an associative algebra, and (@, A", d) is a graded
differential algebra; any morphism ¢ : A — A can be extended in a unique way
to a morphism v : (QA,0) — (B, A", d) of graded differential algebras, in such a
way that for every cell the following diagram commutes

v QA —  AY

ol ld

P QItA — A

i.e. doth =1pod.

The map is essentially defined by the following relation

Y(agday - - '5%) = ¢(ag)do(ar) - - -dgb(aq)

Being A a unital algebra, we now instance the universal graded algebra Q2.A, with
the definitions:
A = A
At = Ker (j: A®cA— A, a®cb— ab)
d: A — AQRcA, ar—aQc - 1Qca

We extend the above definition to the higher degrees by the immersion

Aqii\l®A"'®AAiC<4®C"'®C4

q

gi1
such that!®

apday - -day ~ ap(a) @c I — I®c a1) @4 - R4 (ag@c [ — I®c ay)
and that, being e and - respectively the internal and external multiplications

W O DA Wy ®War1 O DA Wyt = W1 DA DA Wytp
0w @4 Q4 wy = (aw) ®u - 4wy

W) @A ®Aawg a=w; @y Ba (wya)

The derivation d is extended by using the Leibniz rule and the usual identity

d(apday - - - day) = dagday - - - da,

16Words like a - b ®c ¢ ® 4 g are rewritten as (ab) ®c (cg), because of the immersion.



CHAPTER 2 25

just as it has been done for the universal differential forms. This can be accomplished

due to the fact that

wEAlﬁw:Zai@)@bi with Zale:0

We can define a very simple graded universal algebra defined precisely along these

lines, which is an algebra of functions on a generic manifold M.

An algebra of functions.
We now want to present a simple example of the above kind, based on the algebra
A = C(M,C) of functions on a space M. This is done with the identification

A®c - ®@c A~ C(M X --- x M)
and the multiplications

(feog)(xy,... a$q+p) = f(zy,... aqu)g(qua e 733q+p)
(he f)(@e, o wgq1) = h(@) f(21, - Tg41)
(f-P)(1, e gqn) = flon, .0, 1) h(Tg11)

and the differential operator
df = (I®c f— f ®c I)

which can be extended with
q+1

df(.’lfl, . ,[L‘n) = Z(—I)H_lf(.’lfl, vy Lj—1y L1y - - - ,ZL',H_I)

=1

on the spaces

AT = {f S C(M X X M) | f(xla oy i1, Ty Ty T 1y« oy Lgpl — 0)i:1,...,q+1}

2.6 Spectral Triple

Definition 2.24 (Spectral Triple) A triple (A, H,ID) with H a Hilbert space, A
a unital C*-algebra of bounded operators'™ on H,'® and I (the Dirac operator) a self

adjoint operator on ‘H satisfying

"For technical reasons, we define here the spectral triple only on unital algebras. The modifica-

tions of the conditions for A nonunital may be found e.g. in [18], at section 3 and the following.
18 Actually we should consider a generic representation © : A — B(H) of A on H. We will

usually omit the symbol 7, except in some cases, just for the sake of simplicity. We just notice that
the irreducible representations of .4 have a geometric meaning, see the discussion at section (2.3)

of the generalisation of Gelfand-Naimark theorem to a noncommutative C*-algebra .
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LV2¢R, (-2 1) e K(H)

2. Yae A, [P,a] € B(H)

Definition 2.25 (Even Spectral triple) A spectral triple (A, H,1D) with a self-
adjoint unitary operator I : H — H satisfying {I', P} =0 andVa € A, [[',a] = 0.
If the grading ' does not exist, the triple is an odd triple.

We now introduce the analog of dimension of a manifold into this abstract framework.

Definition 2.26 The spectral triple (A, H,ID) is said of dimension d if the op-
erator ||D||=% is an infinitesimal of first order (see def. (2.11)). The dimension is

intended to be nonnegative.

Definition 2.27 (Real Spectral triple) An even spectral triple (A, H,1D,T) of
dimension d, with an antilinear isometry J : H — H respecting the following

conditions

1. J2 = El(d)]l

2. JP =e(d)DJ

3. for even dimension JI' = i¢ I'.J
4. la, Jb*J*] =0 a,be A

5. (B, al, Jb*J*] =0

where the 8-tuples €; o are?

e =(1,1,-1,-1,-1,-1,1,1) e =(1,-1,1,1,1,—1,1,1)

In particular the last condition of the above ones is called the first order axiom, i.e.
it is the generalisation of the fact the Dirac operator I is a first order differential

operator. Usually one requires also that, defined the derivation

d(e) = [| D], o]

then Ya € A we have a, [D,a] € (), Dom(6*). Since in the commutative case this

entails @ € C*, this is called the smoothness axiom.

19The argument of € 5 is intended in Zsg, of course.
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2.7 Connes’ differentials

Given the spectral triple (A, #, D), we define the following representation of the
universal algebra Q.A, induced by the representation m : A — B(H) of the algebra
A

7 da— [1D, d]

where 7 is extended as a morphism (and due to the self-adjointness of Dirac operator,
also a x-morphism) of the complex Q.A, thrown by 7 in B(#). The usual rules for

the extension of the derivatives apply in this case as well, i.e.

agday -+ -0ag > 7(ag)[P, w(ar)]- [P, m(ay)]
m(0(aoday - --day)) — [P, m(a0)][P,7(ar)]--- [P, 7(ay)]

and the Leibniz rule.

But now some trouble occurs, because it is not true that the image of QA by 7 is a
correct algebra of forms. Indeed we notice that there exist forms for which 7(w) =0
and instead 7(d(w) # 0, the so called junk forms. Since the things so far have
been kept very abstract, it may be difficult to visualise these objects. Actually, in
the commutative case, their arise is essentially due to the lack of noncommutativity
of the substitute of the Grassman product, i.e. the formal product we obtained just
writing the factors one by one, in a row. We want to show this concretely. Take a
manifold M and the triple (A = C®(M), H = L*(M,S), D = 1#3,), with S the
space of spinors. The Dirac operator is just the usual one, well known from physics,
with 7# the usual gamma matrices (actually sections of Clifford bundle over M).
It can be shown that this triple (once it is made even and real, according to our
definitions before) represents the usual Riemann geometry of spin manifolds. We
just want to show what junk forms are in this context. So we write (7 is just the

representation by mean of multiplication by a function)

VieA w(df) =D, fl=7"0uf

A generic 1-form is

w(@) = fel@)"(x)0ugk(x)
k
we notice that the 1-form of Q' A

Wk = fOf — (0f)f = 2fof —6(f?)
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which is clearly non zero, is represented in this way
7T(wjunk) - ffyuaﬂf - (’yﬂaﬂf)f =0
and its derivative instead is

T(0wsune) = 2[D, fID, f] = 299" 0uf 0, f = 49" 0, f0,f 1

which is clearly nonzero for non-constant f(x). Notice that in the classical Grass-
mann product this “symmetric” part simply does not appear. The idea now is to
eliminate such terms, in order to make noncommutative differential geometry analog

to ordinary one.

Definition 2.28 (Connes’ Differential Forms) The graded algebra defined by

QA

QpA = —"——
P Jo + 0o

where we meant by Jy the following object?

Jo = P {w € W Ajn(w) = 0}

QA 7(QA)
Jo+6J0 w(0J0)

to eliminate the forms dw for which m(w) = 0 (because w € Jy) and 7 (dw) # 0.

The representation of is just , so that taking the quotient is the same as
It can be shown rigorously that the Connes’ algebra (2p.A is isomorphic in the com-
mutative case to the Grassmann algebra of differential forms, and so it is the non-

commutative generalisation of the latter.

2.8 Connections and Gauge fields

Let us take a right finite projective A-module £. For the Serre-Swan theorem, when
A is commutative, £ is the module of sections of some bundle. Even when the algebra

is noncommutative, we want to give a meaning to the concept of connections on such

“bundles”.

20Tt is easy to show that Jy + 6Jp is a two sided ideal, with differential grading, so that the
quotient keeps the property of Q.A.
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Definition 2.29 (Universal Connection) [t is a C-linear map
ViERAUA— ER@,QMA
which in addition follows the Leibniz rule
Vwe QA veERANA  V(-w)=Vv-w+ (-1)% - dw
Usually in field theory also the curvature needs to be defined. It is
R=Ve: & —E,4 Q%A
It is easy to show that V2 is also A-linear
Viv-w) = (V) w

and satisfies the Bianchi identity

[V,R] =0

We want to explicitly write an alternative view over the connection V. We could

view it as the map
[V, 0] : Endi€ @4 QA — End € @4 QA

This is customary when physicists say something about covariant derivatives in the

Noncommutative field theory. Now we state the important theorem
Theorem 2.3 Any module £ is projective if and only if it admits a connection.

For any finite projective A-module £ it is defined a natural connection, the so called
Grassmann connection; given the surjection ¢ : AM — £ as in the proposition (2.3),
and its right inverse ¢ : £ — AM = CM ®¢ A, and the projection p : AM — &,

we may define?!
Ver = po (I1@8) ot : E@4NA— £ @, QA

with 0 the universal differential grading, and ¢ as well as p have been extended in the
obvious way in order to be defined on the tensor products with the algebra 2.A4. One

could even write, for short V¢, = pd. It is easy to see that the difference between two

21Both ¢ and p exist due to the definition (2.22)
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connections, just like in ordinary geometry, is an A-linear operator, i.e. it belongs

to End4&€ ® 4 QA, so that we could write a generic universal connection as
V=V,+A4 A€ Endp € @4 0A

where we give A the natural name of gauge potential.
When the module £ is given an Hermitian structure, we may demand the con-

nection to be compatible with this structure. This is the requirement

v, e€  o(n,¢) = (n, V) —(Vn,()

and the sesquilinear form has been extended in the obvious way to the tensor product
E @4 QLA Tt is easy to see that the Grassmann connection is compatible, and that
for a general connection given by Vg, + A the compatibility requires that the gauge
potential be hermitian: A = A*.

What we have done so far was aimed at the connections coming from the univer-
sal calculus. But the same formal things can be re-done verbatim for the Connes’
calculus, due to the universality properties previously stated. So to deal with the

differential calculus it is enough to consider connections as maps
V:E@uOpA— Ea Q) A
following the rule
VweQpAveERNHpA  V(v-w) =V w+ (=1)-dw
with d(e) = [ID,e]. A generic (compatible) connection is now of course
V=Ve+A=pd+ A with A = A”

and so on.

2.8.1 Gauge transformations, Diffeomorphisms

Given a (left) finite projective A-module &, the A linear transformations of £ to itself

form the algebra of Endomorphisms of the module £. The latter is called End4 &€
Endy€={¢p: &£ —E|Vac Avel, ¢la-v)=a-9¢(v)}

If the module is Hermitian we can define End4 & as an involutive algebra, with an

involution * given by the usual rule

<’U1, BUQ> = <B*Ul, ’U2>
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Given the canonical isomorphism £ ~ pAM, with hermitian idempotent p, this
algebra is clearly isomorphic to the “projected” algebra p(A ®c vCur)p = prrAump,
so that we could identify the endomorphisms of £ as all the matrices b € 5, A); which
commute with the projector pob =bo p.

