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Introduction

The quantized Hall e�ect was discovered by Klaus Von Klitzing in 1980 in the exper-
imental setting of �g.1, involving a two-dimensional electron gas placed into a strong
magnetic �eld B. For certain values of the �eld, the current in the x axis vanishes
and the component Rxy of the resistivity (Hall resistivity) is quantized [1],

RH ≡ Rxy = σ−1
xy = ν−1 h

e2
,

Rxx = σxx = 0, (1)

where ν is the so called �lling fraction, that can be integer (�g.2) or fractional (�g.3)
(Integer and Fractional Quantum Hall e�ect, respectively).

Figure 1: Scheme of the experiment.

The regimes in which the values of the resistivity are given by (1) are called plateux
of the Quantum Hall e�ect. At the plateux, the ground states are gapful and very
stable, with uniform density ρ = eB

hc
ν, i.e. the system of electrons behaves like a �uid

with characteristic quantum e�ects [1][2][3]. The elementary excitations of the ground
states correspond to local �uctuations in the density, and are called quasi-holes and
quasi-particles of the QHE [1]. The low-energy excitations are gapful and thus the
quantum �uid is incompressible.
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Figure 2: Diagonal and Hall resistivity in a sample of IQHE.
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Figure 3: Diagonal and Hall resistivity in a sample of FQHE.
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The IQHE can be described in terms of free electrons in the Landau levels, while
the FQHE requires interacting electrons. It was discovered by Tsui et al. [4] in
1982. In 1983 Laughlin proposed a phenomenological theory of the FQHE, for the
�llings, ν = 1

2k+1
, with k a positive integer [2]. The Laughlin theory was con�rmed

by experiments in 1997 [3].

There are other �lling fractions not contained in the Laughlin theory, that are ob-
served experimentally [4], given by the more general expression ν = n

2nk+1
[1][5], where

n and k are positive integers. J.Jain explained these �lling fractions [5] by proposing
that electrons condensate in new particles, called composite fermions. Based on this
idea, he conjectured that the ground states for fractional quantum Hall states are
equivalent to integer quantum Hall states of composite fermions [5]. The Jain idea,
of weakly-interacting composite fermions, is in good agreement with the experiments
[6]. E.Fradkin and A.Lopez [7], and others [1][9], formalized the Jain idea in two
dimensional quantum �eld theory by letting the electrons to interact with a "sta-
tistical" Chern-Simons gauge �eld. They studied the theory within the mean �eld
approximation and reproduced the Jain ground states; however, the extension of their
approach beyond mean �eld theory presents some limitations [1][10].

In this thesis we study other types of e�ective theories for the FQHE, that are based
on matrix models or, more precisely, matrix quantum mechanics [12]. The main part
of our work is devoted to the original proposal of the Maxwell Chern-Simons matrix
theory and to the analysis of its possible ground states [13].

The next chapter contains a brief introduction to the QHE: we recall the Landau
levels and de�ne the Integer and Fractional QHE. We review the Laughlin theory
[2], the Jain interpretation of the FQHE [5] and the mean �eld theory proposed by
E.Fradkin and A.Lopez [7].

The second chapter deals with the Chern-Simons matrix model, and reviews the
work by Susskind and Polychronakos [14], [15]. The use of noncommutative and
matrix theories was initiated by Susskind [14], who observed that two-dimensional
semiclassical incompressible �uids in strong magnetic �elds can be described by the
noncommutative Chern-Simons theory in the limit of small noncommutative param-
eter θ, corresponding to high density. Actually, the use of noncommuting spatial
coordinates, x1, x2, i.e. [x1, x2] = iθ, implies a generalized uncertainty relation that
controls the e�ective size of electrons and thus modi�es the density of the �uid [16].

Afterwards, Polychronakos extended the theory to describe a �nite droplet of �uid,
and obtained the U(N) matrix gauge theory called Chern-Simons matrix model [15].
From the quantization of this theory, one obtains the important result that the ground
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states are exactly given by the Laughlin wave functions [19][20]. However, the Chern-
Simons matrix model cannot describe the more general Jain states, and its full quan-
tization encounters some problems that limit its applicability as a theory of the FQHE
[21][13][22]. In the last part of the second chapter we present two generalizations of the
Chern-Simons matrix model [24][21], where the classical ground states correspond to
droplet solutions that generalize the Laughlin �uid. However, these approaches were
not able to obtain the quantum states with Jain �lling fractions, ν = n

2kn+1
.

Chapter three is devoted to our �rst work [13] in which we propose the general-
ization given by the Maxwell Chern-Simons matrix theory. This theory contains an
additional coupling g > 0 that controls matrix noncommutativity. We show that the
g = 0 theory corresponds to a matrix generalization of the Landau levels, where the
physical gauge invariant states are matrix analogs of the expected Laughlin and Jain
states and their quasi-hole excitations. In the g → ∞ limit, the Maxwell Chern-
Simon matrix theory reduces to the ordinary theory of electrons in Landau levels
plus a O(1/r2) two-dimensional interaction generalizing the one-dimensional Calogero
model [47]. Although this interaction is di�erent from the O(1/r) Coulomb potential,
the g = ∞ theory provides a realistic e�ective model of the FQHE [6][2]. In our work
[13], we conjectured that the matrix ground states found at g = 0, corresponding to
the Laughlin and Jain series, have a smooth g → ∞ physical limit (no phase tran-
sition at �nite g values). The connection between these two limits will give a better
understanding of the g = ∞ theory (that cannot be exactly solved) following the
deformation of g = 0 states.

In chapter four we present our second work [22] in which we study the semiclassical
limit of the Maxwell Chern-Simons matrix theory. Solving the classical equations of
motion at g = 0, we �nd semiclassical ground states matching the matrix Jain states
presented in chapter three. These states correspond to droplets of incompressible
�uid with piece-wise constant density, that is similar to that of the phenomenological
Jain wave functions (g = ∞) [10]. This result supports the Maxwell Chern-Simons
matrix theory as a valid e�ective theory of the Fractional Hall e�ect.
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Chapter 1

Introduction to the Quantum Hall
E�ect

1.1 Landau levels

In this section we review the physics of Landau Levels [23][25]. Consider spin-
polarized, planar electrons of mass m and electric charge e in an external, uniform,
magnetic �eld B > 0 (units ~ = 1, c = 1). The one-particle Hamiltonian is given by:

H = − 1

2m
(∇− ieA)2. (1.1)

We work in the symmetric gauge Ai = B
2
εijx

j, i, j = 1, 2 , for the external vector
potential. The fundamental scale set by the external magnetic �eld is the magnetic
length, ` =

√
2/eB.

We use holomorphic spatial coordinates z = x1 + ix2 and z = x1 − ix2, that are
natural in the QHE [2] [25]. By introducing two commuting sets of harmonic oscillator
operators,

d =
z

2`
+ `∂ , d† =

z

2`
− `∂ ,

[
d, d†

]
= 1,

c =
z

2`
+ `∂ , d =

z

2`
− `∂ ,

[
c, c†

]
= 1, (1.2)

the Hamiltonian (1.1) and the canonical angular momentum J = −ixiεij∂j can be
rewritten as,

H = ω (d†d +
1

2
),

J = c†c− d†d, (1.3)
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where ω = eB
m

is the cyclotron frequency and ∂ = ∂
∂z

and ∂ = ∂
∂z

in (1.2). Since the
operators c and d commute, the spectrum consists of in�nitely degenerate levels of
energy εn = ωn: these are called the Landau levels. The degenerate states correspond
to circular orbitals of the semiclassical motion; they can be characterized by their
angular momentum eigenvalue l.

It is easy to see that in completely �lled Landau levels, the Hall resistivity is given
by RH = ν−1 h

e2 where ν = N
NΦ

is the �lling fraction with N the number of electrons
and NΦ the number of quantum �uxes. Because there is one quantum �ux per orbital,
ν is an integer or a fraction.

Fig.1.1(a) correspond to the ν = n case in which n Landau levels are �lled with
one electron per orbital. The system is incompressible due to the exclusion principle
with a gap given by the cyclotron frequency. Thus the simple theory of free electrons
in Landau levels is su�cient to describe this main physical property of the IQHE. On
the other hand, if there are empty orbitals like in �g.1.1(b) for the case ν = 1/3, the
free-electron states are compressible; in contrast with the experimental observations:
the FQHE requires a model of interacting electrons.

Figure 1.1: Graphical representation of the Landau levels.
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1.2 Review of the Laughlin theory

In a remarkable paper [2] Laughlin constructed a class of wave functions given by:

Ψm(z1, z2, ..., zN) =
N∏

i<j

(zi − zj)
me−

1
2

∑N
i |zi|2 , (1.4)

with N the number of electrons and m is an integer parameter. Hereafter we chose the
magnetic length ` = 1. The Laughlin wave function (1.4) describes spinless electrons
in the lowest Landau level: to satisfy the antisymmetry requirement for fermions, m

must be odd, m = 2k + 1, with k an integer.

To determine the �lling fraction of the system, Laughlin used the following analogy
with a two-dimensional plasma:

Zplasma = ‖ Ψ 1
m
‖2=

∫ ∏
i

d2zie
−βHplasma ,

Hplasma = m
∑

i

| zi |2 −m2
∑
i<j

log | zi − zj |2, (1.5)

where Hplasma is the Hamiltonian of a one-component classical plasma of charge m

interacting with a logarithmic potential and β = 1
m
. With this analogy Laughlin was

able to show that the density of this state is constant and to calculate the energy of
excitations. He found that the parameter m is related to the electron density, and
hence, the �lling fraction is ν = 1

m
= 1

2k+1
.

From (1.4) it is clear that Laughlin's wavefunction vanishes as (zi − zj)
m when

any two particles i and j approach each other. Thus there is only a small amplitude
probability for the particles to be near each other, and the expectation value Coulomb
energy is lowered. The Laughlin wavefunction is actually very close to an exact ground
state for several short-range repulsive interactions [2] [1].

Laughlin also proposed the form of the excitations: they are vortex solutions called
quasi-holes and given by,

Ψq−h = (η; z1, ..., zN) =
N∏

i=1

(η − zi)
∏
i<j

(zi − zj)
2k+1e−

1
2`2

∑|zi|2 , (1.6)

with η the position of the vortex (Fig.1.2).

The quasi-holes have fractional charges and fractional statistics. If we consider the
wave function for two quasi-holes,

Ψ2q−h(η1, η2; z1, ..., zN) = (η1 − η2)
1

2k+1

∏
i

(η1 − zi)
∏

i

(η2 − zi)Ψ 1
2k+2

, (1.7)
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Figure 1.2: Graphical representation of a quasi-hole.

we �nd a term which depends on their positions (η1−η2), raised to a fractional power.
If we rotate one quasi-hole around the other, like in �g.1.3, we obtain:

Ψ(η1 − η2 → eiπ(η1 − η2)) = ei π
2k+1 Ψ(η1, η2). (1.8)

Therefore, the wave function acquires a non-trivial phase under exchanges of excita-
tions. This implies that quasi-holes have "fractional statistics", θ

π
= 1

2k+1
.

Figure 1.3: Exchange of two quasi-holes at positions z1, z2.

To calculate the charge of the quasi-hole one can use the plasma analogy (1.5):

‖ Ψq−h ‖2=

∫ ∏
d2zie

−1
m (m

∑
i|zi|2−m2

∑
i<j log|zi−zj |2−m

∑
i log|zi−η|). (1.9)

Comparing (1.9) with (1.5) we observe that the particles feel the presence of a charge
1
m

at the point z = η, that corresponds to the quasi-hole charge Qq−h = 1
m
.
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1.3 The Jain interpretation of the Fractional Quan-
tum Hall E�ect

In addition to the primary �lling fraction ν = 1
2k+1

, numerous other fractions have
been observed [1]. The more stable ones are the �llings given by ν = n

2nk+1
with n a

positive integer. There is a conjecture, given by Jain, to explain the FQHE for these
more general �lling fractions that is in very good agreement with experiments. Jain
explains the FQHE assuming that an even number of quantum �uxes of the external
magnetic �eld are attached to the electrons producing new particles that he called
"composite fermions"1. He considers �uids with �lling fraction ν−1 = Φ

NΦ0
= NΦ

N
=

1
n

+ 2k. When 2k quantum �uxes are attached to each electron, the same number of
�uxes are removed from the external magnetic �eld, and therefore the �lling fraction
of the system of composite fermions is given by ν?−1 = NΦ−2kN

N
= ν−1 − 2k = 1

n

corresponding to an IQHE. As a consequence, the external magnetic �eld felt by the
new particles is:

B? = B−∆B with ∆B = k2πρ0, (1.10)

and ρ0 the density of electrons. This reduction in the magnetic �eld is observed
experimentally [1]. The incompressibility of the FQHE was explained by Jain as due
to the equivalence between the system of electrons with ν = n

2nk+1
and the IQHE

of composite fermions with ν? = n. So from the point of view of the composite
fermions the Laughlin �uid (ν = 1

2k+1
), consists of an IQHE (ν? = 1) of electrons

with 2k quantum �uxes attached to each electron. This is clear from the Laughlin
wave function (1.4) where the factor ΠN

i<j(zi − zj)
2k can be shown to describe the 2k

quantum �uxes and the rest is the IQHE function with �lling fraction equal to one.
In the general case of ν = n

2nk+1
the wave function proposed by Jain on the basis of

his conjectured equivalence is:

Ψ n
2nk+1

(z1, ..., zN) =
N∏

i<j

(zi − zj)
2kϕ 1

n
(z1, ..., zN), (1.11)

with
∏N

i<j(zi − zj)
2k describing the 2k attached quantum �uxes and ϕ 1

n
(z1, ..., zN)

being the Landau levels wave function with ν = n completely �lled levels. This wave
functions has been con�rmed by numerical results of exact diagonalization of the
microscopic Hamiltonian with Coulomb and other short-range interactions [10]

Excitations of the Jain states (1.11) also include quasi-holes and quasi-particles,
that are local �uctuations in the density. For instance a quasi-particle in the origin

1An even number of quantum �uxes does not change the statistics of the new particles.
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for the Jain state with ν = n
2nk+1

is given by (�g.1.4),

Ψq−p. n
2nk+1

(z1, ..., zN) =
N∏

i<j

(zi − zj)
2kϕ′1

n
(z1, ..., zN), (1.12)

where ϕ′1
n

(z1, ..., zN) corresponds to the wave function with n Landau levels �lled and
one electron in the �rst orbital of the (n + 1) landau level.

Figure 1.4: Graphical representation of a quasi-particle.

Many experiments con�rm the existence of weakly interacting excitations feeling
the reduced magnetic �eld [11][6], i.e. behaving as Jain's composite fermions.

1.4 Fermionic Chern-Simons �eld theory for the FQHE

Several e�ective �eld theories have been proposed to describe the FQHE and to prove
the Laughlin and Jain wave functions; in particular the theory of non-relativistic
fermions coupled to the Chern-Simons interaction, developed by Fradkin and Lopez
[7][8] and others [26][9]. This theory reproduces the Laughlin and Jain results at the
mean �eld level and �uctuations are obtained by perturbative expansion.

In Fradkin and Lopez theory, (2+1) dimensional electrons acquire a �ux propor-
tional to their charge through the interaction with the Chern-Simons "statistical"
gauge �eld aµ. The action is given by,

Sθ =

∫
d3z

(
Ψ∗(z) | iD0 + µ | Ψ(z)− 1

2M
| ~DΨ(z) |2 +

θ

2
εµνλa

µ∂νaλ

)

−1

2

∫
d3z

∫
d3z′(| Ψ(z) |2 −ρ̄)V (| ~z − ~z′ |)(| Ψ(z′) |2 −ρ̄) , (1.13)
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where ρ̄ is the average particle density, Ψ(z) is a second quantized Fermi �eld, µ is the
chemical potential, θ the Chern-Simons parameter and Dµ is the covariant derivative
which couples the fermions to both the external electromagnetic �eld Aµ and to the
statistical gauge �eld:

Dµ = ∂µ + i
e

c
Aµ + iaµ . (1.14)

Fradkin and Lopez showed that the theory possesses ground states in the mean �eld
approximation that reproduce the Jain construction. The equation of motion for the
Chern-Simons �eld aµ(z, t) are, Fµν = εµνλJ

λ, where Jλ is the matter current. In
particular, the variation w.r.t. a0(z) yields the Gauss law for this theory2:

j0(~z) = θB(~z) = θεij∂iaj(~z) . (1.15)

At the quantum level, (1.15) is an operator constraint which selects the physical space
of states. For arbitrary values of the Chern-Simons coupling constant θ, the physical
states are charge-�ux composites: every particle with charge 1 carries a magnetic
�ux equal to 1

θ
. The wave functions for these composite particles should exhibit an

Aharonov-Bohm e�ect which leads to fractional statistics [28].

A system of fermions coupled to a Chern-Simons gauge �eld with coupling constant
θ behaves like a system of anyons with statistical angle δ = 1

2θ
, measured with respect

to the Fermi statistics [27]. If θ = 1
2π

1
2s
, where s is an even integer, then δ = 2πs and

the system still represents fermions. Fradkin and Lopez presented a detailed proof of
the physical equivalence of two theories of particles coupled to a Chern-Simons gauge
�eld with coupling constants θ and θ0 such that 1

θ0
= 1

θ
+ 2π × 2s, where s is an

arbitrary integer. In particular, a theory of interacting fermions is always equivalent
to a family of theories of interacting fermions coupled to a Chern-Simons gauge �eld
with coupling constant θ such that 1

θ
= 2π × 2s.

1.4.1 Semiclassical limit and the Jain ground states

In this section we show that the semiclassical limit of the theory described by the
action Sθ of Eq. (1.13), with the choice 1

θ
= 2π × 2s, yields the same physics as the

Jain state.

The partition function of the theory is:

Z =

∫
DΨ∗DΨDaµ eiSθ . (1.16)

2In Chapter 2 and 3, we will see that there is a similar Gauss law in the matrix models that
implies an e�ective �ux attached to electrons.
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Before treating this path integral in the semiclassical approximation, the fermions
are integrated out. At this point the resulting bosonic theory is studied in the saddle
point (mean �eld) approximation.

Using the constraint (1.15), the charge density j0(x) can be replaced by θB(x) in
the pair-interaction term of the action, at all points of space-time x. Thus, we can
write the pair-interaction term of Eq. (1.13) in the form:

Sθ =

∫
d3z

(
Ψ∗(z) | iD0 + µ | Ψ(z)− 1

2M
| ~DΨ(z) |2 +

θ

4
εµνλa

µFνλ

)

−1

2

∫
d3z

∫
d3z′(θB(z)− ρ̄)V (| ~z − ~z′ |)(θB(z′)− ρ̄) . (1.17)

Integrating out the Fermi �elds the resulting partition function can be written in
terms of an e�ective action Seff given by:

Seff = −iT r

(
log

[
iD0 + µ +

1

2m
~D2

])
+ SCS(aµ − Ãµ)

−1

2

∫
d3z

∫
d3z′

[
θ(B(z)− B̃(z))− ρ̄

]
)V (z − z′)

[
θ(B(z′)− B̃(z))− ρ̄

]
,

(1.18)

where D0 and ~D are the covariant derivatives of Eq. (1.13) and SCS is the Chern-
Simons action. The �eld Ãµ represents a small �uctuating electromagnetic �eld,
with vanishing average everywhere, which will be used to probe the system. The
electromagnetic currents will be calculated as �rst derivatives of Z with respect to
Ãµ.

The Saddle Point Equations, or classical equations of motion are:
δSeff

δaµ

= 0. (1.19)

By varying Seff with respect to aµ(z) we �nd:

〈j0(z)〉F = −θ[〈B(z)〉 − 〈B̃(z)〉] ,

〈jk(z)〉F = θεkl
(〈El(z)〉)− 〈Ẽl〉)

−θεkl∂
(z)
l

∫
d3z′V (| ~z − ~z′ |)(θ(〈B− B̃〉(z′)− ρ̄) , (1.20)

where 〈jµ(z)〉F represents the expectation value of the charge and current of the
equivalent fermion problem.

These equations have many possible solutions which include uniform (liquid) states,
Wigner crystals, and non-uniform states with vortex-like con�gurations. We will con-
sider solutions with uniform particle density 〈jµ(z)〉F = ρ̄ , i.e. the liquid phase
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solution, and no currents in the ground state. If the external electromagnetic �uctu-
ation is assumed to have zero average, the only possible solutions of this type are:

〈B〉 =
ρ̄

θ
,

〈E〉 = 0 . (1.21)

Eq. (1.21) shows that, for a translational invariant ground state, the e�ect of the
statistical gauge �elds at the level of the saddle-point approximation is to change
the e�ective �ux experienced by the fermions. The total e�ective �eld is Beff =

B + 〈B〉 = B − ρ̄
θ
, in agreement with Jain's argument (1.10).

The uniform e�ective magnetic �eld Beff which solves equation(1.21), de�nes a
new set of e�ective Landau levels. Each level has a degeneracy equal to the total
number of e�ective �ux quanta Neff and the separation between levels is the e�ective
cyclotron frequency ωeff =

e|Beff |
Mc

. Similarly, there is an e�ective cyclotron radius
`eff . It is easy to see that the uniform saddle-point state, which satis�es (1.21), has
a gap only if the e�ective �eld Beff experienced by the N fermions is such that the
fermions �ll exactly an integer number p of the e�ective Landau levels. This is the
Jain's point of view: the FQHE is an IQHE of a system of electrons dressed by an
even number of �ux quanta. However, this condition cannot be met for arbitrary
values of the �lling fraction ν at �xed �eld (or at �xed density). Let N eff

Φ denote the
e�ective number of �ux quanta piercing the surface after screening. It is given by:

±2πN eff
Φ = 2πNΦ − ρ̄

θ
L2, (1.22)

where the sign stands for the case of an e�ective �eld parallel or antiparallel to
B. Thus, the e�ective cyclotron frequency ωeff

c is reduced from its free electron
value of eB

Mc
down to ωeff

c = ωc(1 − ν
2πθ

). The e�ective cyclotron radius is given by
`eff = ( `

1− ν
2πθ

) which is larger than the non-interacting value. Therefore, even though
the bare Landau levels may be separated by a sizable Landau gap ~ωc, the e�ective
Landau levels have the smaller gap ~ωeff

c .

Substituting the value of θ in (1.22) we obtain,

±2πN eff
Φ = 2πNΦ − 2π2sN, (1.23)

where 2s is an even integer. The spectrum supported by this state has an energy gap
if the N fermions �ll exactly p of the Landau levels created by the e�ective �eld Beff .
In other words, the e�ective �lling fraction is νeff = N

Neff
. Using (1.23), the allowed

�lling fractions and the gap are given by:

ν =
p

2sp± 1
, ~ωeff

c =
~ωc

2sp± 1
, (1.24)
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that are the �lling fractions and the gap of the Jain �uid.

Fluctuations around the Saddle point give excitations of the ground states cor-
responding to the quasi-holes and quasi-particles of the Laughlin and Jain theory.
Unfortunately, the gap for quasi-particles has not the desired dependence (O(

√
B)).

Now we begin the study of matrix models apply to the QHE. The next chapter is
devoted to the Chern-Simons matrix model, proposed by Susskind in 2001 as another
e�ective theory for the FQHE.



Chapter 2

Chern-Simons Matrix model

2.1 Semiclassical incompressible �uid and noncom-
mutative Chern-Simons theory

In an interesting paper [14] Susskind conjectured that the noncommutative Chern-
Simons �eld theory in two dimensions could describe the Laughlin incompressible �u-
ids in the QHE [2][1]. This conjecture was inspired by the fact that the semiclassical
limit of this theory describes incompressible �uids in high magnetic �eld with Laugh-
lin's �lling fractions (ν = 1

k+1
, k an integer) and its quasi-hole excitations[14][29].

Susskind started from N two dimensional, non-interacting spinless electrons in a
high magnetic �eld B, such that the kinetic energy is frozen (lowest Landau level
[30]),

L =
eB
2

N∑
α=1

εabẊa
α(t)Xb

α(t) , (2.1)

where Xa
α(t) are the coordinates of the electrons, with a = 1, 2 and α = 1, ..., N .

If the system behaves like a �uid, we can pass to the continuum description, as
follows:

Xα(t) → ~X(~y, t) , (2.2)

where ~y is the co-moving system, i.e. the coordinates �xed to the �uid [29][31]. In
terms of (2.2) we can write (2.1) as,

L =
eB
2

∫
d2y ρ0ε

abẊa(y, t)Xb(y, t) , (2.3)
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with ρ0 the density in the ~y system. The Lagrangian (2.3) has a symmetry of dif-
feomorphism that preserves the area (w∞ symmetry)[25][16]. This symmetry implies
the conservation of the Jacobian of the system:

∂J

∂t
= 0 with J =

1

2
εab

{
Xa, Xb

}
, (2.4)

where {, } are Poisson brackets. Without loss of generality, we can consider as initial
conditions,

~X(~y, t = 0) = ~y, (2.5)

that together with (2.4) imply uniform density of the �uid in the ~X coordinates:

∂J

∂t
= 0 → J(t) = J(t = 0) = 1 , ρ(y, t) =| J | ρ0 = ρ0 . (2.6)

Susskind rewrites (2.3) introducing the conserved charge (2.6) explicitly, by means of
the Lagrange multiplier A0,

L =
eB
2

∫
d2yρ0

[
εab

(
Ẋa − 1

2πρ0

{Xa, A0}
)

Xb + θA0

]
, (2.7)

where the new parameter θ is related to the density as follows:

θ =
1

2πρ0

. (2.8)

Considering perturbations of Xa(y, t) by means of new �elds Ab(y, t), b = 1, 2, i.e.

Xa(y, t) = ya + θεabAb(y, t), (2.9)

the Lagrangian (2.7) can be written as:

L =
1

4πν

∫
d2yεµνρ(∂µAνAρ +

θ

3
{Aµ, Aν}Aρ) , (2.10)

with ν = 1
eBθ

the �lling fraction. The Lagrangian (2.10) coincides for small θ with
that of the noncommutative Chern-Simons theory given by [32]-[42]:

LNCCS =
1

4πν

∫
d2y εµνρ(∂µAν ∗ Aρ − 2i

3
Aµ ∗ Aν ∗ Aρ), (2.11)

where ∗ is the Moyal product (appendix A.1) of noncommutative geometry, de�ned
as,

(g ∗ f)(x) = e
i θ
2
εij

∂

∂xi
1

∂

∂x
j
2 f(x1)g(x2) |x1=x2=x . (2.12)
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Susskind conjectured that the Laughlin electrons could be described by the full non-
commutative theory (2.11), beyond the �uid approximation, so as to take into account
the granularity of the particles. Actually, in noncommutative spaces there is a mini-
mal unit of area, θ, which can be identi�ed with the size of the electrons in agreement
with (2.8).

Due to the fact that every noncommutative theory is equivalent to a matrix theory
with matrices of in�nite order, Susskind conjecture implies the corresponding matrix
e�ective theory [43] for the FQHE. The matrix theory equivalent to (2.11) is (see
appendix A.2):

SSusskind =

∫
dt

B

2
Tr [ εij Xi(t) Dt Xj(t) + 2θ A0(t)] , (2.13)

where now X1(t) , X2(t) and A0(t) are N × N matrices, with N = ∞, and the
covariant derivative is DtXj = Ẋj − i [A0, Xj] .

Another route to obtain (2.13) which emphasizes the discrete particle aspects of
the �uid is given by a matrix regularization proposed by Goldstone and Hoppe [44].
Considering (2.3) as a membrane in the y's coordinates, we can use the mapping given
by Goldstone and Hoppe (appendix A.3) to pass from (2.3) to (2.13), in which func-
tions on the membrane surface are mapped to matrices of order N . The equivalence
is given by the dictionary (appendix A.3):

Xa(~y, t) ↔ 2

N
Xa(t) , {Xa(~y, t), A0(y, t)} ↔ −iN

2
[Xa(t), A0(t)] ,

1

4π

∫
d2y ↔ 1

N
Tr , (2.14)

where Xa(t) are N ×N Hermitian matrices. Applying (2.14) to (2.3) we obtain the
matrix theory given by (2.13).

The Gauss law constraint of the theory, obtained by the variation of (2.13) with
respect to A0, reads:

[X1, X2] = iθ I, (2.15)

where I is the identity matrix. In matrix theories, the noncommutative parameter
appears as a constant "charge background" that requires the physical states to possess
non-trivial gauge transformations.

The trace of (2.15) is satis�ed only in terms of in�nite-dimensional matrices Xa

(and thus A0). This implies in�nite degrees of freedom and thus Susskind's theory
applies to an in�nite system. Instead, the FQHE is a system with a boundary and a
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�nite number of particles. Polychronakos modi�ed the Susskind's theory to introduce
these features [15].

2.2 The Chern-Simons �nite matrix model

We now describe quantum Hall states of �nite extent consisting of N electrons. The
matrices Xa can be represented by N ×N matrices. In the previous section we saw
that Susskind theory is inconsistent for �nite matrices, and a modi�ed action must
be written. The action proposed by Polychronakos is:

S =

∫
dt
B
2

Tr
{

εab(Ẋa + i[A0, Xa])Xb + 2θA0 − ωX2
a

}
+

∫
dtψ†(iψ̇ − A0ψ).

(2.16)

He adds two new terms to Susskind's action (2.13). The �rst term is a harmonic
oscillator potential for the matrices that con�ne the eigenvalues, i.e. keep the particles
localized in the plane. The second term is a complex N-vector that transforms in the
fundamental of the gauge group U(N),

ψ → Uψ . (2.17)

The Gauss law is now given by:

G ≡ −i B[X1, X2] + ψψ† −BθI = 0. (2.18)

Observe that the trace of (2.18) implies,

ψ†ψ = NBθ, (2.19)

that can be realized with �nite dimensional matrices. The equation of motion for ψ

in the A0 = 0 gauge implies ψ̇ = 0: it is an auxiliary �eld with trivial dynamics.
Thus, we can take the constant value of ψ ≡ ψ(t = 0) to be ψ =

√
NBθ | v〉, with

| v〉 a vector of unit length.

The Chern-Simons theory (2.16) has the U(N) symmetry:

Xa → UXaU
† , ψ → Uψ,

A0 → UA0U
† − iU

dU †

dt
. (2.20)

Under a gauge transformation (2.20), the action (2.16) change by the winding number
of the group element U,

S → S − iBθ

∫
dtTr

[
U †U̇

]
, (2.21)
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and gauge invariance is satis�ed if Bθ = k is an integer [45].