The algebra End4 £ has a subgroup formed by all the unitary endomorphisms

(so that they are automorphisms)
UE)={u€ Ends& | u'u=T=uu"}
For U(£) in particular is true that given a finite projective A-module £
E~pAlip,  UE) ~pU(AY)p

The action of the unitary group U(€) on the universal compatible connection V
is given by the natural law

u:V— uVu*

It follows that the curvature transform in the same way as well
u: V? — uViu*
The gauge potential instead transforms??
u: A— uAu* + updu*

Of course this is true also when instead of the universal connection one considers
the Connes’ connection, just in the same way it has been done above. For the

potential in particular we rewrite the above transformation rule as
u: A— vAu* + updu®

Now we take the unital C*-algebra A and consider its group of automorphisms,
Aut(A). This group has a normal (i.e. invariant?® ) subgroup, made up by automor-

phisms of the form
Vae A ¢, :a+— uau’ ve{ue Aluu" = 1T=u"u}

This normal subgroup is the group of Inner automorphisms Inn(A) < Aut(A). To

interpret the role of this automorphisms, we now get a commutative unital C*-algebra

22We use short notations, in which £ has been identified with pAM
231n the sense it is left invariant by any automorphism of A
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C>*(M) for some compact manifold M. It can be proved by considering the appro-
priate pullbacks, that the automorphisms in this case are just the diffeomorphisms,

1.e.:

Aut(C®(M)) =~ Dif f(M)

Of course, being this a commutative C*-algebra , all the automorphisms are outer
ones Out(A) = Aut(A)/Inn(A) = Aut(A), since Inn(A) is trivial; for a noncom-
mutative C*-algebra the correct analog of the diffeomorphisms are the outer auto-
morphisms, indeed the normal subgroup Inn(A) leaves invariant each irreducible
representation of A4 on H, i.e. any “point” in the (noncommutative) space.

Anyway, given a real spectral triple (A, 7, D) of dimension d with real structure
J, where the C*-algebra A is represented by 7 : A — B(H), we can see that any
u € U(A) generates an isomorphism with the new spectral triple (A, H, D+u[ID, u*]+
eo(d)Ju[ID, u*]J*) where the C*-algebra A is represented by another representation,
namely the composition of the old one with the inner automorphism generated by
u, 7 = 7o ¢,. This gives an interpretation of the inner automorphisms as “gauge
transformations” of the noncommutative geometry, and in turn of the gauge degrees

of freedom as inner fluctuations of the noncommutative geometry.

2.9 Integration, or (Dixmier) Trace

Let T' € IC(H) be a compact operator on some Hilbert space. As in definition (2.11),
we can classify T by the decay rate of the eigenvalues {7,,(T)} of its norm operator
VT*T. If Ty and T, are two infinitesimals of order respectively p; and py, then the
operator T T, is of order not greater than p;+py. Moreover the space of infinitesimal
on H form a two-sided ideal of B(H) Now consider the (generally divergent) sequence

of partial sums

For first order infinitesimals, the above sequence is logarithmically divergent. We
want our “noncommutative integral” to have non vanishing value only for infinitesi-
mal of first order. The first step is to define it on positive infinitesimals of first order.
The one can extend it by linearity, because of the fact the ideal of first order infinites-

imal is generated by its positive part. Now let 17" be such a positive infinitesimal, we
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can define an interpolation to non integer values of (1), and then the Cesaro mean

tr (1) = 1 /dt<T>t

log A t logt

which is bounded due to the fact
(T'); < Clogt

and moreover is asymptotically linear in the sense that

loglog A

| tr A(T1 + Tg) —tr A(Tl) —tr A(Tg) | S B lOgA

So any limit point of tr o (T") defines a linear positive trace, vanishing for infinitesimals
of order greater than one. In most cases of physical interest (like Yang-Mills and
Gravity), tr o (T") converges, so that the integral does not depend on the limit point
one choses (see [8] chapter VIII and [28] section 6.2 and 6.3).
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Chapter 3
Landau levels

In this chapter we will analyse the problem of electrons confined to move in a plane,
interacting with an orthogonal magnetic field (see [6]). We will start with the usual
one body problem, and then we will show in detail the projection to the lowest
level states, together with its generalisation to the lowest /N + 1 states, in particular
explaining the consequences in terms of noncommutativity. Then we will show one
more deformation of the algebra defining the Landau levels, which introduces a
noncommutative geometry as well, and presents some interesting physical features

for a system in a noncommutative space, for the sake of physical intuition.

3.1 The one body problem

First we need the hamiltonian for an electron in a uniform constant magnetic field.
The hamiltonian is written in the standard fashion

e (p . 9A>2 (3.1)

:2m c

We will choose the so-called symmetric gauge, for it keeps manifest the azimuthal

symmetry of the problem. So, in cartesian coordinates

B
A = 5(—.’172, ZL‘l)

We may as well suppress the X3 coordinate along which the magnetic field is directed.
The momentum operator
p=—iV
35
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will be considered acting on the first two coordinates of wave functions. Let us

introduce complex coordinates now. We pose

z = T1+1ix9
Z T —il‘g
0 = 30 —i5s)
0 = (3= +izz)

It is also customary to use magnetic units, defined by:

[2hc
¢ eB

The last quantity is called the magnetic length. It is a length scale of the problem

h

introduced by the presence of the magnetic field.

The hamiltonian may be written in a harmonic oscillator form, introducing the ladder

operators’
ai§+5 aTig—a (3.2)
They satisfy the usual commutation relation
[a,a] =1 (3.3)
So the hamiltonian takes the form
H=2da+1 (3.4)

There is another conserved quantity, the angular momentum, which is conserved
due to the rotational invariance, it is . To write it, we introduce two more ladder

operators, commuting with the a’s
—0 (3.5)

They satisfy the equation
b, o] =1 (3.6)

These operators can be shown to be the generators of the magnetic translations[17,

15]. The algebra of the latter ones is

[Xi» Xj] = iq €iji By where Bj, = B - Xy is the magnetic field

IThe a and a' operators are manifestly the covariant derivatives.



CHAPTER 3 37

which in our two dimensional case, with B = B %3, becomes?

[)%1:)%2]22'(13 and x3 =~ 0

{

In magnetic units this commutator becomes that of b operators (3.6) Now we can

or in complex coordinates

(X1 +ix2)
(X1 —iX2)

> <>
N N

write the angular momentum

J=bb—ala (3.7)

We see that [9,J] = 0 so that a base for the Hilbert space is given in term of

simultaneous eigenstates of both the operators, in this form

pim  gfn

Vmn, =

= NV Yo (3.8)

with
3wmn = (m - TL) wmn

The states 1),,, are normalized by

(Yrmn|tort) = /d22¢fnn(zaz)¢m(za z)e

The basic wavefunction ¢y (z, Z) = (2, Z | ¢y) is solution of

alto) =0 3 bltpo)

and therefore is gaussian:

1 .2
<Z72 | 77b0> = %(275) = \/—% 67% ||7,b0||2 = 1.

We see that each energy level (Landau levels) is infinitely degenerate. Let us give a

look to the lowest Landau level, the level with n = 0. The wave functions of these

states are
m =] 2

(& 2

R T
¢m0(272)—ﬁm

2The 3 ~ 0 constraint is actually a secondary constraint coming out by requiring the hamilto-

nian to be first class.
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These are the wave functions of particles localized in a “fuzzy” annulus, because
the probability distribution is angle-independent and peaked at |z]> = m. So the
lowest level is made up by concentric layers. In the higher Landau levels, the wave
functions present, besides the power factor, a generalised Laguerre polynomial factor.

We may count the states in each Landau level, in a disc® of radius R, their
R2
2
and ®, = 7l?B the quantum of magnetic flur. So we may say that in each Landau

number being n, = = q% being ® = 7R?B the magnetic flux through the disc

level there is one state for each flux quantum through the disc.

3.2 W, algebra

By using the fact that the generators of magnetic translation b, b’ commute with the

hamiltonian $), we can construct several obviously conserved quantities [6]
Lo = (b)) (3.9)
We may ask now which Nother symmetry they generate. Their algebra is

mAk
m!k!

[Lomy L] = Z (m — )k — )l Lotk—igmti—i — (7532) (3.10)

which, up to higher quantum corrections (we restore for a moment %), reads
(Lo, Lit) = ilmk — nl) Loy 1mri—1 + O(R) (3.11)

This is known to be the algebra of (classical) area preserving diffeomorphisms, or
Weo. The algebra defined by (3.10), like all the quantum generalisations of (3.11), is
called W, algebra.

3.2.1 Second quantization

We can give now a more intuitive description of the generators of W, algebra (see
(6] and refs. therein) by using second quantization. Namely, given the wavefunctions
(3.8), we define the field operators

é(za Z) = Z Clnwln(za Z)
In

3This configuration is known as the Corbino disc geometry
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where we have used the Fock (fermionic) operators

[Cln; C]Tgm]-i- = 5lk5nm

as usual in field theory, acting on a Hilbert space defined from a vacuum |0) as the

(closure of the) linear span of the set
{11 cknl0)}

The second quantized version of the L,; operators is

e TS S S PSR L IEC B
(

> MNs+1—1)!
S chucori-inY )
=t

||M8

o

n

It is manifest that Landau levels with different principal quantum numbers (the
number of a'.s in the state) are not connected by the L, operators. Each term of

the sum
Ns+1-1)!
C;,ncs-i-l—t,n (l _ t)'

simply shuffles the particles within the same (n-th) level, varying their angular mo-
mentum. When an electron is shifted on an orbital with larger radius, then its
angular momentum is increased, while it decreases if the radius of the final orbital
is smaller.

We are only interested now in the lowest Landau level (n = 0), and in the action of
L on the ground state. The latter is the state with the minimum angular moment,

which is simply, for N particles
Q) = C}Lv,o e 'C$,0|0>

Applying a generator of W, to [2), we notice immediately that it vanishes identically

if s < t, while it reduces to a number in the case s =t

L) = < t>3s
£SS|Q> = th“b

(s+1)(N

So the only nontrivial case is when s > ¢, in which case its effect on the ground state is
that of increasing the angular momentum of the ground state |€2) by shifting electrons

from inside the Fermi sphere to more external orbitals. So the incompressibility of
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the ground state is simply due to the fact it is the state with minimum angular

momentum, and can be written by the highest weight-like conditions ([6])
Lyl =0<=s<t (3.12)

We stress here that the commutation relations close within the set of £, with s < ¢.

So the whole Lie subalgebra generated by {L }s<; annihilates the ground state.