Polychronakos showed that in the gauge with X1 diagonal, one can solve the Gauss
law at the classical level, obtaining:

(X1)mn = xnδmn, (X2)mn = ynδmn − iθ

xm − xn

(1− δmn),

ψi =
√

k, i = 1, ..., N . (2.22)

In this gauge, (2.16) reduces to the Calogero model action. Substitution of (2.22) in
the Chern-Simons Hamiltonian, H = ωB

2
Tr(X2

a), yields:

H =
N∑

n=1

(
ω

2Bp2
n +

Bω

2
x2

n) +
∑

n6=m

ν−2

(xn − xn)2
, (2.23)

where pn = −Byn. Since yn and pn are canonically conjugate, they can be interpreted
as the phase space coordinates of a system of N particles; identifying B

ω
with the mass

of the particles, we obtain the Calogero model of N particles on the line with two-
body repulsive potential parameterized by the coupling constant ν−1 taking integer
values. The Calogero model is related to the Fractional Quantum Hall e�ect: It is
an integrable model, and its space of states is isomorphic to the excitations of the
Laughlin state at �lling fractions ν = 1

k+1
[48]-[53],[2][54][55]. However the Hilbert

spaces of the two problems are di�erent, because the one-dimensional norm of the
Calogero model, is di�erent from the two-dimensional measure of the lowest Landau
level [55][56][47].

2.2.1 Classical solutions

In this section we study the classical solutions of the Chern-Simons matrix model.
We work in holomorphic coordinates X = X1 + iX2 and X̄ = X1− iX2, with the bar
denoting the Hermitian conjugate of classical matrices. In terms of these variables
the Hamiltonian of the theory can be written as:

H =
ωB
2

TrXX̄ + Tr Λ(−B
2

[X̄, X] + ψψ† −Bθ), (2.24)

where we introduced the Gauss law constraint by means of the Lagrange multiplier
Λ.

The equations of motion are given by:

Ẋba =
∂H

∂Πba

= ωXba +
2

B [Λ, X]ba,

Π̇ba = − ∂H

∂Xab

=
Bω

2
X̄ba + [X̄, Λ]ba , (2.25)
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with the canonical conjugate momentum Πab = B
2
X̄ba. The minimum of energy must

satisfy the Gauss law (2.18), and the equations of motion (2.25),

G ≡ −B
2

[X̄, X] + ψψ† −Bθ = 0,

[Λ, X̄]ba =
ωB
2

X̄ba. (2.26)

These are the commutation relations for a (truncated) quantum harmonic oscillator,
with Λ playing the role of the Hamiltonian. The solutions of (2.26) are [15]:

X̄ =
√

2θ
N−1∑
n=0

√
n | n >< n− 1 | , Λ = ω

N−1∑
n=0

n | n >< n | ,

ψ =
√

kN | N − 1 > . (2.27)

For instance, for N = 3 the matrices X̄ and Λ have the form,

X̄ =




0 0 0√
θ 0 0

0
√

2θ 0


 , Λ = ω




1 0 0

0 2 0

0 0 3


 . (2.28)

Solution (2.27) corresponds to a circular quantum Hall droplet of radius
√

2Nθ [15].
The radius-squared matrix coordinate R2 is diagonal, and given by 1 (setting B = 2):

R2 = XX = diag (0, k, 2k, . . . , (N − 1)k) . (2.29)

From the distribution of the eigenvalues in (2.29) it is clear that this solution implies
a constant density. A good de�nition of the density in matrix models is given in terms
of the gauge invariant eigenvalues of R2,

ρ(r2) =
N−1∑
i=0

δ(r2 − σi), σi ∈ Spec(R2). (2.30)

For semiclassical �uids, this becomes a piecewise continuous function, in the limit
N → ∞, that describes two-dimensional rotation-invariant distributions (ρ(r) =

ρ(r2)/π). A discrete approximation suitable for the continuum limit is [22]:

ρ(r2) =
∑

i

ni

σi+1 − σi

δr2,σi
, (2.31)

involving the Kronecker delta and the ordered set of distinct eigenvalues, σi < σj,
i < j, with multiplicities ni.

In �g.2.1, we use the de�nition (2.31), and plot the density of the state (2.27)
considering k = 4 and N = 400. In the large N limit, the �lling fraction is the

1In this equation, we resolve the ordinary ambiguity of R2 by matching it eigenvalues to those of
the angular momentum [15][13][22].
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Figure 2.1: Plot of the density of the ground state (2.27) for ν = 1
4
and N = 400

Laughlin value; according to the identi�cation of the θ parameter (2.8),

ν =
2πρ0

eB =
1

k
, ρ0 =

1

2πθ
. (2.32)

Polychronakos theory does not contain quasi-particle excitations, only quasi-hole are
presents [18]. For example, a quasi-hole in the origin is given by,

X̄ =
√

2θ

(
√

q | 0〉〈N − 1 | +
N−1∑
n=1

√
n + q | n〉〈n− 1 |

)
, q > 0, (2.33)

where q is proportional to the charge of the quasi-hole. In matrix form for N = 3,
this reads:

X̄ =




0 0
√

q√
1 + q 0 0

0
√

2 + q 0


 . (2.34)

Fig.2.2 is a plot of the density of a quasi-hole in the origin for k = 4, N = 400 and
q = 30.

2.2.2 Covariant quantization

Before quantizing the Chern-Simons matrix model, we express (2.16) in terms of
holomorphic matrices, in the A0 = 0 gauge:

S =

∫
dt

(
B
2i

∑
nm

ẊnmX̄mn − i
∑

n

ψ̇nψ†n −
Bω

2

∑
nm

X̄nmXmn

)
,

G = −B
2

[X̄, X] + ψψ† −Bθ = 0. (2.35)



26 Chern-Simons Matrix model

0 500 1000 1500 2000

r
2

0.1

0.2

0.3

0.4

Ρ

Figure 2.2: Plot of the density for the quasi-hole state (2.33) for k = 4, q = 60 and
N = 400.

The form of the action (2.35) is that of (N2 +N) particles in the lowest Landau level
with coordinates Xnm and ψn.

The canonical commutation relations are given by [17]:

[[
X̄ij, Xkl

]]
=

2

Bδjkδil ,
[[

ψ̄i, ψj

]]
= δij . (2.36)

The double brackets are used to denote the quantum mechanical commutators be-
tween matrix elements. We use the standar polarization in quantum mechanics, i.e.
the canonical conjugate momentum becomes:

X̄nm → 2

B
∂

∂Xmn

, ψ̄n → ∂

∂ψn

. (2.37)

In terms of (2.37) the (normal ordered) Gauss law constraint applied to a general
state Ψ(X,ψ) reads:

GijΨ(X,ψ) =

[∑

l

(
Xil

∂

∂Xjl

−Xlj
∂

∂Xlj

)
− kδij + ψi

∂

∂ψj

]
Ψ(X,ψ) = 0 ; (2.38)

the coherent state Ψ(X,ψ) = e−Tr(X̄X)/2−ψ†ψ/2Φ(X, ψ) with Φ(X, ψ) a polynomial in
the matrix X and the vector ψ [57]. Expression (2.38) implies that the physical states
are U(N) singlets.

The total angular momentum applied to the wave function is given by,
∑

ab

(Xab
∂

∂Xab

)Φ(X,ψ) = JΦ(X, ψ), (2.39)
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where J is the total number of X matrices occurring in Φ(X,ψ).

Following the reference [20], we quantize the theory in the gauge in which the
matrix X is diagonal, i.e.:

X = V −1ΛV, Λ = diag(λ1, ...., λN),

X̄ = V −1Λ̃V, ψ = V −1φ, ψ = φ̃V . (2.40)

Actually, a complex matrix can be diagonalized by a GL(N,C) transformation, up
to the zero-measure set of matrices with degenerate eigenvalues. Invariance of the
commutation relations (2.36) implies:

∂

∂Xij

= VniV
−1
jm

∂

∂Λnm

,
∂

∂Λnm

=
∂

∂λn

δnm +
1− δnm

λn − λm

(
∂

∂νnm

+ φm
∂

∂φn

)
,

∂

∂ψj

= Vnj
∂

∂φn

, (2.41)

where ∂
νmn

satisfy
[[

∂
νmn

, dνij

]]
= δmiδnj, with dν = dV V −1. By substitution (2.41)

in the Gauss law constraint (2.38), one �nds:

Gij = V −1
im VnjG

V
nm, GV

nmΦ(Λ, V, φ) = 0,

GV
nm =

{
− ∂

∂νnm
n 6= m

φn
∂

∂φn
− k n = m

. (2.42)

We have that:

• physical states depend on V only through quantities like the determinant of V ,

• the dependence in φ doesn't a�ect the physics, because all physical states con-
tain the same homogeneous polynomial of degree k given by

∏N
n=1(φn)k.

In conclusion, (2.42) reduces the degrees of freedom of the theory to N complex
eigenvalues λn that can be interpreted as coordinates of electrons in the lowest Landau
level, as will be clear in the next section.

The general solution (without gauge �xing), of the Gauss law constraint has been
found in Refs. [19]. As said before, the physical states are singlets of U(N) made by
Xab and ψa and with the number of vectors ψ's equal to Nk. A basis is given by:

Φ(X, φ) = Φ{n1
1,...,n1

N}...Φ{nk
1 ,...,nk

N} with

Φ{nj
1,...,nj

N} = εi1...iN (Xnj
1ψ)i1 ...(X

nj
N ψ)iN , 0 ≤ nj

1 < nj
2 < ... < nj

N . (2.43)
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and it is easy to see that the ground state of the theory is [20]:

Φk−gs =
[
εi1...iN ψi1(Xψ)i2 ...(X

N−1ψ)iN

]k
, (2.44)

corresponding to the lowest value of the angular momentum (2.39).

In Ref.[19] is presented an equivalent basis, in which the states are factorized into
the ground state (2.44) and the "bosonic" powers of X, Tr (Xmi), with positive inte-
gers {m1, . . . , mk} unrestricted, i.e.

Φ (X, ψ) =
∑

{mk}
Tr (Xm1) · · ·Tr (Xmk) Φk−gs . (2.45)

Let us now perform the change of variables given by (2.40) on the ground state (2.44):

Ψk−gs(Λ, V, ψ) =
[
εi1...iN (V −1φ)i1(V

−1Λφ)i2 ...(V
−1ΛN−1φ)iN

]k

=
[
(detV )−1det(λi−1

j φj)
]k

= (detV )−k
∏

1≤n≤m≤N

(λn − λm)k

(∏
i

φi

)k

. (2.46)

We obtain the Laughlin wave function as ground state of the Chern-Simons theory,
with the coordinates of the electrons identi�ed with the eigenvalues of X. The de-
pendence on φ and V is the same for all the physical states as predicted by (2.42).
The �lling fraction can be computed from J = N(N−1)

2ν
with ν = 1

k
, as in the previous

classical solution (2.32). This is a very important result of the Chern-Simons matrix
theory; that of reproducing the Laughlin wave function from gauge invariance of the
states in presence of the non-trivial background θ, i.e. k.

Now, let us discuss the excitations of the ground state (2.44). Multiplying the wave
function by polynomials of Tr(Xr) as in (2.45), we �nd states with ∆J = r. These
are the basis of holomorphic excitations over the Laughlin state. For r = O(1), their
energy given by the boundary potential, ∆E = ω∆J = O(r B/N) is very small: they
are the degenerate edge excitations of the droplet of �uid described by conformal �eld
theories [25][59][60][61].

More interesting hereafter are the analogues of the quasi-hole and quasi-particle
excitations of the Laughlin state, that are gapful localized density deformations. The
quasi-hole is realized by moving one electron from the interior of the Fermi surface
to the edge, causing ∆J = O(N) and thus a �nite gap ∆E = O(B). Its realization
in the matrix theory is for example given by the state Φ{n1,...,nN} in Eq.(2.43), with
{n1, n2, · · · , nM} = {1, 2, · · · , N}. On the other hand, the quasi-particle excitation
cannot be realized in the Chern-Simons matrix model [13][15][22].
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2.2.3 Path integral quantization

In this section we study the path integral quantization and obtain the norm of quan-
tum states [20]. The path integral is given by:

〈f | i〉 =

∫
DX(t)DX̄(t)Dψ(t)Dψ†(t)

e
∫

dt(B2 Tr(X̄Ẋ)+ψ†ψ̇−iH)
∏

t

δ(G(t))FP , (2.47)

where G is the Gauss-law condition (2.35) and FP is the Faddeev-Popov term for
the gauge �xing. We will work in the gauge (2.40). Thus, we express (2.47) in terms
of the variables φ, V and Λ. The measure of integration can be written as,

DX =
∏

i

DXii

∏

i6=j

DXij. (2.48)

We change variables from the matrix elements Xij, i, j = 1, ..., N to the eigenvalues
λi, i = 1, ..., N and elements of the matrix V . To �nd the Jacobian of the change of
coordinates we express the di�erential of volume dX =

∏
ij dXij in the new variables,

dXij = d
(
V −1ΛV

)
ij

= dV −1
ik ΛkVkj + V −1

ik dΛkVkj + V −1
ik ΛkdVkj

= V −1
ik (dλkδkl + dνkl(λk − λl)) Vkj , (2.49)

where dν = dV V −1. Expression (2.49) leads to the following result for the measure
(2.48):

DX =
∏

i6=j

(λi − λj)
∏

i

Dλi

∏
i,j

Dνij = (−1)
1
2
N(N−1)∆(λ)2

∏
Dλ

∏
Dν , (2.50)

with ∆(λ) =
∏

i<j(λi−λj) the Vandermonde determinant. The constant (−1)
1
2
N(N−1)

can be discarded. Using (2.50) the Faddeev-Popov term can be written as:

1 =

∫
DνDΛδ(V XV −1 − Λ)∆(λ)2. (2.51)

The Gauss law condition in the new variables implies,

δ(G) =
N∏

i,j=1

δ

(B
2

(λi − λj)Λ̃ij − kδij + φiφ̃j

)

= ∆(λ)−2
∏

i6=j

δ

(
Λ̃ij +

2

B
φiφ̃j

λi − λj

)∏
i

δ(φiφ̃i − k). (2.52)

As consequence Λ̃ij = λ̃δij − 2
B

1−δij

λi−λj
φiφ̃j, where the unconstrained diagonal elements,

λ̃i, become the canonical conjugate variables of the eigenvalues, λi.
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Actually, in the new coordinates and using the constraint (2.52), the action be-
comes:

B
2

Tr(X̄Ẋ) + ψ†ψ̇ =
B
2

Tr
(
Λ̃Λ̇−

[
Λ, Λ̃

]
V̇ V −1

)
+ φ̃φ̇− φ̃V̇ V −1φ

=
∑

n

(B
2

λ̃nλ̇n + φ̃nφ̇n

)
− kTr(V −1V̇ ), (2.53)

and �nally in the gauge (2.40) the path integral is given by (setting B = 2),

〈f | i〉 =

∫ ∏
n

Dλ̃n(t)Dλn(t)Dφ̃n(t)Dφn(t)
∏
i,t

δ
(
φ̃i(t)φi(t)− k

)

exp

(∫
dt

[∑
n

λ̃nλ̇n + φ̃nφ̇n −H
(
Λ, Λ̃

)])∣∣∣∣∣
Λ̃ij=λ̃ijδij−(1−δij)

φiφ̃j
λi−λj

.

(2.54)

From (2.54) is clear that we obtain an action that corresponds to particles in the
lowest Landau level with coordinates {λn, λ̃n}.

However the variable λ̃n is not the complex conjugate to λn and this implies a
change in the norm of the physical state with respect to that of the electrons in the
lowest Landau levels. The norm in the Fock space of holomorphic functions is de�ned
by [57]:

〈Ψ1 | Ψ2〉 =

∫
DXDX̄DψDψ†e−TrX̄X−ψ†ψδ(G)FPΨ1(X, ψ)Ψ2(X, ψ). (2.55)

Now using (2.52) and (2.50) we obtain the norm in terms of the new variables,

〈Ψ1 | Ψ2〉 =

∫ ∏
n

dλ̃ndλndφ̃ndφne−
∑

n(λ̃nλn+φ̃nφn)

Φ̄1(Λ̃, φ̃)Φ2(Λ, φ) |
φ̃iφi=k, Λ̃ij=λ̃ijδij−(1−δij)

φiφ̃j
λi−λj

. (2.56)

Let us analyze the norm of the ground state for N = 2,

〈Ψk−gs | Ψk−gs〉N=2 =

∫
dλ̃1dλ1dλ̃2dλ2e

−λ̃1λ1−λ̃2λ2

(
λ̃1 − λ̃2 +

2k

λ1 − λ2

)k

(λ1 − λ2)
k.

(2.57)

If we compare (2.57) with the norm of the Laughlin wave function in the quantum
Hall e�ect,

〈Ψk−gs | Ψk−gs〉N=2 =

∫
dz̄1dz1dz̄2dz2e

−z̄1z1−z̄2z2(z̄1 − z̄2)
k(z1 − z2)

k, (2.58)
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it is clear that the ground state properties of the matrix theory and of the Laughlin
state agree at long distances but di�er microscopically.

In conclusion in this section we have shown that the Chern-Simons matrix model
has the Laughlin wave function as ground state. Nevertheless, the theory presents
some di�culties that limit its applicability as a e�ective theory of the FQHE [21]:

• The Chern-Simons matrix model does not possess quasi-particle excitations,
only quasi-holes can be realized [15].

• The Jain states with the �lling fractions, ν = n/(nk + 1), n = 2, 3, . . . , cannot
be described.

• Even if the Laughlin wave function is obtained, the measure of integration di�ers
from that of electrons in the lowest Landau level, owing to the noncommutativity
of matrices. As shown before, the ground state properties of the matrix theory
and of the Laughlin state only agree at long distances.

• Owing to the inherent noncommutativity, it is also di�cult to match matrix
observables with electron quantities of the quantum Hall e�ect [58].

Many authors modi�ed the Chern-Simons matrix model, with the scope of intro-
duce quasi-particle excitations and obtain ground states with other �lling fractrions.
In the next section we review two generalizations of the Polychronakos model that
allow to change the e�ective area of the electrons [24], [21] and to introduce quasi-
particle excitations.

2.3 Chern-Simons model with many boundaries

Since the area of the electrons in the Chern-Simons matrix model, is given by the
Gauss law,

iB [X1, X2]− ψψ† + BθI = 0, (2.59)

Polychronakos and Morariu [24] introduced a modi�cation involving more boundary
�elds ψj, j = 1, ..., N . In this manner, they could obtain �uids with densities di�erent
from the Laughlin ones. They showed that the multi-boundary term is equivalent to
a Wilson line in a generic representation of the gauge group.
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2.3.1 Wilson line action

Polychronakos and Morariu considered the additional term:

Sg =

∫
dtTr

[
iλg−1(∂t + iA0)g

]
, (2.60)

where g is valued in the U(N) group and λ is an arbitrary hermitian matrix. Without
loss of generality λ can be taken to be diagonal λ = diag(λ1, ..., λN) and at quantum
level all the λi's must be integers, to maintain gauge invariance.

The action (2.60) is equivalent to:

S =

∫
dtTr

[
ipg−1ġ − gpg−1A0

]
, (2.61)

together with the constraint,

p− λ = 0. (2.62)

Quantization of (2.61) with the constraint (2.62) is studied in [62] and [63]: the
physical Hilbert space is �nite dimensional and provides an irreducible representation
of U(N). It is the representation whose lowest weight is given by λ.

In the path integral formulation, the action Sg is equal to a Wilson line in the
irreducible representation mentioned above, i.e.,

∫
dgeiSg = Pei

∫
dtAa

0(t)ta , (2.63)

where P denotes path ordering.

2.3.2 Connection with boundary �elds

Under some assumptions [24], the action Sg is equivalent to the action:

Sψ =

∫
dt

n∑
j=1

[
ψ†j(i∂t − A0)ψj

]
+

N∑
j=n+1

[
ψ†j(−i∂t + A0)ψj

]
, (2.64)

where ψj is a multiplet of boundary �elds, with n of them transforming under the
fundamental representation of the gauge group and (N − n) transforming under the
anti-fundamental representation. The equivalence holds by �xing the initial condi-
tions:

ψ†jψk =| λj | δjk, (2.65)
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and choosing the basis where the matrix generator Gψ,

Gψ =
n∑

j=1

ψjψ
†
j −

N∑
j=n+1

ψjψ
†
j , (2.66)

of the Gauss law is diagonalized. Expression (2.66) is a Hermitian matrix which
projects in the space spanned by ψj, so it can be diagonalized by a U(N) transfor-
mation in this space. This implies a rede�nition of the ψj's such that they remain
orthogonal to each other, and satisfy (2.65). It was found that this classical equiva-
lence between Sψ and Sg, is also veri�ed at quantum level [24].

2.3.3 Applications

The presence of many boundary vectors makes it possible to change the e�ective area
of the particles. In this section we consider for example the solution corresponding
to two layers of �uid with the same density. Consider the case of N �elds in the
anti-fundamental representation given by:

ψi =
√

p | i〉 , i = 0, 1, ...,
N

2
− 2,

N

2
,
N

2
+ 1, ..., N − 2 ,

ψi =

√(
N

2
(k − p) + p

)
| i〉 , i =

N

2
− 1, N − 1, (2.67)

with p a positive number. In terms of holomorphic coordinates, X = X1 + iX2 and
X̄ = X1 − iX2, the Gauss law constraint can be written as:

B
2

[
X̄, X

]
+

∑
i

ψiψ
†
i + Bθ = 0. (2.68)

The classical minimum of energy satisfying the constraint (2.68) is given by:

X̄ =

N
2
−2∑

n=0

√
(2θ − 2

p

B)(n + 1) | n + 1〉〈n | +
N−1∑

n=N
2

√
(2θ − 2

p

B)(n− N

2
+ 1) | n + 1〉〈n | .

(2.69)

It has a block diagonal form, as one can see considering for instance N = 6,

X̄ =




0 0 0 0 0 0√
2θ − 2 p

B 0 0 0 0 0

0
√

2(2θ − 2 p
B ) 0 0 0 0

0 0 0 0 0 0

0 0 0
√

2θ − 2 p
B 0 0

0 0 0 0
√

2(2θ − 2 p
B ) 0


. (2.70)
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Figure 2.3: Plot of the density for the two-layer state (2.69) with N = 400, k = 4

and p = 1.

Solution (2.69) describes a droplet of �uid with classical �lling fraction ν = 2
k−p

.

The multi-boundary generalization of the Chern-Simons matrix model admits den-
sities di�erent from the Laughlin ones, but does not reproduce naturally the Jain
composite fermion theory. Moreover, the other problems outlined at the end of Sec-
tion 2.2 remain present.

2.4 Chern-Simons model with a scalar �eld

Another modi�cation of the Polychronakos matrix model was given in ref.[21], that
introduced a noncommutative scalar �eld φ, coupled to the boundary vector �eld ψ.

Following ref.[21], we de�ne the holomorphic coordinates, Z = 1√
2θ

(X1 + iX2) and
Z† = 1√

2θ
(X1 − iX2). In terms of these variables, the Susskind Lagrangian takes the

form:

LCS =
iκ

2
Tr

(
Z†D0Z − ZD0Z

†) + κTrA0. (2.71)

The new term involving the scalar �eld is,

Ls = Tr

{
φ†iD0φ− 1

2m
Diφ(Diφ)† +

λ

2θ
(φ†φ)2

}
, (2.72)

with φ a matrix �eld in the fundamental representation, with U(N) gauge transfor-
mation φ → Uφ. The covariant derivatives Dµ = ∂µ + iâµ acting on φ are:

D0φ = ∂oφ + iA0φ,

Diφ =
i

θ
εij [x̂j, φ] + iâiφ =

i

θ
εij [Xjφ− φx̂j] , (2.73)
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where x̂i are noncommutative coordinates [x̂i, x̂j] = iεijθ, and we express the partial
derivative as ∂i = i

θ
εij [x̂j, ]. In (2.73) the matrices Xi are de�ned as:

Xi = x̂i − θεij âj, (2.74)

with the noncommutative gauge potential âi, i = 1, 2 parameterizing the deviation
from the ground states solution [X1, X2] = iθ.

De�ning the current,

Ji =
−i

2m

[
(Djφ)φ† − φ(Djφ)†

]
, (2.75)

the Hamiltonian can be written as:

H = Tr
1

2m
(D1φ± iD2φ)(D1φ± iD2φ)† ± εij

2
Tr(

[
Z,Z†]− 1∓ λmφφ†)φφ†. (2.76)

Taking λmκ = ±1 so that the last term vanish due to the constraint,
[
Z, Z†] = 1− 1

κ
φφ†, (2.77)

the Hamiltonian reduces to the �rst term. If we consider states of zero energy, we
obtain the set of BPS equations:

â0 =
1

2κθ
φφ† ,

D1φ± iD2φ = 0 ,
[
Z, Z†] = 1− 1

k
φφ†. (2.78)

Any solution of (2.78) is also a solution to the full time-independent equations of
motion corresponding to LCS + Ls. We are interested in matrices of �nite order N

but we have assumed [x̂1, x̂2] = iθ that is satis�ed by in�nite matrices only. Never-
theless, the Lagrangian (2.72) can be modi�ed [21], to include solutions of �nite order
satisfying the BPS equations (2.78).

Equations (2.78) has multi-layer solutions, but it doesn't presents quasi-hole solu-
tions. This can be remedied by adding a Polychronakos type boundary �eld, coupling
to the scalar �eld φ, as follows:

Lψ = ψ†iD0ψ − λ

2θ
ψ†φφ†ψ, (2.79)

that modi�es the Gauss law constraint,
[
Z, Z†] = 1− 1

k
φφ† − 1

k
ψψ†. (2.80)

The coupling term between ψ and φ in (2.79) was introduced to allow the Hamiltonian
to have a BPS form almost identical to (2.76), but with the Gauss law (2.77) replaced
by (2.80).
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2.4.1 Applications

As a �rst example we consider the classical solution corresponding to a quasi-hole of
charge +1 in the origin of the �uid. Such solution is given by:

Z =
N−1∑
n=2

√
n− 1 | n− 1〉〈n |,

ψ =
√

(N − 1)k | N − 1〉,
φ =

√
k | 0〉〈0 | . (2.81)

It is easy to see that (2.81) satisfy the BPS solution (2.78).

As second example we give the solution of a quasi-particle of charge proportional
to q (q>0) in the origin of the �uid:

Z =
√

q | N − 1〉〈1 | +
N−1∑
n=1

√
n− 1 | n− 1〉〈n |,

ψ =
√

Nk | N − 1〉,
φ =

√
k | 0〉〈0 | . (2.82)

The two modi�cations of the Chern-Simons matrix model, reviewed in the previous
sections describe the physics of the QHE only at classical level. Besides this, these
generalizations could not obtain �uids with the more general �llings ν = n

kn+1
.



Chapter 3

U(N) Maxwell Chern-Simons matrix
gauge theory

In this chapter we propose and analyze our generalization of the Polychronakos
theory that is based on the Maxwell-Chern-Simons matrix theory [13]. This in-
cludes an additional kinetic term quadratic in time derivatives and the potential
V = −gTr [X1, X2]

2, parameterized by the positive coupling constant g. All the
terms in the action are �xed by the gauge principle because they are obtained by
dimensional reduction of the three-dimensional Maxwell-Chern-Simons theory. The
matrix theory has been discussed in the literature of string theory as the low-energy
e�ective theory of a stack of N D0-branes [64][65] on certain higher-brane con�gu-
rations [67]; in particular, D0-branes have been proposed as fundamental degrees of
freedom in string theory [68][69][70] (appendix A.4).

We start by discussing the canonical analysis of the Maxwell-Chern-Simons matrix
theory [72][73], in presence of the uniform background θ and the �boundary� term
(2.16). The theory involves three time-dependent N ×N Hermitean matrices, Xi(t),
i = 1, 2 and A0(t), and the auxiliary complex vector ψ(t): it is de�ned by the action,

S =

∫
dt Tr

[
m

2
(Dt Xi)

2 +
B

2
εij Xi Dt Xj +

g

2
[X1, X2]

2 + Bθ A0

]

−i

∫
ψ† Dtψ . (3.1)

The form of the covariant derivatives is: DtXi = Ẋi− i [A0, Xi] and Dtψ = ψ̇− iA0ψ.
Under U(N) gauge transformations: Xi → UXiU

†, A0 → U (A0 − id/dt) U †, and
ψ → Uψ, the action changes by a total derivative, such that invariance under
large gauge transformations requires the quantization, Bθ = k ∈ Z, as in the case
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of the Chern-Simons model 2.20. Hereafter we set m = 1 and measure dimensionful
constants accordingly.

The canonical momenta are given by the following Hermitian matrices:

Πi ≡ δS

δẊT
i

= DtXi − B

2
εijXj , (3.2)

and χ = δS/δψ̇ = −iψ†. After Legendre transformation on these variables, one �nds
the Hamiltonian:

H = Tr

[
1

2

(
Πi +

B

2
εij Xj

)2

− g

2
[X1, X2]

2

]
. (3.3)

The variation of S w.r.t. the non-dynamical �eld A0 gives the Gauss-law constraint;
its expression in term of coordinate and momenta reads:

G = 0 , G = i [X1, Π1] + i [X2, Π2] − Bθ I + ψ ⊗ ψ† , (3.4)

where I is the identity matrix. At the quantum level, the operator G generates U(N)
gauge transformations of Xi and ψ, and requires the physical states to be U(N) singlets
subjected to the additional condition (3.5) counting the number of ψa components.

By taking the trace of G, one �xes the norm of the auxiliary vector ψ,

Tr G = 0 −→ ‖ψ‖2 = BθN = kN . (3.5)

The auxiliary vector is necessary to represent the Gauss law on �nite-dimensional
matrices, as in the Chern-Simons model (see section 2.2).

3.1 Covariant quantization

We now quantize all the 2N2 matrix degrees of freedom X i
ab and later impose the

Gauss law as a di�erential condition on wave functions. The Hamiltonian (3.3) for
g = 0 is quadratic and easily solvable: the sum over matrix indices decomposes into
N2 identical terms that are copies of the Hamiltonian of Landau levels [25]. To see
this, introduce the matrix:

A =
1

2`
(X1 + i X2) +

i`

2
(Π1 + i Π2) , (3.6)

and its adjoint A†, involving the �magnetic length� ` =
√

2/B.
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The quantum commutation relations following from (3.2) are,
[[

X i
ab, Π

j
cd

]]
= i δij δad δbc ,

[[
ψ†a, ψb

]]
= δab . (3.7)

The canonical commutators imply the following relations of N2 harmonic oscillators:
[[

Aab, A
†
cd

]]
= δad δbc , [[Aab, Acd]] = 0 . (3.8)

Note that A† is the adjoint of A both as a matrix and a quantum operator. The
Hamiltonian can be expressed in term of A and A† as follows:

H = B Tr
(
A† A

)
+

B

2
N2 − g

2
Tr [X1, X2]

2 . (3.9)

In the term Tr(A†A) =
∑

ab A†
abAba one recognizes N2 copies of the Landau level

Hamiltonian corresponding to N2 two-dimensional �particles� with phase-space coor-
dinates, {Πi

ab, X
i
ab}, a, b = 1, . . . , N , i = 1, 2.