3.3 The truncation to a finite number of Landau

levels

3.3.1 The theory in the lowest level

For B — 0o, we may wish to consider only the states belonging to the lowest Landau
level. They have been written above, as a gaussian times an entire function of z.
Now we characterise them by a projector that maps any wavefunction to its n = 0

component. Similarly any operator is sandwiched between two copies of the projector
o0
Io = > Ymoo (3.13)
m=0

This operator projects on the levels with n < N. To pick out the lowest at all, we
put N = 0.
We can see that the commutation relations are not left unchanged by this (nonuni-

tary) transformation. In particular, we may compute that:

[Z,Z] ~ [Za Z]N = _Z:;O:O Vo owlno

[0,0] ~ [0,0]y = =1 X tmo © g

We see that the algebra of functions of the coordinates of the problem, abelian at

(3.14)

the beginning, is made noncommutative by this projection, as well as the algebra
generated by the derivatives. To be more specific, we have obtained the algebra of
the noncommutative plane, generated by the projected operators zy = I[pz I, and
Zp = [z [, which satisfies

[20, Z0] = — Lo

For the derivative operators it is

- 1
(00, Do] = 1 I
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3.3.2 Projection to the first N + 1 Landau levels

This projector is generalised to higher levels (see also [32, 31]) with the definition

N

Iy = > > Ymnoth, (3.15)

n=0 m=0

In this way we find the following results

[Za Z]N = _(N+ 1) Z;Lo:o me 077me - _(N+ 1)(]IN_ ]INfl)

[a’ a]N - _% Z:::O "/)MN oqvme = _%(HN— ]INfl)

[av Z]N = [57 E]N = Iy— % Snozo d)mN od)mN = %HN‘F %HN—I
[

0.7y = [0.2], =0

(3.16)
In this equations we do not find any longer the noncommutative plane algebra,
because the commutator [zy, Zy| is not proportional to the identity anymore. We
notice that as the number N is sent to infinity, the sequence of a generic projected
operator Ay = IyAly does not converge operatorially to anything, as can be seen
by the fact the norm of the operator >~ ¥,y © ¥,y equals one for each N.
Anyway, it converges weakly, i.e., the convergence is limited to any matrix element
between normalizable states. This is also a consequence of the fact one cannot define
a derivative on a finite rank matrix algebra, e.g. take X an hermitian N x /N matrix

generating the algebra of (formal) power series
A={)a,X"}
and take the derivative Ox be such that
[0x,X]=1

with I the N x N identity matrix. Then taking the trace of the above equation we
have a 0 = 1 inconsistency, because the trace of a finite rank commutator vanishes,
while this is obviously not the case for the identity matrix. The only way out from
this, exists when the matrices are “infinite” dimensional so that the trace is divergent

(protecting the commutator, roughly speaking, by the usual linear manipulations).

3.4 Deformed Landau levels

This section is inspired by a work of Nair and Polychronakos [38] about quantum

mechanics on noncommutative plane, we introduce effects of a noncommutative ge-
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ometry in the well known physical problem of the quantum mechanics of Landau
levels. We reconsider the algebra of the ladder operators a,a’ and b, b, and gener-

alise it as follows
[a, aq =1
[b, bT] = B eR{ . (3.17)
[a,b] = 0 = [a, bT]
We want to keep the interpretation of this algebra as that of the quantum mechanics
on a plane thread by the magnetic field; therefore we take the a, a’ operators as the
kinematic momenta with which the Hamilton operator is made, and the b, b' as the

magnetic translations on the plane. So we have
H=2d"a+1 [b,9]=0=[9

We still have an Hilbert space built starting from a vacuum [¢y), by the application
of both a and b. We use the same notation we employed before in the “ordinary”
case, (3.8).

We can fix the form of the coordinate operators in terms of the a’s and b’s by
considering what the commutation relations of the latter with z, z must be. We have
the requirements

[2,a) =0, [z,al] =1

just as in the ordinary case, and
b1, 2] =0, [b2z] =1

because of the transformation rules of the coordinates under magnetic translations.

These relations fix the coordinates z, zZ to be

{Z = W/ +a (3.18)

zZ = b/B+al

Since we want the rotational symmetry in our problem we must fix the form of the
angular momentum, J, such that it both commutes ), and transforms the coordinates

in the natural (vector) fashion, i.e.
3.0]=0  [32=2 [Jz=-2

With this properties J can be found to be
) i

J=— —da'a

B
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Of course the normalized eigenvectors of §) and J are modified in the following way

b]‘m n

From the (3.18) the noncommutativity relation of the coordinates can be computed
to be

Yimn =

i =1- 1

B

Of course when g = 1 the original commutative theory is recovered. When § # 1,
these coordinates do not have a straightforward meaning, because they are not c-
numbers: let us discuss this point in more detail. In the study the quantum mechanics
of a point charge in ordinary Landau levels. Usually what one does, is to pick up
a pair of functions from A (since we are on a plane), and identify any value of the
pair of coordinates, with a point on the plane. In the quantum theory, there exists
the position operator, and to each point of the plane corresponds to a vector in an
orthonormal complete set {|z,z)} of eigenstates of position operator. As we have
said in the section 2.2, in the more abstract algebraic framework, a point on a space
is basically an equivalence class of irreducible representations of the algebra A of
(C"2%) functions on that space. From the same point of view of the above lines,
each one of these equivalence classes is labelled by the eigenvalues of the coordinate
operator, which are just c-numbers. The operators (3.18), do not form a complete
system of operators, because they cannot be simultaneously diagonalized, and do not
lead to pairs of coordinates. Hence, one obtains a less detailed information from the

coordinates only.

3.4.1 The Weyl transform

When noncommutativity of coordinates has been introduced, we cannot describe
physical quantities using pairs of coordinates. An idea is to consider Wigner func-

tions. Basically we want to study the matrix element

(o, 20(p— 2)0(q — 2)2¥mo)

between two one-particle states of the lowest Landau level; here © - - - °© means we are
taking the symmetric (Weyl) ordering, that avoids ambiguities in the definition of
the above equation. Another reason is the following. Let us introduce now the Weyl

transform which maps functions to operators. Take the algebra of functions on the
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plane, and take the algebra (noncommutative plane) Ay generated by the operators
2! satisfying

(2", 2] =0, i,j=1,2
We can associate to each function f : R® — C on the plane the operator of Ay
1 .
Ulf] = — [ &’k [ d*¢e* 0 3.20
1= e [ @ [ e 0p(g (3.20)
This is a “noncommutative generalisation” of the Dirac ¢ relation

f(z) = /dy5(w —y)f(y)

so that we can write, using complex coordinates:

Ulf] = / d’¢ f(€) 30(& — 2)0(& — 2)3 (3.21)

This formula gives a precise meaning to the idea of “substituting” an operator for
a coordinate in an ordinary function; indeed it allows us to write each operator of
Ay in an unambiguous form. Moreover the equation (3.20) does automatically the
job of ordering operator monomials in the most symmetric way. Now one can ask if
it is possible to rewrite the product of two such operators in the same way, i.e. as
a “operatorial” kernel smeared with a “classical” function. In particular we would
like the product of the smearing functions be at least associative. By plugging in the
definition of the Weyl operators, and using the Campbell-Baker-Hausdorff lemma,
we can find that it is indeed possible, and that the product is given in terms of the
following convolution
1

(2m)?

which defines the Moyal product %

UIUTg) = / Pk / PEeEfag() = Ul *g) . (3.22)

[xg(&) = (&) 2% % g(¢)
and the derivatives are meant to act on £ variables according to the direction of the
overset arrows. Of course this product is not commutative.

Every operatorial ordering of (3.21) defines a different quantization of the algebra of
regular functions on the plane, but all of these quantizations are equivalent. Thus,
we are free to chose the symmetric ordering, being the most natural one. In this case
we have the algebra generated by the operators z, z satisfying

1

[2,Z] =1— =

B
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The expression of the matrix element is:

(1/%,0 ,30(q —2)0(p — Z)Ziﬁm,o) = / (d:vd)y (wl 0,€ ellamtpy)=ilzatay)y, 0) =

dxdy . - Zdgb —diept
:/ €l(q$+py)(€wa¢l,0,e Bybe 5Tb e—mawm,o)ef

(2m)?
— / (d;d)?é ilaz-+py) (6%37”*1/)[70 , e*%wwm,o)e—%ez
s

wl8

zy
e2B =

g

(3.23)

Here we used the fact that in the lowest Landau level the a operator vanishes,

a; o = 0. The computation leads for the matrix elements

iz iy Il R B (—iz) = (—iy)™™ e
(eﬁybfwl;o €7 bfwm;o) - [ltm 52:; (I = s)!(m — s)!s! e v (3.24)

where m A [ = min{m,[}. Notice that this is just a polynomial in z and y times
the overall exponential. Now we can put it back into (3.23) and take the Fourier

transform obtaining

wlo,o q_z me -

mAl 5 s 3 _ .
1+ﬂ‘ \/;Z =) —8)!3! (‘a_q> <_8_p> e P (3.25)

We can go on computing an alternative form that does not contain derivatives

(Y10, 20(q = 2)8(p — 2)2¢mo) =

m—+l—2s—t
mAl (m s s [—s—t ,m—s—t
= (_l)l-l-m |25| l'm E EM) b ( 1+6> P ! ef%Pq
m1+ |\ prHm = = (l—s—1t)(m—s—1t)s!t

(3.26)

The above formula allow us to write any expectation value of the form (1b170 JULS] wm,g)

as an integral on a “quasiclassical phase space” (g, p)

(Zbl,o / U[f] 77bm,0) -
l+m m-+l—2s—t
-0 (#5)

LN S S ><
B (l—s—=t)!(m—s—1t)st!

X / dqdp f(q,p) e THP7pi=~t gms=t (3.27)
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Now, let us write down the expression of the wavefunctions of the first Landau level
for p =1

l 2
_ z _ =l
77bl,0(2;7 Z) = e 2

!
After rescaling of the last integral, we can recognise it as the matrix element between

the wavefunctions of appropriate states in the lowest Landau level for g =1

m+l
23 2 s+ -
/ ql‘f(qp)e 1+gpqplst mst—’ﬂ\/l—S—t —8—{;) <—>

‘ ‘/dCdcwmocc <\/Hﬂ\/ )msto(co

(3.28)

We see that (3.27) can be written as a linear combination of the analogous matrix
element for 5 = 1, involving just the states with lower angular momentum (¢, o with
lower ["). This implies that the deformation of the algebra considered here, does
not violate the incompressibility defined in terms of W, algebra (see section (3.2)):
the matrix elements of any observables are indeed written in terms of 5 = 1 matrix

elements between states of equal or lower angular momentum. In this interpretation,

0-1{5 5)

putting

we can write

(szo U[f] meo) =
{aAm (lLAm)— N\t (148 sfl*T’"
_\/l'—; tXO: S't' ) (—2t))!(l—8—t)! ( [—s— tOIfd)m s— tO) (329)

3.4.2 Second quantization and density

Now we come back for a moment to the § = 1 situation, i.e. to the commutative
case, for the theory projected to the first Landau level. In this context, one has the

wavefunctions
B=1 Zl 2| 2
1,0 (Zv Z) = ' €
!