The one-particle state are also characterized by another set of independent oscil-
lators corresponding to angular momentum excitations that are degenerate in energy
and thus occur within each Landau level. To �nd them, introduce the matrix,

B =
1

2`
(X1 − i X2) +

i`

2
(Π1 − i Π2) , (3.10)

and its adjoint B†. They obey:
[[

Bab, B
†
cd

]]
= δad δbc , [[Bab, Bcd]] = 0 , (3.11)

and commute with all the Aab, A
†
ab.

The total angular momentum of the N2 �particles� can be written in the U(N)
invariant form

J = Tr (X1 Π2 − X2 Π1) = Tr
(
B†B − A†A

)
. (3.12)

Therefore, the B oscillators count the angular momentum excitations of the particles
within each Landau level. In conclusion, the g = 0 theory exactly describes N2

free particles in the Landau levels. In section 3.2 we shall discuss the e�ect of gauge
symmetry that selects the subset of multi-particle states obeying the Gauss law, G = 0

(3.4).

3.1.1 Projection to the lowest Landau level and Chern-Simons
matrix model

For large values of the magnetic �eld B, one often considers the reduction of the
theory to the states in lowest Landau level that have vanishing energy (3.9), i.e. obey
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Aab = 0 ∀a, b. All higher levels can be projected out by imposing the constraints
A = A† = 0, that can be written classically (cf. (3.6)):

Π2 =
B

2
X1 , Π1 = −B

2
X2 , (3.13)

corresponding to vanishing kinetic term in the Hamiltonian (3.3). In this projection,
two of the four phase space coordinates per particle are put to zero: if we choose them
to be Π1, Π2, the remaining variables X1, X2 become canonically conjugate. This can
also be seen from the action (3.1), because the kinetic term m (DiX)2 vanishes and
one is left with the Chern-Simons term implying the identi�cation of one coordinate
with a momentum [30][25] (see section 2.2.2).

Upon eliminating Π1, Π2, the Gauss law (3.4) becomes:

G = −iB [X1, X2]−Bθ + ψ ⊗ ψ† ; (3.14)

namely, it reduces to the noncommutativity condition of the Chern-Simon matrix
model (2.18), with action (2.16). Moreover, the potential term in the Hamiltonian
(3.3) becomes a constant on all physical states verifying G = 0: one �nds, using the
normalization (3.5),

− Tr [X1, X2]
2 = Tr

(
θ I− 1

B
ψ ⊗ ψ†

)2

= θ2 N(N − 1) . (3.15)

In conclusion, the Hamiltonian (3.3) reduces to a constant, i.e. it vanishes. This
shows that the Maxwell-Chern-Simons matrix theory projected to the lowest Landau
level is equivalent to the previously studied Chern-Simons matrix model [15].

3.2 Physical states at g = 0 and the Jain composite-
fermion correspondence

In this section we are going to solve the Gauss law condition (3.4) and �nd the gauge
invariant states. In the lowest Landau level, these states are the same as those of the
Chern-Simons matrix model(see section 2.2.2); later we discuss the general physical
states (sections 3.2.2,3.2.3). We introduce the complex matrices,

X = X1 + i X2 , X = X1 − i X2 ,

Π =
1

2
(Π1 − i Π2) , Π =

1

2
(Π1 + i Π2) , (3.16)
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and use the bar for denoting the Hermitean conjugate of classical matrices, keeping
the dagger for the quantum adjoint. We set the magnetic length to one, i.e. B = 2.
The wave functions of the Maxwell-Chern-Simons theory take the form,

Ψ = e−Tr(XX)/2−ψψ/2 Φ(X, X, ψ) . (3.17)

For energy and angular momentum eigenstates, the function Φ in (3.17) is a polyno-
mial in the matrices X, X and the auxiliary �eld ψ. The integration measure reads:

〈Ψ1|Ψ2〉 =

∫
DXDX DψDψ e−TrXX−ψψ Φ∗

1(X, X, ψ) Φ2(X, X, ψ) . (3.18)

The operators Aab, Bab and ψa, ψ
†
b characterizing the Hilbert space (cf. section 3.1)

become di�erential operators acting on wave functions:

Aab =
1

2
Xab + i Πab =

Xab

2
+

∂

∂Xba

, A†
ab =

Xab

2
− ∂

∂Xba

,

Bab =
Xab

2
+

∂

∂Xba

, B†
ab =

Xab

2
− ∂

∂Xba

, ψ†a =
∂

∂ψa

. (3.19)

Correspondingly, the Gauss law condition (3.4) becomes:

Gab Ψphys(X, ψ) = 0 ,

Gab =
∑

c

(
Xac

∂

∂Xbc

−Xcb
∂

∂Xca

+ Xac
∂

∂Xbc

−Xcb
∂

∂Xca

)
− k δab + ψa

∂

∂ψb

.

(3.20)

This operator acting on wave functions performs an in�nitesimal gauge transformation
of its variables: X, X, ψ. Note that the expression of Gab in (3.20) was normal ordered
for this to obey the U(N) algebra [15].

The action of the angular momentum (3.12) on the polynomial part of wave func-
tions is,

∑

ab

(
Xab

∂

∂Xab

−Xab
∂

∂Xab

)
Φ(X, X, ψ) = J Φ(X, X, ψ) . (3.21)

The eigenvalue J is just the total number of X matrices occurring in Φ minus that of
X. For states with constant density1, the angular momentum measures the extension
of the �droplet of �uid�, such that we can associate a corresponding �lling fraction ν

by the formula (see section 2.2),

ν = lim
N→∞

N(N − 1)

2J . (3.22)

1See Refs.[15][20] for the de�nition of the density in the matrix theory.
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In a physical system of �nite size, one can control the density of the droplet, i.e.
the angular momentum, by adding a con�ning potential VC to the Hamiltonian:

H → H + VC = H + ω Tr
(
B† B

)
. (3.23)

and tune its strength ω. This potential is diagonal on all states and becomes quadratic
in the lowest Landau level, VC → ωTr(XX) (see section 2.2). Typical values for ω

will be of order B/N , that do not destroy the Landau-level structure but give a small
slope to each level.

3.2.1 The Jain composite-fermion transformation

Jain conjectured (see chapter 1) that a system of electrons with inverse �lling fraction
parametrized by:

1

ν
=

B

2πρo

=
1

m
+ k , m = 1, 2, 3, · · · , (3.24)

can be mapped into a system of weakly interacting �composite fermions� at e�ective
�lling ν∗,

1

ν
→ 1

ν∗
=

1

m
, (3.25)

by removing (or �attaching�) k quantum units of �ux per particle (k even). From
(3.24), the remaining e�ective magnetic �eld felt by the composite fermions is:

B → B∗ = B −∆B , ∆B = k 2πρo . (3.26)

The relation between excluded magnetic �eld ∆B and density is the key point of Jain's
argument [10] [5]. The Lopez-Fradkin theory of the fractional Hall e�ect (See section
1.4) implements this relation as the equation of motion for the added Chern-Simons
interaction.

Here we would like to stress that the Chern-Simon matrix model provides another
realization of the Jain composite-fermion transformation (3.25,3.26) for m = 1. For
k = 0, the matrix theory reduced to the eigenvalues λa is equivalent to a system of
free fermions in the lowest Landau level, i.e. to ν∗ = 1 [75][20][76]. In the presence
of the θ background, the noncommutativity of matrix coordinates (3.14) forces the
electrons to acquire a �nite area of order θ, by the uncertainty principle, leading to
the (semiclassical) density ρo = 1/2πθ (2.8) [14]. Using this formula of the density
and the quantization of Bθ, we re-obtain the Jain relation (3.26),

Bθ = k ∈ Z → B = k 2πρo . (3.27)
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Figure 3.1: Graphical representation of gauge invariant states: (a) general states in
the lowest Landau level (cf. Eq.(2.43)); (b) and (c) examples in the second and third
one for N = 3.

Given that noncommutativity is expressed by the Gauss law of the matrix theory, we
understand that the mechanism for realizing the Jain transformation is analogous to
that of the Lopez-Fradkin theory, but it is expressed in terms of di�erent variables.

The results of the Chern-Simons matrix theory were however limited, because the
(matrix analogues of) Jain states for m = 2, 3, . . . could not be found. In the follow-
ing, we shall �nd them in Maxwell-Chern-Simons matrix theory.

3.2.2 General gauge-invariant states and their degeneracy

Consider �rst the case k = 1. The states in the lowest Landau level, i.e. the poly-
nomials Φ{n1,...,nN} (X,ψ) in Eq. (2.43), can be represented graphically as �bushes�,
as shown in Fig.(1a). The matrices Xab are depicted as oriented segments with in-
dices at their ends and index summation amounts to joining segments into lines, as
customary in gauge theories. The lines are the �stems� of the bush ending with one
ψa, represented by an open dot, and the epsilon tensor is the N-vertex located at the
root of the bush. Bushes have N stems of di�erent lengths: n1 < n2 < · · · < nN . The
position i` of one X on the `-th stem, 1 ≤ i` ≤ n`, is called the �height� of X on the
stem.

The general solutions of the k = 1 Gauss law (3.4,3.20) will be Φ polynomials
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involving both X and X: given that they transform in the same way under the
gauge group (cf. 3.20), the polynomials will again have the form of bushes whose
stems are arbitrary words of X and X. Angular momentum and energy eigenstates
are linear combinations of bushes with given number J = NX − NX . From the
commutation relations (3.8,3.11), energy and momentum eigenstates can be eas-
ily obtained by applying the A†

ab and B†
ab operators (3.19) to the empty ground

state Ψo = exp
(−TrXX/2− ψψ/2

)
. Their energy E = BNA and momentum

J = NB − NA are expressed in terms of the number of A† and B† operators, NA

and NB respectively. The polynomial part Φ of the wave function is thus expressed
in the following variables:

Ψ = e−Tr XX/2−ψψ/2 Φ(B, A, ψ) , E = B NA , J = NB −NA , (3.28)

where B = X−∂/∂X and A = X−∂/∂X commute among themselves, [[Aab, Bcd]] =

0, and can be treated as c-number matrices. Since their U(N) transformations are
the same as those of X, X, they can be equivalently used to build the gauge invariant
bush states. Examples of these general states are drawn in Fig.(3.1b, 3.1c) for N =

3: the variable Bab, replacing Xab in the lowest Landau level, is represented by a
thin segment, while Aab is depicted in bold. Upon expanding A, B in coordinates
and derivatives acting inside Φ, one obtains in general a sum of (X, X)-bushes as
anticipated.

The form of the general k = 1 gauge-invariant states suggests a pseudo-fermionic
Fock-space representation involving N �gauge-invariant particles�, as it follows:

• Each stem in the bush is considered as a �one-particle state� with quantum num-
bers, nAi, nBi, characterizing individual energies and momenta that are additive
over the N particles, NA =

∑N
i=1 nAi, NB =

∑N
i=1 nBi.

• Since two stems cannot be equal, one should build a Fermi sea of N such one-
particle states.

• The one-particle states form again Landau levels with energies εi = BnAi,
but there are additional degeneracies at �xed momentum with respect to the
ordinary system; actually, in each stem, all possible words of A and B of given
length yield independent states, owing to matrix noncommutativity (assuming
large values of N).

Such �gauge invariant Landau levels� are shown in Fig.(3.2), together with their
degeneracies, (nA + nB)!/nA!nB!, given by the number words of two letters with
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multiplicities nA and nB. These gauge invariant states should not be confused with
the Landau levels discussed in section 3.1, that are relative to the states of the N2

gauge variant �particles� with Xab, Xab coordinates. The analysis of some examples
shows that the gauge invariant states are many-body superpositions of the former
N2 states that are neither bosonic nor fermionic and thus rather di�cult to picture.
Instead, the interpretation in terms of N fermionic �gauge-invariant particles� is rather
simple and also convenient for the physical limit g = ∞ of commuting matrices (to
be discussed in section 3.3). Finally, the gauge invariant states solution of the k > 1

Gauss law are given by tensoring k copies of the structures just described, in complete
analogy with the lowest-level solutions (2.45). Thus there are k Fermi seas to be �lled
with N �gauge-invariant particles� each.

In the following, we are going to introduce a set of projections of the g = 0 Maxwell-
Chern-Simons theory that will reduce the huge degeneracy of matrix states.

Degeneracies are better accounted for in a �nite system, so we �rst modify the
Hamiltonian to this e�ect. For example, the quadratic con�ning potential VC (3.23)
permits degenerate states that have equal energy and angular momentum � this also
occurs in the ordinary Landau levels. The problem can be solved by using �nite-box
boundary conditions, that can be simulated by modifying the con�ning potential VC

in the Hamiltonian (3.23) as follows:

VC = ω Tr
(
B† B

)
+ ωn Tr

(
B†n Bn

)
, (3.29)

for a given value of n. The added operator Tr
(
B†n Bn

)
commutes with the g = 0

Hamiltonian and angular momentum and has the following spectrum: when acting on
stems, each Bba is a derivative that erases one Bab matrix and �xes the indices at the
loose ends of the stem to a and b respectively. Next, further (n− 1) derivatives act,
with index summations, and �nally the length-n strand B

n

ab is added to complete a new
bush without cut strands. On stems with nB ≥ n, this operator has a diagonal action
with eigenvalue O(Nn−1); on other strands, it is non-diagonal with O(1) coe�cients.
Therefore, in the limit of large N and in the physical regime nA ¿ nB, the con�ning
potential (3.29) e�ectively realizes the �nite-box condition nBi ≤ n for all Landau
levels.

In a �nite system of size n, the degeneracy of the k-th �gauge invariant Landau
level� is O(nk/k!) and the total degeneracy grows exponentially, O(exp(n)), for large
energy. In presence of a quadratic con�ning potential, it would grow exponentially
with the energy and give rise to a Hagedorn transition at �nite temperature. Here
one rediscovers a known property of matrix theories that makes them more similar
to string theories than to �eld theories of ordinary matter [68][67].
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Figure 3.2: Pseudo-fermionic Fock space representation of gauge invariant states for
k = 1.

In our physical setting, we should consider this feature as a pathology of the g = 0

theory that should be cured in some way. Actually, for g > 0 the potential term in the
Hamiltonian, V = (g/8)Tr

[
X, X

]2, tends to eliminate the degeneracy due to matrix
noncommutativity, as it follows. Consider a pair of degenerate states at g = 0, that
di�er for one matrix commutation, such those shown in Fig.(3.2), and call their sum
and di�erence Ψ+ and Ψ−, respectively. For large values of g, the state Ψ+ can have
a �nite energy, while Ψ− will acquire a growing energy, corresponding to the freezing
of the degrees of freedom of the commutator.

Therefore, the Maxwell-Chern-Simons matrix theory for large values of g possesses
degeneracies that are consistent with ordinary two-dimensional matter; indeed, in
section 3.3 we shall show that the theory at g = ∞ reduces to the ordinary quantum
Hall e�ect with O(1/r2) interparticle interactions. In conclusion, the matrix degen-
eracies at g = 0 can be dealt with by the theory itself by switching the V potential
on.

This fact is however not particularly useful from the practical point of view, because
we do not presently know how to compute the spectrum of the theory for g > 0.
Precisely as in the original problem of the quantum Hall e�ect, the free theory is highly
degenerate and the degeneracy is broken by interaction (potential). The introduction
of matrix variables would not appear as a great improvement towards solving this
problem, given that their degeneracies are actually larger.

In spite of this, we shall �nd that matrix states do capture some features of the
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quantum Hall dynamics. In the following we shall introduce truncations of the g = 0

matrix theory that will eliminate most degeneracies and will naturally select non-
degenerate ground states that are in one-to-one relation with the Jain hierarchical
states [5] (see section 1.3).