As discussed earlier, we introduce the second quantization, using a set of ladder

(fermionic) operators
a, o Ao} =0m
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and the Fock space generated starting from the vacuum state |0) as the closure of

the span of

{ [T el 10y; VI, ki €N, by < }
l

with (0]0) = 1. The field ¢(z, z) in second quantization is

zZ) = Z 1 io(z, 2)
!
We need the ground state of the incompressible fluid of NV + 1 electrons
) = ¢y - -chlo)

Now we want to evaluate the expectation value of the density operator p of the field
¢ on this fundamental state |2). The density is

p(2,2) = ¢'6(z, 2) Z CzCH/)zo 2, 2)Pro(2, Z)
For its expectation value one finds

(Qp(z,2)|02) = Z Yio(z, 2)ko(z,2) (Olco - - - en clepcly - ch]0)y =

= Z Vio(2: 2)hio(z, 2)
=0

This can be written as
N ~ ~ N

@l 2)10) =3 [ b6, 08¢ = 266 = 2) 1ol O = Y- (o, 8.8e000)
=0 =0

For 8 # 1, we repeat the previous steps, obtaining the following relation

N

(U [p(n, M|, = Z (Zbk,o / 25n5ﬁ21/)k,0)

k=0
where 7 is a complex number which represents the point where we computed the
density in the § = 1 framework of above. We can apply now our formula (3.29) to

get the result after some manipulation

XN:Xk: <k> <1i5>“ “(8_(’;;’1’ ;Tﬂ‘m’) e~ |T¥alm
s — S).

QAU 7)) s =
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where U(a,c,z) is the Tricomi function (hypergeometric confluent of the second
kind).

We can now put the complex coordinates of any point in the place of n and 7,
so that we can see that the expectation value of the density on the lowest Landau
level is rotational invariant. We can plot it for various values of 5 and at fixed N

(see figure 3.1).

I
\\
AR\

I
2 4

10 12

Figure 3.1: Density plot for various values of

When one varies the number of particles, we expect that the droplet expands
without changing its plateaux density, because the filling fraction of the deformed

Landau level is % We can see this to happen when § = % in figure 3.2.

The correlation function (p(x)p(y))

We turn back for a moment to § = 1, in order to show the form of the density-
density correlation function on the incompressible ground state (Q|p(z1)p(22)[€2).
We will work out a form which holds also for # # 1, and now try to compute the

correlation function (p(x)p(y))q. A straightforward computation leads for generic 3,
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Figure 3.2: Density plot for various numbers of particles
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in the same way as before, to the result

(QIUp(21, 21)]U[p(22, 22)]I82) =
= Z Uio(21, Z1)Vk0(21, 21) U0 (22, Z2)n 0(22, Z2) (Olco - - - cn CICk chcn C}Lv X 'C$|O> =

kilmn

= 6*(21 — 2){U[p(21, 21)]) +

N
- Z(T/)l,o , 20(21 — 2)0(2 — 2)8¢m,0) (me,o , 20(z2 — 2)0(% — 5)27/%,0) +

I#m

+ Z(Zbl,o , 30(21 — 2)0(Z1 — 2)8%,0) (me,o , 20(22 — 2)6(Z, — 5)2¢m,0)
l#m

Operating on this expression, we can see the last two terms are

N

Z(%o,o (21 —2)0(21 — 2)3 wmo)(ﬁ/)mo,o (22 — 2)0(%2 — 2)3 Zblo) =

N
:Zum!% 28 o Tis(2Btaz)
Pt |1+
L i (—1)! ( 2 )HTW_ m—s—t st
m lAm—s _ +3 25 ) 2[3
x P — X
; tz:; (l—s—=1t)(m—s—t)slt! (Zl 1+5) (Zl 1+7

~ m

Lam [Am—s (—1)t (ﬁ) 2 2 l—s—t ] 25 m—s—t
<2 z_: (l—s—t)!(m—s—t)sl! (ZQ 1+5) <Z2 m)
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and
N
> (W0, 36(21 = 2)8(21 — 2)0) (Yo , 26(22 — 2)0(Z2 — 2) mo) =
l#£m
3 1 2[3 ’ -2 z2Z2+212Z1
:;l'm'ﬁ m e 1+5( + )><
- I l—s (_l)t ﬁ)ls . L N
X ;to (1= s — ))2slt! <1+5> (z171) X
X 50; ((m — s —1t)!)2s!t! <1+5> (2272)

One can see that the two terms above are both real, and moreover they are both

invariants under simultaneous rotations of z; and z, on the complex plane
Zi €Z¢Zi
zZi —— ewzi
We can considerably simplify the formula for the correlation function by computing

it for z; = 0 and with z, on the real line n = 2z, = Z5, away from the origin n = 0.
We obtain

(QUUIp(0))U[p(n, 7)]|2) =
P N CONE
2%( )(Hﬁ)m_sms _(m7_’;)+.ﬂ|n|) e il (3.31)

The shape of the function as we vary the number of particles NV, is left basically

1
2

_ﬁ
+

invariant within a characteristic length, the latter being basically the only object
which varies with N. This is exactly what happens in commutative case. As it is
apparent from figures 3.4 and 3.5, in the noncommutative case (5 # 1) the two points
correlation function of the density has an uncommon feature near the origin, because
it becomes negative. This is an effect of noncommutative deformation of the algebra
of Landau levels. To understand it in physical terms, we can do the following: we

switch on a small perturbation, in the form of a two body potential

~

V(w,y) = ()" (@)V(z — )b ()" (y)
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' 2 s a 5 6
Figure 3.3: Plot of the correlation function of the density with itself for various

numbers of particles for f = 1 (commutative case).

and we compute the first order perturbation on the unperturbed ground state. The

result is (for simplicity we do the computation at x =0,y =y =r)

V(r) = V(0,7) = (QUIp0)]V(0,n)U[p(r)][2)

In the case of the harmonic potential V(0,7) = 2r?, we obtain for the effective
potential V(r) a shape which has a minimum at r # 0, as shown by figures (3.6) and
(3.7). It means that the attraction between the particles due to V is balanced by an
effective “repulsion” that is related to the loss of localization on the noncommutative

plane (see also the introductory chapter of this thesis and [28]).
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. .
2 4 6 8

Figure 3.4: Plot of the correlation function of the density with itself for various

numbers of particles f = 3 (noncommutative case with § = —1).
0.02}
0.01
2 4 6 8
0.01
0. 02

Figure 3.5: Plot of the correlation function of the density with itself for N = 20

particles, § = 3.
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Figure 3.6: Effective potential for various 5 € [0.5, 1.5]

20 40 60 80

Figure 3.7: Locations of minima of the effective potential as a function of § €
[0.2,0.99].
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Chapter 4

From Lagrange incompressible
fluid to Noncommutative

Chern-Simons theory

4.1 Incompressible fluid

At high values of the magnetic field, and at low temperature, the two-dimensional
electrons of the quantum Hall effect form an incompressible fluid, the density of
which is uniform and corresponds to the observed plateaus [44, 34]. The fluid is
incompressible because the density waves have a gap, which is infinite in the limit of

infinite magnetic field [47]. We shall be interested in this limit only.

The incompressibility of the fluid implies that the theory is invariant under trans-
formations leaving invariant the volume element, i.e. under the Area-preserving Dif-
feomorphisms. Having a granular picture of the fluid in mind, one may view this

transformations just as a relabelling of the particles of the fluid.

4.2 Lagrange coordinates

The basic object in the Lagrange description of fluids [25] is the set of “comoving
coordinates” X (t,x), i.e. a set of vector valued functions of the time, each of them
“following” the time-evolution of a particle. Each function of this set is labelled by
an initial condition for the position of the particle it is following, i.e. X (¢t = 0,x) = x
(see fig. 4.1).
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Figure 4.1: Comoving coordinates following a particle

Using the comoving coordinates we may express quantities depending on fixed

points in the space!, such as the fluid density and the current, in the following way

plt.r) = [ dxpo(x) 5(X(t,x) — 1) = ——L& (4.1)
/ det (%)x:w’r)
i) = po / dx X (£, %) 6(X(t, ) — 1) (4.2)

Here py is a reference uniform density in the “space of labels”. We now write the

Lagrangian for the incompressible fluid in comoving coordinates

Lo = /dxpo {%Xz(t,x) -V [det (%)]} (4.3)

We can see that the theory defined by this lagrangian is invariant under transforma-

tions such that

{ x o x+f(x) with  f(x) oc €90;p(x)  (4.4)

X(t,x) — X(t,x)+ (f- V)X(¢,x)

We see that X(t,x) are scalar fields under these transformations. In two dimensions

these ones are the most general area-preserving transformations.

4.3 Interaction with a magnetic field

We are now going to add to this lagrangian the interaction with an external magnetic

field
B .
;CI = % pr[) Eab Xa Xb (45)

IThis is the standard Euler description of fluid mechanics, in which the observer just “sits”

at a point in the space, measuring the quantities of the fluid as this passes by.
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It’s easy to see that £’ is invariant under (4.4) as well. Using N&ther theorem we

may see that the conserved quantity deriving from this symmetry is
0X 1 0 0

det — (t,x) = €™’ —X,—X
¢ ax(’x) 26 ‘ Ox; = Ox; ’

This is proportional to the inverse of the density of the fluid, in comoving coordinates.

So we can say that the density of an element of the fluid is a constant when we follow

its motion. At the equilibrium we put as a constraint

0X

In the limit in which the magnetic field is infinite only the magnetic term and the

constraint survive. So we are left with the lagrangian

B . 2
L= %Po / dx |:(Xa - {Xaa AO}) Xbeab + _A0:| (47)
Po
where we have introduced the Poisson brackets notation
1 ..0 0
A B} = —¢e¥ A—B 4.8
{ ’ } p0€ a.’L‘i 8xj ( )

and the Lagrange multiplier Ag(x). The term in curly brackets plays the role of a
covariant time derivative: it is part of the Gauss-law constraint (4.6), that will be

important to ensure the invariance of the theory.

4.3.1 Introduction of noncommutativity

Some considerations are in order. The number of states of two-dimensional elec-
trons in each Landau level is the ratio between the total magnetic flux threading the

2mhe - This means that, in each

surface and the elementary quantum of flur &5 =
Landau level, there is a state for each one of these “flurons”, so that the fluid shows
somehow a “granularity”. In the sections 2.2 and 2.3, we saw that the introduction
of a noncommutative algebra in the place of the algebra of functions on a manifold,
causes the loss of the notion of points of the space. Actually one is left with the
classes of irreducible representations of the algebra itself, which contain less infor-
mation. We may view this also from a simple point of view, going back to the basic
interpretation of quantum theory: one considers the uncertainty relation generated
by the commutator of the coordinates of the noncommutative plane

el =i (MM 2
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This means that in a noncommutative theory the points are somehow “blurred”, or
fuzzy. Thus introducing the noncommutativity is a clean way to introduce a sort
of delocalization of points of the space. One way to achieve this, is to consider the
Lagrange coordinates as time dependent matrices. In this approach, the integral is
substituted by the trace, and the role of the Poisson brackets (4.8) is taken by the

commutator
{ il

After rescaling of the Lagrangian, we obtain with these substitutions
B .
£(Xa, Ag) = Sbr [(X + i[Xa,AO]) Xpe™ + 204, (4.9)

where we have introduced the constant § = 1/p,. The equation of motion for Ay is
just a constraint, because it appears into the Lagrangian without time derivatives,

like a Lagrange multiplier, and it is the so said Gauss law constraint
XaXb - XbXa =10 €ab* (410)

which has to be read as a matrix equation. Because of the reality of the coordinates
X(t,x), the matrices which substitute them has to be taken hermitian. The model
(4.9) can be called Chern-Simons Matriz Quantum mechanics. The reason of this
name can be understood in the following way [4]. Take the theory (4.9) as a theory
of fluctuations of the matrices X, on a fixed background x,. So we could write,

introducing the fluctuation matrices A,
X, =z, +0e®A, (4.11)

where the background z, satisfy the commutation relation [z, z3] = if. We could
also view this form of X, as if we had written the displacement from the initial
reference positions of each fluid element by the displacement vector #e®*A,. So we
just need to substitute (4.11) into (4.9), to obtain

L(A) = 379“ {euw (AﬂayAU + gAﬂAy,%) } (4.12)

where the derivative 0, has been defined as

.0
30-—§-

ai:[—z'%,-] i=1,2
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As it is apparent, equation (4.12) is the noncommutative generalization of the Chern-
Simons Lagrangian. We could rewrite the action in terms of the appropriate Moyal

product in this way

B ~ ~ T
S'(A) = 7/ d'w 7 (A, 50,4, + Ay % A, % A, )
where now the /L are space-time functions, in the spirit of section 3.4.1. We can

now write down the equations of motion for flu, up to the first order in 6 to find [47]

1
b <8aAb 3 {Aq, Ab}) =0

This is the equation of the fluid whose dynamics is given by the action (4.7) in which
we substituted (4.11) meant as a commutative expression, i.e. in terms of commuta-
tive x and A(x,t). Of course this fact says nothing about the inverse path from the
commutative to the noncommutative theory. This must be done, as we did, choosing
the most natural (in a sense minimal) matrix action. Having said all this about
the action (4.12), we are free to come back to the form (4.9) instead, which will be
considered in the following. This is the so called “Chern-Simons Matrix Quantum

Mechanics”.