3.2.3 The Jain ground states by projection

We consider the lowest Landau level condition AabΨ = 0, ∀a, b, that singles out the
Laughlin wave functions as the unique ground states at �lling fractions ν = 1/(k+1).
Although apparently not gauge invariant, it follows from the gauge invariant condition
of vanishing energy, because the Hamiltonian, H = 2

∑
ab A†

ab Aab, is a sum of positive
operators that should all individually vanish.

Consider now the weaker condition, (Aab)
2 Ψ = 0, ∀ a, b, allowing the N2 gauge

variant �particles� to populate the �rst and second Landau level. On the polynomial
wave function, this projection reads:

(
∂

∂Aab

)2

Φ(A, B, ψ) = 0 , ∀ a, b . (3.30)

The solutions are polynomials that are at most linear in each gauge-variant component
Aab: one can think to an expansion of Φ in powers of Aab that must stop at �nite
order as in the case of Grassmann variables. The condition (Aab)

2 Ψ = 0 is not
manifestly gauge invariant. Nevertheless, when acting on the bush states described
in the previous section (cf. Fig(3.1)), this condition respects gauge invariance (see
appendix A.6 for a discussion of this point).

In the following we shall study the truncated matrix theories that are de�ned by
the projections: (Aab)

m Ψ = 0, for m taking the successive values 2, 3, 4, . . . ; their
wave functions contain the N2 gauge variant �particles� �lling the lowest m Landau
levels.

We �rst discuss the theory with second level projection A2 = 0: we outline the
solutions of condition (3.30) leaving the details to appendix A.5. Let us try to insert
one or more A at points on the bush and represent them as bold segments, as in
Fig.(3.1). The di�erential operator (3.30) acts by sequentially erasing pairs of bold
lines on the bush in any order, each time detaching two branches and leaving four free
extrema with indices �xed to either a or b, with no summation on them. For example,
when acting on a pair of A located on the same stem, it yields a non-vanishing result:
this limits to one A per stem. Cancelations can occur for pairs of A on di�erent
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stems, owing to the antisymmetry of the epsilon tensor, as it follows:
(
Ab

a

)2
Φ = · · · + ε...i...j...

(· · ·Mia Nja · · ·V b W b
)

+ · · · , (a, b fixed), (3.31)

that vanishes whenever M = N . The analysis of appendix A.5 shows that there can-
not be further cancelations involving linear combinations of di�erent bushes. There-
fore, the general solution of (3.30) is a bush involving one A per stem (max N matrices
in total), all of them located at the same height on the stems, as follows:

Φ
(II)
{n1,...,n`;p;n`+1,...,nM} = εi1...iN

∏̀

k=1

(
B

nk
ψ

)
ik

N∏

k=`+1

(
B

p
A B

nk
ψ

)
ik

,

0 ≤ n1 < · · · < n` , 0 ≤ n`+1 < · · · < nN . (3.32)

These states can be related to Slater determinants of the ordinary Landau levels:
assuming diagonal expressions for both B and A, the matrix states become Slater
determinants of N electron one-particle states [5][78]. This relation is surjective in
general, because states di�ering by matrix orderings get identi�ed; however, for states
of form of Eq. (3.32), the matrix degeneracy is limited to the p dependence. This
shows how the projection A2 = 0 works in reducing degeneracies.

Let us analyze the possible matrix states in the A2 = 0 theory with �nite-box con-
ditions, referring to Figs.(3.1, 3.2) for examples. The most compact state corresponds
to homogeneous �lling all the allowed states in the �rst and second Landau levels with
N/2 �gauge invariant particles� each; it reads:

Φ1/2, gs = εi1...iN

N/2∏

k=1

(
B

k−1
ψ

)
ik

N/2∏

k=1

(
A B

k−1
ψ

)
iN/2+k

, (3.33)

with angular momentum J = N(N − 4)/4. One easily sees that this state is non-
degenerate for boundary conditions enforcing maximal packing, nBi ≤ N/2, due to
the vanishing of the p parameter in (3.32). Assuming homogeneity of its density, we
can assign it the �lling fraction ν∗ = 2 using (3.22).

Let us now discuss the states in the A2 = 0 theory for generic k values. Gauge
invariant states should be products of k bushes, as in (2.45): they survive the projec-
tion (3.30), provided that the two derivatives always vanish when distributed over all
bushes. Given the product state with one bush of type (3.33), obeying A2 Φ1/2, gs = 0,

Φk+1/2, gs = Φk−1, gs Φ1/2, gs , (3.34)

the other factor involving k−1 bushes should satisfy A Φk−1, gs = 0 and actually be the
Laughlin state (2.43). The state (3.34) is also non-degenerate with appropriate tuning



3.2 Physical states at g = 0 and the Jain composite-fermion correspondence 49

of the boundary potential. From the J value, one can assign the �lling fraction2,
1/ν = k + 1/2, to this state.

We thus �nd the important result that the projected Maxwell-Chern-Simons theory
possesses non-degenerate ground states that are the matrix analogues of the Jain
states obtained by composite-fermion transformation at ν∗ = 2, Eqs. (3.24,3.25).
The matrix states (3.34,3.33) would actually be equal to Jain's wave functions, if the
A, B matrices were diagonal: the ψ dependence would factorize and the matrix states
reduce to the Slater determinants of Jain's wave functions (before their projection
to the lowest Landau level) [5][78]. Indeed, the diagonal limit can be obtained as
follows. We note that the derivatives present in the expressions (3.28) of A and B

vanish when acting on the states (3.33) due to antisymmetry of the epsilon tensor: in
the expression of these states we can replace, B → X, A → X. Therefore, the Jain
and matrix states become identical in the limit of diagonal X, X, that is realized for
g →∞ as discussed in section 3.3.

The correspondence extends to the whole Jain series: the other ν∗ = m non-
degenerate ground states are respectively obtained in the theories with Am = 0 pro-
jections. Before discussing the generalization, let us analyze the other allowed states
by the A2 = 0 projection. They are obtained by relaxing the boundary conditions
for (3.33), i.e. by reducing the density of the system, allowing for lower �llings of the
�gauge invariant Fermi sea�. The non-degenerate Laughlin ground state and its quasi-
hole are clearly allowed states in the lowest level (cf. section 2.2.2). The quasi-particle
over the Laughlin state is obtained by having one particle in the second Landau level,
leading to the form (3.32) involving one A only, i.e. ` = N − 1, p = 0, nN = 0,

Φk, 1qp = Φk−1, gs Φ
(II)
1, 1qp ,

Φ
(II)
1, 1qp = εi1...iN

(
Aψ

)
iN

N−1∏

k=1

(
B

k−1
ψ

)
ik

. (3.35)

This is a quasi-particle in the inner part of the Laughlin �uid, it is non-degenerate and
has the gap ∆E1qp = B (disregarding the con�ning potential) and ∆J = −N . Other
quasi-particles are density rings that can be degenerate due to the free p parameter in
(3.32). Multi quasi-particle states are obtained by inserting more than one A in Φ(II),
on di�erent stems of the bush, according to (3.32): Φk, `qp = Φk−1, gs Φ

(II)
1, `qp. Their

energy is linear in the number of quasi-particles. We thus �nd that the projected
g = 0 Maxwell-Chern-Simons matrix theory reproduces the Jain composite-fermion
correspondence also for quasi-particle excitations [5], but with additional degenera-
cies.

2Keeping in mind the contribution of 1 from the Vandermonde of the integration measure.
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Let us not proceed to �nd the states in the g = 0 theory with higher projections.
In the A3 = 0 theory, the k = 1 bushes may have two A matrices per stem at most,
obeying the following rules (proofs are given in Appendix A.5):

• If the bush has only one A per stem, i.e. for second-level �llings, the A's can
stay on the stems at two values of the height, i.e. can form two bands.

• If there are stems with both one and two A's, then the A's can form two bands,
with the extra condition for single-A stems that their A's should stay on the
lowest band.

The �rst rule implies that the earlier ν∗ = 2 homogeneous state (3.33) becomes
degenerate in the A3 = 0 theory at the same density. On the other hand, the A3 = 0

theory admits a maximal density state with N/3 gauge-invariant particles per level,
that is unique due to the second rule:

Φ1/3, gs = εi1...iN

N/3∏

k=1

[(
B

k−1
ψ

)
ik

(
A B

k−1
ψ

)
ik+N/3

(
A

2
B

k−1
ψ

)
ik+2N/3

]
. (3.36)

This state corresponds to �lling fraction ν∗ = 3. Next, the product states,

Φk+1/3, gs = Φk−1, gs Φ1/3, gs , (3.37)

obeys the A3 = 0 condition for k > 1: these ground states realize the Jain composite-
fermion construction for ν∗ = 3 and have the expected �lling fraction ν = m/(mk+1)

for m = 3.

The pattern repeats itself in the A4 = 0 theory (see appendix A.5): there are three
A's per stem at most, that can form up to three bands; however, if single and/or
double-A stems are present together with the three-A stems, the A's of the former
stems should stay on the lowest bands. Therefore, the maximal density state is again
unique, having form analogous to (3.36) and �lling ν∗ = 4.

In conclusion, the Am = 0 projected theory possesses the following non-degenerate
ground states with Jain �llings ν = m/(mk + 1):

Φk+1/m, gs = Φk−1, gs Φ1/m, gs , (3.38)

where

Φ1/m, gs = εi1...iN

N/m∏

k=1

[(
B

k−1
ψ

)
ik

(
A B

k−1
ψ

)
ik+N/m

· · ·
(
A

m
B

k−1
ψ

)
ik+(m−1)N/m

]
.

(3.39)
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In the Am = 0 theory, the lower density states that were non-degenerate in the
Ak = 0 theories, k < m, become degenerate. Nevertheless, there are non-degenerate
quasi-particles of the (m− 1) Jain state just below.

In conclusion, we have found that the ground states with homogeneous �llings of the
properly projected Maxwell-Chern-Simons matrix theory reproduce the Jain pattern
of the composite fermion transformation. These matrix states are unique solutions
for certain (maximal) values of the density, while Jain states are judiciously chosen
ansatzs among many possible multi-particle states of the ordinary Landau levels.

These results indicate that the Jain composite-fermion excitations have some re-
lations with the D0-brane degrees of freedom and their underlying gauge invariance.
Both of them have been described as dipoles. According to Jain [5] and Haldane-
Pasquier [79], the composite fermion can be considered as the bound state of an elec-
tron and a hole (a vortex of the electron �uid): the reduced e�ective charge would
then account for the smaller e�ective magnetic �eld B∗ (3.26) felt by these excitations.
On the other side, matrix gauge theories, such as the Maxwell-Chern-Simons theory,
are equivalent to noncommutative theories whose fundamental degrees of freedom are
dipoles. Clearly, a better understanding of the potential term Tr[X, X]2 in our matrix
theory is necessary to clarify the dipole description.

We �nally remark that the matrix coordinates are less noncommutative on the Jain
states then on the Laughlin ones. Indeed, the general form of the Gauss law (3.4)
can be rewritten in terms of X, X, A, A as follows:

[
X, X

]
+

2

B

[
X, A

]
+

2

B

[
A,X

]
= 2

(
θ − 1

B
ψ ⊗ ψ

)
. (3.40)

On the Laughlin states belonging to the lowest Landau level, this reduces to the
coordinates noncommutativity (2.18), because A = A = 0; on states populating
higher levels, there are other terms contributing to noncommutativity besides the
matrix coordinates. In section 3.3, we shall discuss the theory in the opposite g = ∞
limit, where [X, X] = 0, and thus non-commutativity is entirely realized between
coordinates and momenta.

3.2.4 Generalized Jain's hierarchical states

In the Am = 0 projected theories with m ≥ 3, there are other solutions of the Gauss
law for k > 1 besides the Jain states (3.38). Any combination of the k = 1 solutions



52 U(N) Maxwell Chern-Simons matrix gauge theory

(3.39) is possible, as follows:

Φ 1
p1

+···+ 1
pk

, gs =
k∏

i=1

Φ 1
pi

, gs ,

1

ν
= 1 +

k∑
i=1

1

pi

. (3.41)

In this equation, we also wrote the associated �lling fractions using Eq.(3.22), i.e.
assuming homogeneous densities. The states (3.41) obey the condition Aq = 0 with
q = 1 +

∑k
i=1(pi − 1). The Jain mapping to a single set of ν∗ = q e�ective Landau

levels does not hold for these generalized states. Actually, analogous states were
considered by Jain as well [5], and disregarded as unlikely further iterations of the
composite-fermion transformation. In the matrix theory, we seek for arguments to
disregard them as well.

Let us compare the generalized (3.41) and standard (3.38) Jain states at �xed
values of the background k (keeping in mind that the physical values are k = 2, 4).
The energy of the generalized states is additive in the ν∗ = pi, k = 1, blocks and
reads:

E 1
p1

+···+ 1
pk

, gs =
BN

2

k∑
i=1

(pi − 1) + VC . (3.42)

The analysis of some examples of �llings and energies makes it clear that these ad-
ditional solutions have in general higher energies for the same �lling or are more
compact for the same energy than the standard Jain states (3.38) (see Table 3.1).
States of higher energies are clearly irrelevant at low temperatures. Furthermore,
higher-density states strongly deviate from the semiclassical incompressible �uid value
ν = 1/(k + 1) for background Bθ = k, that is speci�c of the Laughlin factors [14].
This fact indicates that they might not be incompressible �uids with uniform densi-
ties. Further discussion of this point is postponed to section 3.3.

3.3 g →∞ limit and electron theory

In this section we switch on the potential V = −(g/2)Tr[X1, X2]
2 in the Hamiltonian

(3.3) and perform the g → ∞ limit. The potential is a quartic interaction between
the matrices that does not commute with the Landau term, BTr

(
A†A

)
: thus, the

g = 0 eigenstates obtained in the previous section by �lling a given number of Landau
levels will evolve for g > 0 into mixtures of states.
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m #pi = 1 #pi = 2 #pi = 3 #pi = 4 1/ν E/B

1 k k + 1 0

2 k − 1 1 k + 1/2 N/2

3 k − 2 2 k N

3 k − 1 0 1 k + 1/3 N

4 k − 3 3 k − 1/2 3N/2

4 k − 2 1 1 k − 1/6 3N/2

4 k − 1 0 0 1 k + 1/4 3N/2

Table 3.1: Examples of generalized (3.41) and standard (3.38) Jain states for �xed
value of k, ordered by Landau level m with corresponding �llings ν and energies E

(disregarding the con�ning potential). Note that the experimentally relevant values
are k = 2, 4 [5].

At the classical level, the V potential suppresses the matrix degrees of freedom
di�erent from the eigenvalues, and projects them out for g → ∞. This can be seen
by using the Ginibre decomposition of complex matrices [80], which reads: X =

U(Λ + R)U , where U is unitary (the gauge degrees of freedom), Λ diagonal (the
eigenvalues) and R complex upper triangular (the additional d.o.f.). Inserting this
decomposition in the potential, we �nd for N = 2:

V =
g

8
Tr

[
X, X

]2
=

g

4
|r|4 +

g

4
|r (λ1 − λ2) |2 , X =

(
λ1 r

0 λ2

)
. (3.43)

Thus for large g, the variable r is suppressed. For general N , the potential kills all
the N(N − 1) real degrees of freedom contained in the R matrix.