4.4 Matrix Chern-Simons theory

We will use, in the sequel, the Matrix Chern-Simons theory defined by the action
B .
S(Xa, Ag) = 5/ dt tr [(X +i[Xa, AO]) Xpe® + 204, (4.13)

As mentioned before, the equation of motion of the Lagrange multiplier Ag is just

the Gauss law constraint
XoXP - XPX —ife® 0 (4.14)

or in components
G = X; X5 — X2X) —i0 6y =~ 0 (4.15)

The canonical coordinate-momentum pairs obtained from the above first-order la-

grangian are

W Byoy Ly 90 @ Byoy o yv® . 0
(X5 7§in ) ~ (X5 7—7Jm) and  (X;; 7§in ) ~ (X a—Zm)

v v
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We have to perform a choice of polarization by adding to the kinetic term of the
lagrangian a total derivative term. In this way we have the canonical pairs

M pv@y (v . 0
(Xij ,Bin ) = (Xij a—lm)
ij

The canonical commutation relations are consequently
1
1 2
[Xi(k)7Xl(m)] - E(Sim(Skl

The constraint (4.14) cannot be solved by finite rank matrices. To see this it is
enough taking the trace of both sides of the equation, and noticing that the trace of
a commutator between finite rank matrices is always zero. So we must search the
solutions in the space of operators or, to say this roughly, of infinite rank matrices. Of
course this can mean problems, when one needs to do actual computations, because
we need at least some condition about the behaviour of the matrix elements restricted
to orthogonal complements of increasing codimension in the Hilbert space on which
operators are defined. Indeed we will see in the next section a constructive way of

truncating the coordinate operators while keeping a consistent Gauss’ law constraint.
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Finite N Noncommutative

Chern-Simons

In view of the problems mentioned in section 4.4, we need a truncation of the model
to finite dimensional N. We now will follow the work [42], but using functional
integral techniques. The action for infinite N is (remember that X, are hermitian

matrices)
B .
S(Xa, Ay) = 5/ dt tr [(X + i[Xa,A0]> Xpet — 204,

and the equation of the motion of the Lagrange multiplier Ay, i.e. the Gauss law

or
XX — XPXe—ife* =0
We now modify this equation in the following way

XoXb - XX —ife® — K ~ 0 (5.1)

where all the matrices here are N-dimensional, and we have introduced K such that

the finite NV inconsistency disappears
tr K = —10N

An important thing to notice, before we pass to the functional integral for this model,
is that the above constraint is invariant under the U(N) gauge group if together with

the X,, we vary the K matrix itself, in the same matrix fashion

K— UKU!
61
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To modify the action in order to obtain the consistent Gauss law constraint, we could

add to the action a term of the form

—i/ dt tr {K Ao}

At this point, we want to write the partition functional for the theory, considering

for now K as an external field. We now will use the action for the X, matrices

X=X,

Scs[X,Y]=B / dt tr (XY)  with
Y =X,

which correspond to the choice of polarization corresponding to the canonical pairs

J

(Xig, BY;i) ~ (Xy, —7357@_)

and the commutation relations
1
(Xik, Yim] = E(Simf;kz

The action S¢g differs from the kinetic term of (4.13) for a total time derivative. We
must constrain the functional integration only to matrices satisfying the Gauss law
constraint (5.1). This is done by integrating out the Lagrange multiplier Ay, thus

obtaining a Dirac delta function into the (reduced) partition functional
Z[K] = / DXDY e SesYIG[[X, V] - if - — K] (5.2)

Now we notice that the action, still preserving global gauge invariance (i.e. invariance
under time independent U(N) transformations), is not invariant under an U(t) €
U(N) depending on time. Infact, if we perform a (time dependent) U(N) gauge
transform U(t) on the X, Y we obtain

Scs[X,Y] —B / dt tr [% (UXUT) UYUT] =

:B/ dt tr XY + B/ dt tr UTU[X, Y] = (5.3)
=Scs[X, Y] + B/ dt tr U'UK + iBf / dt tr U'U
Where we used the constraint and the usual properties of the trace. The last integral

is
Ty =iBf / dt tr UTU = iBo / dt%lndetU = —Bf argdet U

to
t1
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where we could eventually put the integration limits to infinity. If we take a gauge
transformation trivial at the limit times, then Zy is just an integer multiple of 27,
being it just a natural representation of 7 (U(NN)) = Z. Since in the path integral this
term enters as the argument of an exponential, the product Bf must be an integer
number, in order to have a consistent definition of an U(N)-invariant measure of the
path integral: we have just found the condition for the quantization of the number
B6, analogous of the level of the ordinary Chern-Simons field theory. From the

original definition of € in terms of the Lagrange fluid, we find

Z > Bl = B = H
pPo vV
where v is the filling fraction of the Hall fluid, i.e. the density rescaled by the square
of the magnetic length ¢ = B. So in physical terms, we find the quantization of the
filling fraction.

Now let us look at the second integral in the last row of (5.3)
_B/dthKUT

We write K as a matrix which columns are arbitrary linear combinations of, say, M
vectors of CV. We only need to make it an anti-hermitian matrix; we write K in the
form

K:ZAJAT A€ N(CM; J e uCuy (54)
For simplicity we take J = I. Under a gauge transformation on X, Y the rectangular

matrix A changes by a left translation

x L uxut
(5.5)

A Lua
In this way the constraint is left invariant. Consider now the action [42, 35]

S'[A] =iB / dt tr ATA

This form of the action of (A, AT) gives as canonical pairs

J

Ajo, BAL) ~ (Ajg, —i——
( a) za) ( ZéAZ'a)

so the relative commutation relations are'

1
[Aia, Apy] = E(Sikéab

!Notice that in case of a more general F' we would rather have [4;,, Yo FoeAp] = %&kéab being

B> . Fy Aj. the canonical momentum of Aygy.
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Its change after a gauge transformation (5.5) is given by
/ dt tr ATA —s / dt tr AUH/ dt tr UAATUT

We can see that the last term is exactly the change of Scg we saw in (5.3). Now,
anyway, we will consider only the “minimal” version of the substitution (5.4), i.e.
when A € CV 2

K=iv¥' K =i

and the action we should add to S¢g to render it invariant is
Sp[¥] = —iB/ dt tr Uh
So that the total action is given by
Sr = Scs[ X, Y] + Sp[V¥] (5.6)

Of course in the partition functional we must consider also the integration over these

new degrees of freedom, the ¥’s. We choose for them a flat measure, so that
Z= / DU DV DX DY FesXV IS 511X V] — i - —i WPT] (5.7)

This is the Chern-Simons MAtrix Model introduced by Polychronakos in [42]. This
functional integral is invariant under U (V) gauge transformations, intended as acting

in the following way

x L uxut
vy 5L uyut U=U(t) € UN) (5.8)
v Luw

5.1 Faddeev-Popov quantization

We want to treat the partition functional (5.7) with the standard techniques of
Gauge Field Theory [12]. To do this, we first need a convenient gauge choice. The
first coming to mind is obviously the gauge in which matrices are diagonal. Anyway
this is not completely possible. We cannot diagonalize both X and Y (at fixed )

with a single U(N) transformation, because of the constraint. Hence we will choose

2See [35] for a more complete discussion of the general substitution for K, and its interpretation

in terms of multi-layered fluid physics.
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to diagonalize just one matrix, and the other one will have some degrees of freedom
fixed by the constraint, while the integration will be free on the others.

As a starting point, we will use the following identity
- / W(O)SUXUT = AJApp[A] (5.9)

where p(U) is an invariant measure on the group of unitary time depending trans-
formations, A is a diagonal matrix which is the gauge fixed form of X. By standard
Field Theory arguments, the Faddeev-Popov determinant depends only on gauge in-
variant quantities.

We insert now the identity (5.9) in the integral (5.7), and we obtain
Z= / w(U) / DU DA DY ¢iSosAVUIHSsUY 511N Y UN—if-—i US WU App[A]

where we used the invariance of the total action (provided the quantization condition
on B0 is met) and of the Dirac delta. Now we can use the fact the measures on X, Y
and ¥ can be defined to be unitary invariant, and write the functional in the gauge

fixed form

Z= < / u(U)) / DU DADY e SesWYIHSEII SN V] — i - —i UUT| App[A]
(5.10)
Of course the volume of the gauge group is not relevant for the physics. We need
now to compute the determinant App[A]. It can be done rewriting the identity (5.9)

in the following way
1= [ u@)BUXU" =~ AARelA] = [ u(@)UX ~ AVIAR(A

using the invariance of right shift of the argument of the delta.?