Let us now discuss the matrix theory in the g = ∞ limit, i.e. for R = 0: X and
X commute among themselves (they are called �normal� matrices [76]) and can be
diagonalized by the same unitary transformation:

X = UΛU , X = UΛU , Λ = diag (λa) ,
[
X, X

]
= 0 . (3.44)

In the g = ∞ limit, we analyze the theory following a di�erent strategy from that of
section 3: we �x the gauge invariance, solve the Gauss law at the classical level and
then quantize the remaining variables, which are the complex eigenvalues λa and their
conjugate momenta pa, following the analysis of Refs. [72][73]. We take the diagonal
gauge for the matrix coordinates and decompose the momenta Π, Π, in diagonal and
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o�-diagonal matrices, respectively called p and Γ:

X = Λ , Π = p + Γ , Π = p + Γ . (3.45)

The Gauss law constraint (3.4) can be rewritten:

[X, Π] +
[
X, Π

]
= −i Bθ + i ψ ⊗ ψ ,

(λa − λb) Γab +
(
λa − λb

)
Γab = −i

(
k δab − ψa ψb

)
. (3.46)

The second of (3.46) implies |ψa|2 = k for any value of a = b. We can further �x the
remaining U(1)N gauge freedom by choosing ψa =

√
k, ∀a, such that the r.h.s. of Eq.

(3.46) becomes proportional to (1− δab).

Therefore the Gauss law completely determines the o�-diagonal momenta: their
rotation invariant form is,

Γab =
ik

2

λa − λb

|λa − λb|2 , a 6= b . (3.47)

By inserting this back into the Hamiltonian (3.3), we �nd that diagonal and o�-
diagonal terms decouple and we obtain,

H = 2 Tr

[(
X

2
− i Π

)(
X

2
+ i Π

)]

= 2
N∑

a=1

(
λa

2
− ipa

)(
λa

2
+ ipa

)
+

k2

2

N∑

a 6=b=1

1

|λa − λb|2 . (3.48)

The same result is obtained starting from the Lagrangian (3.1) and solving for A0 in
the gauge X = Λ at g = ∞ [73].

Therefore, the theory reduced to the eigenvalues corresponds to the ordinary Lan-
dau problem for N electrons plus an induced two-dimensional Calogero interaction.
Note also that the matrix measure of integration (3.18) reduces to the ordinary ex-
pression after incorporating one Vandermonde factor ∆(λ) in the wave functions [76].
The occurrence of the Calogero interaction is a rather common feature of matrix
theories reduced to eigenvalues: the induced interaction is analog to the centrifugal
potential appearing in the radial Schroedinger equation. In the present case, the in-
teraction is two-dimensional, owing to the presence of two Hermitean matrices, and
thus it is rather di�erent from the exactly solvable one-dimensional case [15][54].

We conclude that the Maxwell-Chern-Simons matrix theory in the g = ∞ limit
makes contact with the physical problem of the fractional quantum Hall e�ect: the
only di�erence is that the Coulomb repulsion e2/r is replaced by the Calogero interac-
tion k2/r2. Numerical results [2][81] [5][78] indicate that quantum Hall incompressible



3.4 Conjecture on the phase diagram 55

�uid states are rather independent of the detailed form of the repulsive potential at
short distance, for large B. In particular, the Calogero potential does not have the
long-range tail of the Coulomb interaction and is closer to the class of much-used
Haldane short-range potentials [81]. Although the physics of incompressible �uids is
universal, the form of the potential might a�ect the detailed quantitative predictions
of the theory for some quantities such as the gap: this issue is postponed to the
future.

Some remarks are in order:

• The physical condition imposed by the Gauss law (3.46) is still that outlined in
section 3.2.1: it forces the electrons to stay apart by locking their density to the
value of the background parameter k. The solution of this constraint is however
rather di�erent at the two points g = 0 and g = ∞: for g = 0, it is the geometric,
or kinematic, condition of noncommutativity (2.18), while at g = ∞ this is a
dynamical condition set by a repulsive potential with appropriate strength.

• Such dynamical condition is far more complicate to solve, and it allows many
more excited states than the kinematic condition; there are many more available
states in the lowest Landau level at g = ∞ than in the g = 0 matrix theory.

• Note also that the g = ∞ theory is not, by itself, less di�cult than the ab-initio
quantum Hall problem: the gap is non-perturbative and there are no small
parameters. The advantage of embedding the problem into the matrix theory
is that of making contact with the solvable g = 0 limit, as we discuss in the
next section.

3.4 Conjecture on the phase diagram

In Figure (3.3) we illustrate the phase diagram of the Maxwell-Chern-Simons matrix
theory as a function of its parameters B/m and g. The quantized background charge
Bθ = k is held �xed over the diagram together with the parameters ω, ωn in the
con�ning potential (3.29).

The axes g = 0 and g = ∞ have been discussed in sections 3.2 and 3.3, respectively.
For g = 0, the theory is solvable and displays a set of states that are in one-to-
one relation with the Laughlin and Jain ground states with �lling fractions ν =

m/(mk+1). These non-degenerate states can be selected by choosing the appropriate
projection Am = 0 and the value of k, and by tuning ω, ωn. For g = ∞, we found
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Figure 3.3: Phase diagram of the Maxwell-Chern-Simons matrix theory. The axes
g = 0 and g = ∞ have been discussed in sections 3 and 4, respectively. The Chern-
Simons matrix model sits at the left down corner.

that the theory describes the real fractional Hall e�ect, but we do not know how to
solve the Calogero interaction and �nd the ground states.

Let us consider the evolution of one Jain state as g is switched on, while keeping
the other parameters �xed. Given that the potential Tr

[
X, X

]2 does not commute
with the g = 0 Landau Hamiltonian, this state will mix with other ones. If it remains
non-degenerate as g grows up to in�nity, we can say that the matrix theory remains
in the same universality class and that the qualitative features found at g = 0 remain
valid in the physical limit g = ∞. In the case of level crossing at some �nite value
g = g∗, the two regimes of the theory are unrelated.

Unfortunately, we do not presently have a method of solution of the g 6= 0 Hamilto-
nian. Nevertheless, we would like to conjecture that the Laughlin and Jain states at
g = 0 do remain non-degenerate. Namely, that there is no phase transition at �nite
g values when the theory is tuned on such ground states at g ∼ 0 (by appropriate
choices of m, k, ω, ωn).

Our conjecture is indirectly supported by the numerical results by Jain and others
[81][5] [78], through the following classical argument. These authors found that the
Laughlin and Jain states in the quantum Hall e�ect are very close to the exact nu-
merical ground states for a variety of short-range potentials, including the Calogero
one realized at g = ∞. Now, consider the g > 0 evolution of the Jain matrix ground
states: the e�ect of the potential can be seen, at the classical level, as that of elimi-
nating the additional matrix d.o.f. and make both X, X matrices diagonal (up to a
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gauge transformation, see section 3.3). In this case, the Jain matrix states become
Slater determinants of Hall states (cf. section 3.2.3) and exactly reduce to the ex-
pressions introduced by Jain [5]. Therefore, it is rather reasonable to expect that the
evolution the g = 0 matrix states will bring them into the diagonalized, i.e. original
Jain states at g = ∞, up to small deformations.

On the contrary, other states such as those of the generalized Jain hierarchy (see
section 3.5), that have no counterpart in the g = ∞ theory, are likely to become
degenerate at �nite g.

In conclusion, our conjecture of smooth evolution of matrix Jain states is supported
by the numerical analysis of the Jain composite-fermion theory. Further support is
given by the form of the semiclassical density of g = 0 matrix states as discussed in
section 4.2.

Let us �nally remark that, the limit B → ∞ cannot be taken at g = 0, because
quasi-particle excitations and Jain states in the matrix theory have energies of O(B)

and would be projected out. Instead, the limit B = ∞ can surely be taken in the
g = ∞ physical theory (holding k = Bθ �xed), because the fractional quantum Hall
states are known to remain stable. This implies that the two limits are ordered: the
correct sequence is limB→∞ limg→∞ Ψ, and the opposite choice is cut out in the phase
diagram of Fig.3.3.

In summary, in this chapter we have generalized the Susskind-Polychronakos pro-
posal of noncommutative Chern-Simons theory and matrix models. We have found:

• A description of the expected Jain states and their quasi-particle excitations
within a matrix generalization of the Landau levels.

• An interesting phase diagram, parametrized by the additional coupling g, with
a manifestly physical limit for the matrix theory at g = ∞.
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Chapter 4

Semiclassical Droplet States in
Maxwell Chern-Simons matrix theory

In this chapter, we present our second work [22]: we �nd the gauge invariant form of
the projection Am ≈ 0, introduced in chapter 3, and its semiclassical physical meaning
in terms of single-particle occupancy (section 4.1). Next, we study the matrix Jain
states in the semiclassical approximation, by analytically solving the classical equa-
tions of motion, further constrained by the Gauss law and the semiclassical version
of the Am ≈ 0 condition (section 4.2). The ground states are found to be two-step
droplets of incompressible �uid with piecewise constant density; this is the same den-
sity shape of the phenomenological Jain states before projection to the lowest Landau
level [5] (where the density of incompressible �uids becomes strictly constant).

The fact that the matrix Jain states at g = 0 already have the expected droplet
density of physical g = ∞ states, supports our earlier claim that these ground states
could remain stable while varying 0 < g < ∞ (see chapter 3). Other ground states cor-
responding to generalized Jain constructions with di�erent �lling fraction, although
possible in the g = 0 theory, are found not to possess piecewise constant density. We
argue that the modulated density shape is a signal of ground-state instability at �nite
g values, since the corresponding phenomenological Jain states (g = ∞) are known
to be unstable [5]. We complete our study of semiclassical solutions by describing the
quasi-holes excitations above the matrix Jain states.
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4.1 Properties of the projection Am ≈ 0

In this section we discuss the physical meaning of the projection:

(Aab)
m Ψ

(
A, B

)
= 0 , ∀a, b, (4.1)

that limits the degeneracy of matrix quantum states at g = 0. Although the operator
(Aab)

m is not gauge invariant, its kernel restricted to gauge invariant states yields
a gauge invariant condition1, as explicitly seen in the previous chapter. Therefore,
there should exist a manifestly gauge invariant expression for this condition, that is
found in this section.

A simple example is useful to clarify the following discussion. In a two dimensional
quantum mechanical problem with rotation invariance (O(2) global symmetry), we
consider the condition:

Pm Φ ≡
(

∂

∂x

)m

Φ
(
r2

)
= 0 , r2 = x2 + y2 , (4.2)

where Φ is a reduced (polynomial) wave function. The condition is not O(2) invariant
but its kernel acting on rotation invariant functions does: indeed, it limits the order
of the polynomial to O(rm−1). This example suggests two remarks:

• The condition (4.2) can have many di�erent forms, that correspond to points
on its orbit in the �gauge� O(2) group: for example, an equivalent form is
(∂/∂y)mΦ = 0, corresponding to a π/2 rotation. All these conditions are equally
satis�ed.

• A manifestly gauge-invariant expression can be obtained by integrating over the
gauge orbit, as follows:

Pm −→ P g.i.
m =

∫ 2π

0

dθ

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)m

. (4.3)

However, this vanish for m odd: the average looses information because the operator
(∂/∂x)m is not positive de�nite. Clearly, it can be made positive (and gauge invariant)
by contracting with another gauge-dependent term to obtain powers of the dilatation
operator Dm = (xi∂/∂xi)m.

We are now going to follow analogous steps for the condition Am ≈ 0. First we �nd
an equivalent, more general form. Consider an in�nitesimal SU(N) gauge transfor-
mation U = 1 + iεT : the Hermitean matrix T can be expressed by the matrices E(ij)

1A formal proof of this statement is given in Appendix A.6
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with a single non-vanishing component, E
(ij)
ab = δi

aδ
j
b , in symmetric or antisymmetric

combinations, T = E(ij) + E(ji) or T = i(E(ij) − E(ji)). Upon performing the gauge
transformation, the m = 2 constraint (4.1), (U †AU)2

ab, acquires an additional O(ε)

term that should also vanish on the wave functions obeying, (Aab)
2Ψ = 0:

0 ≈ Aab

[
Eij, A

]
ab

= Aab (δai Ajb − Aai δjb) , ∀ i 6= j , ∀ a, b. (4.4)

We now analyse the various cases:

• I. If a = b and i = a or j = a, we obtain the conditions,

0 ≈ Aaa Aja ≈ Aaa Aai, ∀ i, j 6= a .

• II. If a 6= b, we obtain,

1. for i = a and j 6= b −→ 0 ≈ Aab Ajb , ∀ j 6= a, b ,

2. for i 6= a and j = b −→ 0 ≈ Aab Aai , ∀ i 6= a, b ,

3. for i = a and j = b −→ 0 ≈ Aab (Abb − Aaa) .

Note that each term in the linear combination of case II.3 independently van-
ishes by case I.

These conditions can be summarized as follows:

Aab Aa′b Ψ = 0 , ∀ a, a′, b,

Aab Aab′ Ψ = 0 , ∀ a, b, b′. (4.5)

They are more general than the original expression (4.1) for m = 2, corresponding
to a = a′ or b = b′. Of course, iteration to O(ε2) of the gauge transformation
produce further identities: these involve linear combinations of A2 terms that are not
particularly useful; for example, one such condition is: AabAjc + AjbAac ≈ 0.

The O(ε2) analysis is necessary to obtain the generalized constraint for m = 3: the
O(ε) expression is similarly, Aab Aab Aab′ ≈ 0, and its further transformation yields,

0 ≈ 2 Aab

[
Eij, A

]
ab

Aab′ + Aab Aab

[
Eij, A

]
ab′ .

This expression contains the m = 3 constraint analogous to (4.5):

Aab Aa′b Aa′′b Ψ = 0 , ∀ a, a′, a′′, b,

Aab Aab′ Aab′′ Ψ = 0 , ∀ a, b, b′, b′′, (4.6)
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together with other relations involving linear combinations of cubic terms.

Following the O(2) example, we can now transform the new expressions (4.5) into
positive de�nite operators. We recall that the lowest Landau level condition corre-
sponds to the vanishing of the total energy, that is a sum of positive terms:

H = Tr
(
A† A

)
=

∑

a,b

A∗
ab Aab ≈ 0 ⇔ Aab ≈ 0 , ∀ a, b . (4.7)

We can construct the following positive de�nite expressions:

Q2 =
∑

a,b,b′
A†

b′a A†
ba Aab Aab′ , (4.8)

Q′
2 =

∑

a,a′,b

A†
ba′ A†

ba Aab Aa′b , (4.9)

whose vanishing is equivalent to the m = 2 conditions (4.5). These quantities are not
yet gauge invariant but are convenient for the physical interpretation. We introduce
the (gauge variant) energy operators for one-particle matrix states, that are summed
over matrix indices of one row or column of Aab, Za or Z ′

b, respectively:

Za =
∑

b

A†
ba Aab , Z ′

b =
∑

a

A†
ba Aab . (4.10)

Using these energy operators, we can rewrite (4.8,4.9) as follows:

Q2 =
∑

a

Za (Za − 1) , Q′
2 =

∑

b

Z ′
b (Z ′

b − 1) . (4.11)

In this form, the constraints Q2Ψ = Q′
2Ψ = 0 admit the following physical inter-

pretation: there is a gauge choice in which the allowed states contains at most one
�particle� in the second Landau level (energy equal to one) for (a, b) indices belonging
to each row and column.

The constraint for m = 3 (4.6) similarly becomes:

Q3 =
∑

a

Za (Za − 1) (Za − 2) , Q′
3 =

∑

b

Z ′
b (Z ′

b − 1) (Z ′
b − 2) .