Now the above integral can be recognized, in the standard way, to be

App[A] = { / WU)UX — AU]] o pet'w

The functional derivative of the gauge fixing functional is

(5(UX — AU)(#)ab

1\i - 6ai(Xkb - )\a(skb)(s(t — t’)
oU(#)* ><ik>(ab>

3 Any Jacobian arising by the shift can be reabsorbed in the measure p(U), in that it depends
only by the transformation U, and not by A.
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The determinant can be easily seen (e.g. introducing ghost fields) to be

Det' (0ai (Xko — AaOkp)O(t — t')) = exp {/ dt lnH H det'(X — )\a.)} —

a k#a

— exp { / dt [ On(t) - Ak(t»?}

i<k

where det’ means we are excluding null modes, i.e. the determinant det’ is not per-
formed on the eigenspaces relative to eigenvalue A,. This is the obvious generalization
of the Vandermonde determinant [, (A — Ax)? for time depending matrices. We

can put this result into the partition function, obtaining

Z =Quu /@\If@A@Y e/ SesYIHSBIT ST Y] — i - —i O] x

xexp{/dt lnH 2}

We can still elaborate on this expression, rewriting the argument of the Dirac delta
as follows
(A Y] =0 =i WOT) = (X — A\e)Yig — 1003, — ity =

i M)V — i) for ik
—100;, — 1y, for 1=k

In this way we may well see that the the delta decomposes into a “diagonal” part
depending just on the absolute values of the components of ¥ and f, and a more
complicated “off-diagonal” part

H59+|1/)Z [Tl = A0 Vit )]

k—l
itk )\z_)\k

The first factor simply constrains the integral over ¥, to be an N-fold integration
over complex unimodular numbers. The second part is now a constraint for the off-
diagonal entries of the matrix Y. But it is not linear in Y;;. We can rewrite it in a

way it be of the form §(y — a)

[ (Deto(t — ) (A — Ae)) 6 [Yie — i Azl’l_w’;k] =

i#k
= exp{— /dt In T Tn( 1)} ]Y; k_ZAzﬁzwik”

£k
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This factor cancel the Faddeev-Popov determinant, to give the gauge fixed partition

function*

Z = Quw /mf H59+|¢| | etSalvi /Hm Dy; e'SosPivi H5 Z,c—z;/’fp';k]
(5.11)

where the Chern-Simons action is
SeslA Y] =8, yi] = BZ/ dt \;y;

The correlation function of any gauge invariant functional of the X, Y, in particular
the addition to the action of any invariant potential, can be obtained by insertion
into the (5.11). Notice that the Hamiltonian of this Chern-Simons Matrix Quantum
Mechanics, just as in the ordinary case, is vanishing; moreover we see that (5.11) is
just a (constrained) phase space path integral, in the conjugate coordinates (\;, y;).
We will discuss the meaning of these conjugate pairs afterwards.

Considering the fact this model is the matrix model generalization of an incompress-
ible fluid, and that we just cut it off to have a finite number of degrees of freedom,
physically we expect that in absence of a confining potential, the density of the par-
ticles (or quasi-particles), which are in a finite number, must fall off to zero, because
they are spread on an noncompact space. The simplest confining potential is the

quadratic one (see [42])
V[X,Y] = g/ dttr (X2 +Y?) (5.12)

This is manifestly U(V) invariant. In our A gauge, it can be written

VIA Y] = Z/dt Y2+ A\2) + Z/dt SWE (5.13)

where we have imposed also the gauge condition [¢;|* = —f. Inserting this into
(5.11), we can see that the partition functional for the problem with the confining

potential becomes
ZV] = Qu(ny Zw / H@)\i@yi eiSosNiyil =iV [N yi] (5.14)

By direct inspection, we see that the dynamics of the eigenvalues is given in terms of
the Calogero model Hamiltonian V[A;, y;] of the (unidimensional) problem described

by the conjugate pairs of coordinates (g;, p;) = (A, ¥i)-

4For a different computation of the Calogero model in the framework of 1-dimensional matrix

models, the reader can see the first part of the paper [20].
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5.2 Scalar product

By using the same technology we used to compute the functional integral of the
model, we can compute also the scalar product between states of the matrix model.
We are not interested now in the actual explicit expression of the wavefunctions sat-
isfying the constraint (5.1), because in the next section we will have them computed
in a more interesting gauge choice, namely by passing to complex coordinates: that
will be the point at which the comparison with Laughlin theory of quantum Hall
effect will be made.

The scalar product between two states |®1) and |®3) can be rewritten in the form
@2 = [ TLaX; (@) x o)
ij

where it has been inserted in the scalar product the resolution of identity in terms

of coherent states®
= /HdXij IXWX| X)) = et X50) (5.15)
]

Applying the same machinery we used before, the scalar product reduces to the

integral over eigenvalues

(D1|®2) = / TTan TTOw =207 (@A (A} ®2) (5.16)
i i<j
The Vandermonde factor in the integrand can be cast in the definition of the wave-

functions in this way
O[X]~ [J(N = A)@[X] (5.17)
i<j
so that the wavefunctions changes it symmetry under exchange of eigenvalues (i.e.
particles). With this identification the scalar product reduced to the eigenvalues
becomes an integral with a flat RY measure.
The (5.16) can be used to compute the Green function by functional integration

in the usual way. The basic expression is of the form®

G[X', X, 1] = (X' t|X,0) = (X'|e"™|X)

5 According to the typographical traditions of Quantum Mechanics the hat in the symbol X 1 is

showing its operatorial nature as opposed to the c-number nature of X.
6We allow here also for the inclusion of a potential as in (5.12) and (5.13) in the hamiltonian of

the system.
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Now we insert the identities

1= [TldQs Q1@ |@) =eef)
1= [ TLans ma = et

1 .
with (Q|I1) = ¢ 119

at intermediate times 0 = t; < t; < --- < ty_; < ty = t and the constraint
(5.1), which must be cast essentially in the definition of the evolution operator in
the obvious way”

M = Py € Propys
What we obtain is of course nothing else than the partition functional we had in
(5.11) or (5.14) (see also [20]).

"This is the evolution operator making only the gauge invariant (physical) states evolve.
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Chapter 6

Complex Coordinates for the
Chern-Simons Matrix Model

In the previous chapter we have found the path integral of truncated Chern-Simons
matrix model. In particular the fact that a 2-dim model ends up in the quantization
of a 1-dim one may be puzzling. Anyhow, in a noncommutative geometry, one
usually cannot give sense to the concept of localization of points in terms of n-tuples
of coordinates, in the same way as in the phase space of a system after quantization.
As in the ordinary Quantum Mechanics, discussed in chapter 3, one may adopt
Wigner representation (i.e. Weyl transform and Moyal product) in order to use
coordinates in the description of physical problems on a noncommutative geometry.

In the previous chapter we performed the quantization of the model in hermitian
coordinates. The reduction to the eigenvalues led to a model described in terms of
real, one dimensional coordinates of the electrons. To have a more direct physical
interpretation of the result, we prefer working with complex eigenvalues. Hence we
need to introduce the analogous of the quantization in complex coordinates.

What we now describe is the “Holomorphic quantization” of the model [5]. We

can define complex coordinates for our matrix model
X=X, +iX, X'=X, —iX,

With these coordinates the action becomes

B _ - -
Ses[X, X1 + Sp[¥] = %/ dt tr (XXT) — %/ dt tr UT (6.1)

while the constraint is
G=[X,X-20—-TVoUlw0 (6.2)

71
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and as before the consistency condition on W is
2NO+ Y ity =0
As a result the partition functional is
Z= / DU DU DX DXT SesNXT+SsV 5Ty X1 — 29 . —wwl] (6.3)

This path integral is still U(N) invariant. But now, for a general § # 0, any matrix
satisfying the Gauss’ law constraint cannot be diagonalized by a U(N) gauge trans-
formation. This is because of the fact that necessary and sufficient condition for a
complex matrix X to be diagonalizable by U(N) transformation is [X, XT] = 0, i.e.
X is a Normal Matrix.

When 6 = 0, instead, we have classically from the Gauss’ law constraint

(X, X =WoW¥l and ) [’ =0

So ¥ =0 and [X, X' i.e. X is normal.

Thus the classical expectation is that for # = 0 our path integral becomes an
integral over normal matrices. Though, as we will see in the sequel, the natural
measure we will be lead to is not that induced from the flat measure over complex
matrices by the natural inclusion. This is of course due to the presence of the Dirac
0 function enforcing the constraint, which in turn naturally arises as a result of

integration over the Lagrange multiplier Ay.

6.1 Diagonalization

In the space of complex matrices the subset of matrices with distinct eigenvalues is
the highest dimensional invariant subset. This means, the sets of matrices with two
or more degenerate eigenvalues is negligible in the sense of Lebesgue measure.

Since a matrix X € yCy with N distinct eigenvalues is always diagonalizable by
an invertible transformation of basis vectors, we can write any complex matrix X,

besides a null-measure set of matrices, as

X =VAV'' VeGL(N,C) A=diag(),...,\n) (6.4)
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6.1.1 Canonical coordinates

The kinetic first order action integral

- | - |
5 [ dt e (Xx7) - 7’7/ dt tr Uhy

implies the canonical hamiltonian coordinates to be

iB . 5
(Xij, 7Xij) ~ (X, —Z@)

1B, )
(d’l; —7%) ~ (d’l; _25—1/)l)
These last equations in turn imply the commutation relations

2
(X, Xp1,) = §5iz5km
2
[wka 77bl*] - _Eékl

With these relations one may rewrite the Gauss’ law constraint (5.1) in Schrodinger

representation in the following normal ordered form

O Ny oBOs, — (6.5)

I
S L S0r

Performing the diagonalization (6.4) we obtain the obvious result on X;; and

Xy = V;'l)\lw;l
Ur = Viudy

These factorisations induce a decomposition on the cotangent space at a point in
(X, ¥) manifold. These decomposition may be found, and in turn this implies the
decomposition of derivative (momentum) operators on tangent space. The decom-

position on cotangent space is

dXij :V;l(d)\lfslm - [A, dU]lm)Vn:]l
de =Vi(déy + dviém)

where we defined

dvij = Vl_ldw]

)
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Requiring that the canonical pairing is invariant what we obtain for the momenta

sl
0 0 1— 4, ) )
s =Vi O (q” >] K

1S

0X;; AN N —=An \8bm Ovpm
5 )
5o by

Since the canonical pairing is left invariant, also the commutators of the new vari-
ables are still canonical.
One could be puzzled by the fact that with this diagonalization we have twisted the
usual (and handy) relation between the matrix X and its hermitian conjugate XT.
This can be seen as though the introduction of noncommutativity (i.e. switching on
§ # 0) made up for the appearance of a background into the first-quantized theory.
On the other hand, in the next section the path integral formulation will make clear
that the hermiticity of the hamiltonian of the present system is spoilt by this diago-
nalization. This is not bad, in regard of the unitarity of the model and positivity of
the norm (e.g. see [3]), as far as the hamiltonian preserves P7T symmetry. The non-
hermiticity of the hamiltonian causes by itself the fact the conjugate of the matrix
X after the diagonalization is not the conjugate of the diagonalized matrix anymore
(see e.g. [14]). We will not consider this in the more general framework now, because
it goes beyond the scope of the present work.
However, we have recovered the rule of conjugation in the form of a covariant deriva-
tive term, similar to the effect of some background introduced by noncommutativity.
We will see how the expressions for the new canonical operators will work properly:
in particular the operators that are the matrix extensions of the generators of W,
(see section 3.2) will have the correct behaviour under complex conjugation, when
the covariant derivative term is taken into account.

An important thing to notice is that the Gauss’ law constraint (6.2) is reduced,

after normal ordering, to the following form

4] 5 .
Applying the constraint to physical states we get
g
= +2B0) |Ph =0 , VI
Gij|Phys) = 0 <= <¢l 591 ) [Phys)
2| Phys) =0 < I#m

6vlm

! These results are nothing more than the contragredient rule plus the fact the decomposition by

an invertible matrix cause a nontrivial form of parallel transport.
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The non-diagonal components fixes the covariance of physical states under GL(N, C)
transformations, precisely they imply that the wavefunctions of physical states must
depend on V only by terms of the form detV™; the diagonal ones are the remaining

nontrivial part of the constraint, and we will give more on this later.

In case of a more general auxiliary term A;,, asin (5.4), we can perform the
previous decomposition mutatis mutandis, to obtain as a result for the diagonal part

of the constraint
Vi ZAZSL +2B0 | |Phys) =0
’ s 514!5

6.1.2 Path Integral (Faddeev-Popov adapted)

For 6 # 0, the GL(N, C) diagonalization we just performed is not a gauge transfor-
mation in the path integral, indeed any gauge invariant term of the action transforms

non-trivially; e.g. any term of the kind of
tr XX = tr A(VTV) AT (VIV)

The point here is to make a GL(N,C) transformation inside the path integral re-
adsorbing in some way the non-invariant term. The strategy to do this is the follow-

ing:

J = / DXDXTFIX, X' = / DXDXT DADAT App x

diag

X / p(V) oc[VTIXV — Alse[VIXTVIZE — AT FIX, XT)
GL(N,C)

Here, in the Fadeev-Popov identity the d¢ functions are intended not as the usual 6,

but as a “complex argument” dc, defined in a way that
6@[M]5@[MT] = (S[M]
Working out the integral above we obtain [12]

J = n(V) [ DADATApp[A, ATJF[A, (VIV) AT (VIV)] X
GL(N,C) diag

X / DXDX5e[X — AJse[VIVXT(VIV) L — AT =

= / n(V) DADAT / DA App oA — (VIV) IAN(VIV)]FIA, A]
GL(N,C) diag
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The quantity App may be computed in the usual way being it a jacobian determinant,
just keeping in mind that now the coordinates are complex, so that we essentially

obtain the square of the determinant we already had for hermitian matrices, namely

AFP - HH |)\Z - )‘j|4
t i<y
Now we only need to integrate out the GL(N,C) transformation. When we do this
integration, the integration over A is reduced to the integration over matrices which
have the same eigenvalues of AT (because it is an integral over a conjugacy class of

AT). The determinant we obtain performing the integration
/M(V) /@f\ Sc[A —WAW™]  with W =Viy

is
ITTIOv =X
t i<y
This cancels part of the Faddeev-Popov determinant, actually the one depending on

{A7} only; let us write now the complete path integral, putting altogether

/ DPDP / DADA [ JJni — Aj)?etSesbAliss®Sl51 A R] — 20 — @0 @] (6.7)
t i<y
where the change of variables from ¥ to ® has been made in order to re-adsorb the
change of the action after the GL(N, C) transformation. Another consequence of this
change of variables, as is already clear from the general framework of this theory, is
to keep the constraint invariant.?
A clarification on the ¢ function in the complete partition function is in order

here. The original path integral had in it
6[[X7 XT] — 20— Vo \I/T] = /@Meitr M([X,XT]—20—Wowt)

Since the argument of the ¢ is an hermitian matrix, the matrix M in the integral
is hermitian as well. When one conjugates the argument by an invertible matrix,
the proof of the invariance of the § goes on by conjugating M by the inverse of the

matrix. Since the top form
[dM] = N dy;
1,J

2In terms of the equivalent Chern-Simons noncommutative field theory, both these effects are

expressions of the gauge invariance of the A, CS action.
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is invariant under conjugation, and the eigenvalues of M are invariant as well, the
integral defining the delta function still makes sense; so does the ¢ function. One may
consider it as a trivial example of holomorphic path integral [29]. We can write down
the ¢ function on the diagonal gauge according to the components of the argument
S[IAA) — 20 — @0 ®] =T 61\ — ARy — 0idy] [ 8120 + ¢idi] =
i#] i
:;

1
=TT——0[A; -
AT TN =

] H 520 + pidi]

So the jacobian determinant coming from the ¢ cancels the part of App which de-
pends on {\;}, that’s to say the Faddeev-Popov determinant, just as in the hermitian
case, gets completely cancelled out at last. Hence the path integral (6.7) at the very

end of the diagonalization process is

/ DPDP / DADASeos WAFiSE R TT g[8, — A‘Wi ] 0020+ ¢idi]  (6.8)
i#] RSN

where 5
and

Sp[®, B = —@g/dt Z:q'sqﬁ

After the elimination of the ¢ and & auxiliary fields, whose dynamics is actually
completely constrained, we see that the above is the path integral of the theory of

the electrons with the coordinates {(\;, 5\1}, projected at the lowest Landau level [5].

6.2 The Physical Hilbert space

We already mentioned the fact that the constraint

(4 +2B0) [Phys) = 0, VI
5U‘jm|Ph,ys> = 0 <= I#m

implies strong restrictions on the form of the wavefunctions of physical states. First

of all, making use of the relation

B, 1%
avijdet(V—z]I)—det(V—z]I) (V_Z]I)ﬁ (6.9)
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we easily show that the only V-depending covariant factor (besides the constant) we

may find in a wavefunction is detV, indeed, putting z = 0 in (6.9)

0 V
detV = detV (—) =detVi;; =0<=1i#]
8Uij Vv ji

A result similar to (6.9)

0 Vv
det(V" — zI) =ndet(V" — 2I) | ——
Jor et(V" — zI) = ndet(V" — 1) (V“—Z]I>ji

can be used to show that in the general case the same vanishing property holds for
detV™ terms only.
The diagonal components imply instead that the wavefunction is homogeneous

of degree —2B6 of any of the ¢;, so a generic wavefunction is of the form?

k
Z[X,V, ®] = detV* (H qﬁi) x[X] k= —2Bf

We have to impose further restrictions on the reduced wavefunction x[X] in order to
determine it completely. To find out how, we must impose the physical condition of

incompressibility, which is doable in terms of representations of W, algebra.

6.3 Incompressibility

6.3.1 Matrix W, algebra

We now want to revive the discussion of section 3.2 regarding how to impose the
physical condition of incompressibility on the Hilbert space of states of the system.
What is in order now is to define the matrix substitute of the algebra of area-
preserving diffeomorphisms. We recall the definition of the generators Ly of W, in

terms of the generators of magnetic translations
Ly = (010"

Since Chern-Simons matrix model lives in the limit B — oo, we need only to
deal with the restriction to the lowest Landau level of the L operators; in complex

coordinates their many body first quantized expression is
Litlno = Zg(i)t
= - “Cdzg

3Recall that due to the level quantization condition, Bf must be an integer number.
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The proposed matrix generalisation of the above operator is the following?
L = ser X0(x)'s

which in the case of normal matrices reduces to
(mat) o\
Lo — g 257t E zs
st - k~k i k azk

after canonical quantization. So we see that our definition of LS;“) reduces to the
many body definition of the ordinary L,; in the lowest Landau level.

We can generalise the incompressibility conditions (3.12) to our new operators Eg':at):
they must be imposed on the ground state of the theory as a necessary condition for

describing the quantum Hall ground state
Lgr;at)EGS =0 s<t

In the case of the matrix model generators, the algebra which turns out comput-
ing the commutators is different by (3.10), and does not close by itself, indeed the
commutator

3,

? mn

gets several corrections, which we interpret as finite size corrections,® which are

products of terms having the following form
UiXS (XD, (6.10)

The exact form of the W, algebra in this matrix version is still unknown, due to the
ever increasing complexity of the direct computation of commutators between higher
order generators.

One can easily see that when performing the commutator, if we started with two
operators £ and £5 to the both of which the highest weight condition (3.12)

applies (i.e. s <t and m < n), then, in the result, each factor of any addend would

present X and X' in the form

XX with ' < ¢’

“The expression is normal ordered (+*) in view of canonical quantization.
>The fact (6.10) are finite size correction of W, algebra can be seen working in a gauge in which

the vector ¥ has the form (0,--- ,0, NBf). In this gauge only the entries of the last row and column
of X*(XT)! matrix enter into the Ps('t“at) operators. In a proper N — oo weak limit only the “bulk”
of the matrix will contribute, and moreover the ¥ vector need to disappear from the expressions,

so do the Pg;"at) operators.
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Since we want the Lie subalgebra generated by the Lg’;at) with s < t to vanish on

the ground state for consistency, we must join to the set of generators ﬁg’;at) the set
P = o gt X' (X1 Ts, with the conditions

s't!

Lgrzat)EGS =0 s<t

mat)e (6.11)

Pst =as =0 s<t
Regarding the normal ordering, we can see that if both the (6.11) are met then
they hold also for any other normal ordering. This is due to the fact that in each

reordering term
(X)X = (X)X XTIX T — (X)) 0+ vl X!

the powers of X and XT are decreased by the same amount, except for the leading
term that, at the end of the computation, becomes X*(XT)!. So when imposing the
conditions of incompressibility (6.11) in a different ordering, one may work recur-
sively, at each step just having to care for the leading order condition, because lower

order ones are already satisfied in virtue of the previous steps.

6.3.2 Wavefunctions for the CS Matrix Model

In order to find a general covariant expression (i.e. one which depends on X, Xf
and ¥, ¥) one can try to solve the constraint (6.5), or alternatively one can use the
group theoretical properties of the states, exploiting the invariance under SU(N)
algebra generated by the hamiltonian constraint G, as has been done in [42, 24]; one

recovers in such a way the wavefunctions [24]
S[X, U] = tr X - br X [0 (XO0), - (XY ), ] (6.12)

Here the tr X factors in the wavefunction creates the excitations, while the e part

of the function is the wavefunction of the ground state
Eas[X, U] = N (XO0), - (XD, (6.13)
These expressions are obtained simply by contracting all the indexes of any monomial

[ Xt

with the invariant tensors of SU(N), namely 0 and €, to form a gauge invariant

of the form

expression. Moreover the Gauss’ law constraint (5.1) requires the total number of
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to be k, fixing ultimately the form of the wavefunction.
Now we show our incompressibility conditions (6.11) are met. It is more easy to
work with antinormal ordered operators (we already showed after (6.11) this can be
safely done), writing (s < t)

tr X5 (X! et v (XO0), - (XNTN),
where we use coordinate representation, i.e. XZ-TJ- R~ %ﬁ. When all of the derivatives
have acted on the factors of the determinant, the indexes in the matrix products
get rearranged. But since there are more derivatives with respect to X;; than mul-
tiplications by Xj;, the total degree in X of the determinant is decreased. So in
each addend of the resulting polynomial at least two of the columns of the matrix
(X" 1W)j]; j=1....~ are made equal, making the determinant vanish.

A similar argument is true for the finite size corrections:
WX (X)W v (XOW), -+ (XNHD),

where in coordinate representation ] ~ 5%1_. The only difference is that here after
the rearrangement of indexes some factor loses some extra power of X because there
appear terms of the form tr X" for some h, due to the presence of ¥ and derivatives
with respect to W: of course the total degree in X of each addend of the resulting
polynomial is decreased and so they vanish since they are determinants with two or
more equal columns.
Notice that if s > ¢, the previous argument does not apply. So one can easily see by
direct computation that Eg’:at) and Ps(?at), with s > ¢, when applied on ground state
wavefunction make factors of tr X" for some h appear, so generating linear combi-
nations of states like (6.12) from the ground state (6.13), i.e. creating excitations on
the ground state. This is exactly what happens in the framework of chapter 3 when
acting on the ground state with a generator Ly with s > ¢. Therefore the Hilbert
spaces of physical states is a representation of the matrix W, algebra.

Working out the ground state wavefunction (6.13), we find its behaviour under a

similarity transformation X — VXV 1
Eas[X, U] — Zas[VXV L VU] = detV* Zg4[X, T

One thing clear here from the transformation rule is that the symmetry of the wave-

function under exchange of two coordinates is given essentially by the parity of the
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exponent k.

Using the above rule, by diagonalizing X, we find =g to be equal to

k
Eas[X, U] = detV* Zgg[A, @] = detV* (H z/)i) [T = 2)F

i<j
Therefore, after the reduction to the eigenvalues, in physical complex coordinates,

the wavefunction (6.13) manifestly reduces to a Laughlin wavefunction.

6.3.3 Scalar product

In complex coordinate the scalar product between wavefunctions is expressed in a
different form than that of section 5.2. What makes the difference is actually the
form the amplitudes of the coherent states assume when expressed in terms of the

basic operators X and X', namely while in section 5.2 we had

Q) = e“Qf“|0> (QIQ") = 0[Q — Q]
1Ty = et 1152 |0) (IT) = 6[11 — 11

1 .
and the wavefunction is (Q|II) = Q—e“’rHQ
m

now that we have switched to complex quantization we get

Q1) = e+ |0)
(@l = (0let X!

, i
the wavefunction equals (Q;|Q}) = et @@

Moreover we will need to incorporate in the scalar product the ¥, U' as well. We do

it by defining

wh) = e o)
(2] = (0]t
with (0, [Wh) = etrvavh

When we diagonalize the matrix X, and correspondingly transform the matrix X7

as

X =VAV!
Xt=VAV
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then the coherent states gets defined by the chain of relations
<X| . <O|€trXXT <O| tr A(V-IXTY) <<A|
|XT> - etrXTX|0> — e tr A(V— XV)|0> - |A>>

where we have used the transformation rule on the canonical momentum operators
XT caused by the diagonalization of coordinate X as was shown in section 6.1.1. In
the same section we saw that this transformation leaves the canonical coordinates
invariant, being it the quantum version of a canonical transformation. So all the
properties of coherent states are still in charge with the gauge fixed coordinates and
operators, we just need to keep track of the GL(N,C) conjugations.

Differently from the hermitian coordinate situation, here we have to insert the
projector on the physical states in the scalar product itself. This is due to the
fact that, in covariant notation (i.e. before fixing the gauge) the dependence of a
wavefunction on the matrix X, on imaginary conjugation |)* = (| is switched to the
dependence on X, so that the resolution of identity by coherent states involves both
the coordinates and the momenta at fixed time. So the equation we must work on

is now
(12) = /Hdwzdw /HdXUdXT ¢t XX X WYX, W(2)0][ X, X T]—20— WUl

We have for the scalar product

- | [Tastéuc™" T] 1ot + 201

. / AR e (11,8 (A, 912 [T o1Ry — 22

i#j v

(6.14)

From here we can see that the property
(2t X5(XT)'Z5) = (tr XH(XT)*Z,|Z,)

beholds also in the diagonal gauge, when we account for the nontrivial covariant
derivative.

We can write in example the scalar product (6.14) in the case of N = 2, obtaining

o [ 2k \"
(GSL|GSy) =N / A\ dAad ) d)y e Szt Mk ()\1 —hot ) (A — Xp)F
1= A2

where N is the constant obtained by the integration over ® and ®. The form of the

above integral, due to the already mentioned twisted conjugation (i.e. the presence of
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a nontrivial parallel transport term), differs from the standard form for the overlaps

of Laughlin wavefunctions in the Quantum Hall effect:
<GSk|GSk> = N/ d)\ld)\gdj\ldj\g e PIEEPON (5\1 — j\g)k ()\1 — )\g)k .

Anyhow the quantities which possess a physical meaning are the values of the (nor-
malized) scalar products. These are numbers, and only in their terms one can com-
pare the Matrix Model with the physics of Laughlin wavefunctions. In addition we
notice that for # — 0 we have

N — A,
but the scalar product does not manifestly reduce itself to the ordinary normal matrix
integral ([33, 19, 54])

/dﬂﬁﬂng—MﬂM—Ag.

This is due to the presence of the § function enforcing the constraint. Usually when

defining the normal matrix integral, it is said that the conditions

(X, XT;;=0
are not independent. Indeed if one uses a 0 function to enforce the above condition,
one gets very soon into troubles. These troubles are apparent already in the N = 2
model, let us use the following decomposition for X ([54, 52])

0
X =U+RU' with U € U(2), A = diag(A1, X2), R = ( . S )

to write the above constraint

[xxw=U< Ir[? Tﬂrmg)w

F()\Q — )\1) —|T'|2

Manifestly the four conditions are not independent. If we chose the of diagonal ones,
to put into a Dirac ¢ function, we would obtain a jacobian determinant which is the
same we obtained in our computation |A\; — Ao| %, which cancels the Vandermonde
determinant of the measure induced by the immersion of the set of normal matrices
into the bigger set of arbitrary complex ones [33, 19]. If instead one uses one of
the diagonal entries of the constraint, one gets no jacobian, and so there is still a

measure in the integrand, which is just the usual Vandermonde. When computing
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the integral over normal matrices, one can overcome this ambiguity just inducing the

measure from the flat measure of complex matrices, by the inclusion
A = diag(\;) — X = UAU'

But this just corresponds to a peculiar matrix quantum mechanics. Indeed in our
model we are forced to put a Dirac ¢ function into the integral in order to enforce
the constraint, because it is a remnant of the Chern-Simons gauge theory in the
temporal gauge, in which the component Ay of the CS gauge field acts as a Lagrange
multiplier (see (4.7), (4.9) and (4.12), and discussion about them). Integration over
Ap gives the Dirac delta. With the introduction of the ¥ the entries of the constraint

become independent. Indeed we see for N = 2 the constraint is

( P =l e = A - vy ) 0
O e e (e (1

This breaks up into four d-like factors
L1 XTi=wies5) = 6(Ir P[0 )3 (r |+ 1o ) 6 (r(Aa=Aa) —th195) S (F(Aa= A1 )=o)}
ij

Now all the entries of the constraint matrix are independent from each other, and
we see the last two ¢ factors drop a jacobian. Therefore, as we stated above, the
integrand in the limit in which 6 vanishes does not reduce itself to the integrand of
usual normal matrix model, but we must consider only the values of the integrals
normalized to the norm of the ground state as the correct physical quantities to be
compared with those coming from Laughlin theory of the Quantum Hall effect. As
we already showed in the section 6.3.1, the Hilbert space of physical states realizes
a representation of matrix W, algebra. Thus we state that the scalar products can
be computed algebraically by using the commutation relations defining the matrix
W, algebra itself.

As argued by other authors [27, 26], the expression for the wavefunction of the

ground state in hermitian coordinates can be written in terms of

2 0
xh—xW_2_2
ij ij 1
Boax{}
in the same form of (6.13) because of the antisymmetry of the expression, being it a
determinant, so that in terms of the eigenvalues of XV, in the hermitian gauge we

have the wave function

SX V] oc [ (i — )"

1<J
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which becomes, after the shift (5.17)

BX] o [ s — )
i<j
So we find in this hermitian gauge the shift several authors already found [42, 43, 4]

in other ways®.

6.4 Conclusions

We have studied here the matrix model derived from the many body action of elec-
trons in the first Landau level, both in hermitian and in complex coordinates. We
worked out the path integral and the scalar product of the theory in both cases: in
the latter one, in particular, we performed a holomorphic quantization in order to
specify the diagonal gauge choice; it is useful to stress once more the importance of
introducing the constraint in the definition of physical scalar product. The constraint
in this gauge has been solved explicitly, showing the general form of the gauge fixed
wavefunctions.

In this diagonal gauge the derivative (momentum) operators get a term of parallel
transport, as we saw in section 6.1.1; this term spoils the explicit form of hermitian
conjugation, as we saw, the off-diagonal entries of X on the diagonal gauge are fixed
by the constraint in terms of the physical degrees of freedom (i.e. the eigenvalues
of X, {\;} and the auxiliary ¢ and ¢), while the diagonal ones keep the dynamical
meaning of canonical momenta of the reduced system.

The off-diagonal entries are generated geometrically as a nontrivial parallel transport
in the manifold of the variables (X¥) when the diagonalization is performed: they
appear in gauge fixed variables as some sort of background the which arises when

noncommutativity is switched on. Let us look at the gauge fixed action

As we saw also before, the noncommutativity of coordinates gives rise to a “back-
ground” A(A, @, :I;) which is just the expression of the fact we cannot find a basis
of simultaneous eigenvectors of both X and X'. This background terms, do not

enter into the action directly, since their canonically conjugated variables, i.e. the

6Notice, however, that the wavefunction here is expressed in terms of the z;, the real eigenvalues

of X only, which is hermitian, not in terms of the eigenvalues \; of the complex matrix X.
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off-diagonal entries of A, vanish due to the gauge condition (auxiliary condition in
the sense of ref. [12]). Hence we are left with the action of electrons in the lowest
Landau level, with coordinates {(\;, A;)} [5].
One more key to understand the appearance of this “covariant derivative term” is
the analogy with the so called statistical interaction of Fradkin and Lopez [16].
Moreover we analysed a matrix version of the W, algebra generators, rephrasing
the incompressibility conditions in terms of them, keeping track of the finite size
corrections. The already known ground state wavefunction [24], which are recognised
to be Laughlin states, turned out to be incompressible in the sense of these new
operators. The incompressibility conditions can be imposed in the model at fixed
(diagonal) gauge. The direct computation proves itself very hard to perform; one
(mat)

can anyway explicitly see it at N = 2 for example, and low exponents s, in Lst ,

finding for the simplest cases [5]

mat Z )\l a)\l

k2 + k
mat

A= — _rrr
Z 6)\2 ; (A — )2
applying these operators to the ground state

EG’S XX H()\Z — )\j)l

i<j

we see the incompressibility conditions require that ¢ = k£ + 1. The apparent dis-
crepancy of the above with the Gauss law constraint may be solved by considering
that the outcome of the diagonalization we performed is a nonlinear expression in
the physical variables: there can be subtleties about the proper normal ordering of
the operator at fixed gauge. Indeed, if one considers, into the operator LE{";” above
when reduced to its gauge fixed form, the action of % on the Vj; and V,;* employed
for the diagonalization, one can check that it annihilates the ground state with ¢ = k.
On this argument about normal ordering troubles, see also [5].

We stress once more that there is not yet a complete control of the algebra of the
L£®%) and P®t) and that the latter ones in particular can arise as descendants of

mat) into the incompressibility conditions.

the operators L/
We focused here on the properties of the ground state, but we saw also that the
excited states can be obtained by applying nontrivial £2** and P operators. So

the overlaps can be computed in principle in a purely algebraic way. The manifest
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form of the integrand of the scalar product could be formally changed, so one cannot
unambiguously identify the physical feature of the model without actually perform-
ing the integrals: only the amplitudes indeed are physically sensitive objects; they
can be computed completely using the fact the physical Hilbert space is a representa-
tion of W, algebra, thus obtaining a coordinate invariant description of the physics
of the present model. In this way one can compare the results coming from the
matrix model and the standard Quantum Hall computations, completely clarifying

the physical content of Chern-Simons matrix model.
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