(4.12)
This requires that there at most 2 particles in the second Landau level or a single
particle in the third level for any set of indices in a row or column. The matrix
labels are not gauge invariant, then these occupancies are only veri�ed in speci�c
gauges; nevertheless, the present form of the constraints can be implemented in the
semiclassical limit on expectation values, 〈Aab〉, as explained in the next section.
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Next, we obtain the gauge-invariant form of the constraint Q2, Q
′
2 by averaging

over the gauge group. We de�ne:

Qg.i.
2 =

∫
DU Q′

2(U) =
∑

b

∫
DU U †

bi A†
ia′ U †

bj A†
ja Aak Ukb Aa′l Ulb , (4.13)

whereDU is the invariant Haar measure [83]. The integrand is positive de�nite for any
U value, because it can be thought of as the norm of a vector: Q2(U) ∼ ∑

b |A ·v(b)|4,
where v

(b)
a = Uanδb

n is a rotated unit vector. Therefore, we do not loose any information
by performing the group average.

Group integrals of products of U,U † matrices can be found e.g. in ref.[83]: their
results can be described as follows. Representing the unitary matrices with upper and
lower indices, Uab → U b

a , (U †)ab → (U †)a
b, the result of integrating n (U,U †) pairs is

a combination of n delta functions relating the upper indices among themselves times
other n deltas connecting the lower indices. The simplest integral is:

∫
DU (U †)a

a′ U b
b′ =

1

N
δab δa′b′ .

In the general case of n (U,U †) pairs, the pairings of upper (lower) indices by delta
functions follow patterns given by the permutation of n elements, with speci�c weight
for each conjugacy class of permutations [83]. For n = 2, one �nds:

∫
DU (U †)a

a′ U b
b′ (U †)c

c′ U d
d′ =

1

N2 − 1

[
δabδcdδa′b′δc′d′ + δadδcbδa′d′δc′b′ − 1

N

(
δabδcdδa′d′δc′b′ + δadδcbδa′b′δc′d′

)]
.

In the case of the constraint Q′
2 (4.9), all the upper indices are simultaneously taking

the same value b; thus, the di�erent delta-function pairings of upper indices take the
same unit value. As a result, the pairings of lower indices get averaged over, and
reduce to a plain sum over all pair permutations:

Qg.i.
2 ∝ (δki δlj + δkj δli) A†

ia′ A†
ja Aak Aa′l . (4.14)

Upon commuting the operators to bring summed indices close each other, we �nally
�nd the manifestly gauge-invariant form of the A2 ≈ 0 constraint (disregarding the
normalization):

Qg.i.
2 ≈ 0 , Qg.i.

2 = Tr
(
A†AA†A

)
+

(
Tr A†A

)2 − (N +1) Tr
(
A†A

)
. (4.15)

The same expression is also obtained by group averaging the other operator Q2 in
(4.8). One can check that the action of the gauge-invariant constraint Qg.i.

2 on bush
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wave functions (cf. section 3.2.2) is completely equivalent to that of the gauge-variant
condition A2 ≈ 0 [13].

The gauge invariant form of the m = 3 constraint can be similarly obtained by
group averaging (4.6), leading to:

Qg.i.
3 =

∑
σ∈S3

A†
i1b A†

i2b′ A†
i3b′′ Aiσ(3)b

′′ Aiσ(2)b
′ Aiσ(1)b . (4.16)

The form of this expression corresponding to (4.15) is not particularly illuminating.
The gauge-invariant expression (4.16) straightforwardly generalizes to higher m val-
ues.

In conclusion, in this section we have found equivalent forms of the projections
Am ≈ 0 of g = 0 matrix states: the �rst expression (4.11,4.12) in terms of occupation
numbers is useful for the semiclassical limit considered in the next section; the second
expression (4.15,4.16) is manifestly gauge invariant. In the latter form, the constraint
can be added to the Hamiltonian with a large positive coupling constant to realize a
softer form of projection, where matrix states violating the constraint are now allowed
but possess very high energy. For example, the quasi-particles excitations over the
Jain ground states ν = m/(mk + 1) would be possible.

4.2 Droplet ground state solutions

In this section we study the g = 0 Maxwell-Chern-Simons theory in the semiclassical
limit: we solve the classical equation of motion including the quantum constraints,
�rst for the ground states and then for the quasi-hole excited states. We shall �nd
the semiclassical states that correspond to the quantum states with homogeneous
�lling and composite-fermion structure of chapter 3 [13]. The motivations for this
semiclassical analysis are twofold: on one side, previous experience [15][68][58][21]
[88] with noncommutative �eld theory has shown that the classical �uid dynamics
incorporates some properties of the full quantum theory. From another side, it is
know that the Laughlin states in the quantum Hall e�ect are incompressible �uids that
become semiclassical in the thermodynamic limit N →∞ [25][60]. The semiclassical
ground states we �nd in this section are also incompressible �uids which, we believe,
may give rather accurate descriptions of the quantum matrix states for large N values
[76].

Let us start by writing the classical equations of motion: the Hamiltonian of the
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Maxwell-Chern-Simons theory at g = 0 can be written as follows:

H = 2 Tr
(
AA

)
+ ω Tr

(
BB

)
+ Tr

[
Λ

(
[A, A] + [B, B]− k + ψ ⊗ ψ

)]

+
∑

a

Γa (Za − γ) +
∑

b

Γ′b (Z ′
a − γ′) , γ, γ′ = 0, 1, . . . , m− 1 .

(4.17)

We set B = 2, Bθ = k ∈ Z, and included the Gauss law constraint via the Hermitean
Lagrange multiplier Λ. The projection Am ≈ 0 analyzed in section 4.1 is enforced by
adding two other Lagrange multipliers Γa, Γ

′
b times the energies, Za =

∑
b Aba Aab,

Z ′
b =

∑
a Aba Aab, of single-particle states with matrix indices summed over rows or

columns. We replace the nonlinear constraints (4.11,4.12) with linear expressions in-
volving the parameters γ, γ′ taking the allowed values of Za, Z

′
b. Since the constraints

are not gauge invariant, we shall assume that we work in a gauge where they take
integer values. The gauge-invariant form of the constraint (4.15) found at the end
of section 4.1 is also not convenient because it would lead to non-linear equations of
motion that cannot be solved analytically. For the same reason, we limit the con�ning
potential (3.29) to the quadratic term: later we shall see how to avoid ground state
degeneracies that may arise with this potential.

We vary the Hamiltonian with respect to A, B, canonically equivalent to the original
X, Π, and obtain the equations:

i Ȧab = 2Aab − [Λ, A]ab + Aab (Γa + Γ′b) , (4.18)
i Ḃ = − [Λ, B] + ω B , (4.19)

G =
[

A, A
]

+
[

B,B
] − k + ψ ⊗ ψ = 0 , (4.20)

Za =
∑

b

Aba Aab = γ , γ = 0, 1, . . . , m− 1 . (4.21)

Z ′
b =

∑
a

Aba Aab = γ′ , γ′ = 0, 1, . . . , m− 1 . (4.22)

We �rst discuss ground state solutions corresponding to Ȧ = Ḃ = 0.

4.2.1 Jain ground states

As we showed in chapter 3, the Maxwell Chern-Simons theory contains Jain-like
ground states (3.38), that involve higher Landau levels (A 6= 0). Their �lling fractions
can be written as in composite fermion construction [5],

1

ν
=

1

ν∗
+ k + 1 , k even, ν∗ = 2, 3, . . . , (4.23)
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and their energy and angular momentum values are recalled in Table 3.1. We �rst
note that these states are characterized by energies O(N) and angular momentum
J = O(N2), thus implying that the matrix A must have elements of O(1) and be
much smaller than B. Indeed, the constraints, Za, Z

′
b = 0, 1, . . . , m − 1, limits the

squares of Aab matrix elements summed over each row or column to take at most
the total value (m − 1). Were it not for this constraint, the A,B matrices could be
rescaled in the ground state equations (4.18,4.19,4.20) to eliminate the k dependence,
leading to solutions with E = O(kN) at least.

We now describe the solution of the ground state equations of motion in the A2 ≈ 0

projected theory (γ, γ′ = 0, 1 in (4.21)). Under some minor hypotheses, we �nd a
single solution corresponding to the unique quantum state with ν∗ = 2 (3.34) [13].
Working in analogy with the Laughlin case (2.27), we shall try a distribution of R2

eigenvalues leading to a piecewise constant density. We can consider the gauge in
which Λ is diagonal, Λ = diag(`a), and assume that ψ has a single non-vanishing
component, i.e. the last one, as in (2.27), such that the term, (k I − ψ ⊗ ψ), is also
diagonal. The equation for B (4.19),

(`a − `b) Bab = ω Bab , (4.24)

requires that B is a raising operator, i.e. non vanishing on a single diagonal, Bab ∝
δa,b+n; moreover, the Gauss law (4.20) requires, [B, B] ∼ k I, apart from O(1) cor-
rections due to [A,A]. Therefore, B should be non-vanishing on the �rst diagonal:

Bac = δa,c+1 bc+1 , c = 0, . . . , N − 2 . (4.25)

Eq. (4.24) implies evenly spaced Λ eigenvalues, `a+1− `a = ω, and leaves the compo-
nents bc undetermined. The equation (4.18) for A reads:

Aab 6= 0 −→ Γa + Γ′b = (a− b)ω − 2 , (4.26)

that can always be solved for Γa, Γ
′
b. The constraints, Za, Z

′
b = 0, 1, imply that Aab

has one non-vanishing element per row and column, at most, equal to one. If it
had exactly one element per row and column, it would be the representation of a
permutation, σ ∈ SN . Therefore, we can write:

Aab = δa,σ(b) ab+1 , ab = 0, 1 , σ ∈ SN . (4.27)

We now consider the Gauss law (4.20): all terms in this equation are diagonal ma-
trices, leading to a system of (N − 1) scalar equations for the A,B matrix elements
{ab, bb}. Note that both matrices AA and BB are diagonal and thus their elements
are positive integers in the semiclassical theory: b2

b ∈ Z+. After introducing,

βb = b2
b , αb = a2

b , (4.28)
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we obtain the system:

β1 = k − α1 + ασ(1) ,

β2 − β1 = k − α2 + ασ(2) ,

. . . = . . . . . . ,

βN−1 − βN−2 = k − αN−1 + ασ(N−1) . (4.29)

The solution can be found by thinking to the expected shape of the droplet. The
quantum state (3.34) is made of k generalized Slater determinants with homogeneous
�lling of N �one-particle� states2. Each one-particle state is expected to give a con-
stant contribution to the density of the droplet: there are (k − 1) Laughlin terms
and one term with N/2 �particles� in the second Landau levels spanning half of the
angular momentum range, as con�rmed by the quantum numbers, E = BN/2 and
J = (k − 1 + 1/2) N2/2 + O(N). The contribution are additive in terms of angular
momentum eigenvalues, J ∼ Tr BB =

∑N−1
i=1 βi (the O(N) contribution of Tr AA is

subdominant for N → ∞). Therefore, we expect, βi ∼ (k − 1)i , for one half of the
range, say 0 < i < N/2, and βi ∼ (k + 1)i for the other half. Moreover, βi should be
continuous at i = N/2 in order to obey the corresponding equation with αi = O(1).
We take:

βi = (k − 1) i , 0 < i ≤ N

2
,

βi = (k + 1) i − N,
N

2
< i < N . (4.30)

The solution for A is found by inspection: it has N/2 non-vanishing elements equal
to one on the diagonal of the lower half sector.

Summarizing, the ansatz semiclassical ground state solution for ν∗ = 2 is given by
(N even):

B =

N/2∑
n=1

√
n(k − 1) | n〉〈n− 1 | +

N−1∑

n=N
2

+1

√
n(k + 1)−N | n〉〈n− 1 | ,

A =

N
2
−1∑

n=0

| n +
N

2
〉〈n | . (4.31)

2This Fock-space analogy is meaningful for diagonal matrices, and may not be correct in general:
its limitations will be discussed in section 4.2.2 .
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In matrix form for N = 4, it reads:

B =




0 0 0 0√
k − 1 0 0 0

0
√

2(k − 1) 0 0

0 0
√

3k − 1 0


 , A =




0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0


 . (4.32)

This solution has same energy E = BN/2 of the quantum state (3.34) and same
angular momentum J = (k− 1/2)N2/2 + O(N) to leading order (cf. Table 3.1). The
matrix R2 = (B + A)(B + A) contains o�-diagonal terms from the mixed products:
however, these give subdominant O(1/

√
N) corrections to the eigenvalues as is clear

in a simple two-by-two matrix example. Thus, Spec(R2) = Spec(BB)(1+O(1/
√

N)),
con�rming the earlier identi�cation of droplet shape with angular momentum spec-
trum.

In Fig.4.1(a), the density (2.31) of the droplet of �uid is plotted by computing the
exact spectrum for N = 400: up to �nite-N �uctuations, this is a two-step constant
density as anticipated. We recall that the same droplet shape is found for the Jain
phenomenological states before their projection to the lowest Landau level [5]; the
density becomes constant only after projection3.

In chapter 3, we argued that the matrix ground states at g = 0 match one-to-one
the phenomenological Jain states that are good ansatz in the physical limit g = ∞:
the two sets of states become identical in the limit of both X, X diagonal, that can
be formally reached at g = ∞. To establish a relation at the quantum level, we would
need to consider the evolution of the matrix ground states as the coupling is varied in
between, 0 < g < ∞, and to check that the gap never vanishes, i.e. that there are no
phase transitions in (B, g) plane (cf. Fig.3.3) separating the g = 0 and g = ∞ regions
at these density (i.e. total angular momentum) values (see section 3.4). While this
behaviour remains to be proved, it is supported by the result that the matrix (g = 0)
and phenomenological (g = ∞) states have similar densities of incompressible �uids.

We also note, in chapter 2, that the solution (4.31) could also be obtained in the
lowest-level theory (Chern-Simons matrix model) by replacing the A matrix with N/2

di�erent �boundary� auxiliary �elds ψ → ψα, α = 1, . . . , N/2. This multi-boundary
generalization of Polychronakos' model has been considered in section 2.3: it naturally
describes multicomponent droplets, i.e. 1/ν = n/k for n boundary �elds. However,
the description of Jain states is rather unnatural, because the number of auxiliary

3The lowest-level projection in the matrix theory cannot be done at present, lacking an under-
standing of the g > 0 regime: at g = 0, it would give a trivial result because the Laughlin state is
the unique lowest-level ground state for any k value.
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Figure 4.1: Plot of the density for the Jain matrix ground states with 1/νcl = 1/ν∗+k,
for k = 4 and N = 400: (a) ν∗ = 2 (4.31); (b) ν∗ = 3 (4.33); and (c) ν∗ = 4 (4.35).
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�elds is macroscopic and should be adjusted for each Jain state; moreover, this theory
does not admit the physical limit of commuting matrices.

The solution (4.31) can be easily generalized for the theory with projection A3 ≈ 0,
possessing a Jain ground state with ν∗ = 3: this is found at the speci�c density
that is reached by tuning the boundary potential. The constraint now allows the
Aab components (4.27) to take values ab = 0, 1,

√
2; we assume again a single non-

vanishing element per row and column, eq. (4.27), otherwise the commutator, [A,A],
would have o�-diagonal terms that cannot be matched in the Gauss law equation
(4.20). Therefore, the equations (4.29) are unchanged. Let us recall that the quantum
solution contains (k−1) Laughlin terms and the ν∗ = 3 piece that puts three particles
in the same angular momentum state, ranging from zero to N/3. Thus, the B ansatz
contains eigenvalues spaced by (k − 1) for 2/3 of the droplet and by (k + 2) for 1/3

of it. The matrix A that solves the Gauss law (4.29) involves elements on a diagonal
extending for 2/3 of the matrix (N should be a multiple of 3). In conclusion:

B =

2N/3∑
n=1

√
n(k − 1) | n〉〈n− 1 | +

N−1∑

n= 2N
3

+1

√
n(k + 2)− 2N | n〉〈n− 1 | ,

A =

N
3
−1∑

n=0

| n +
N

3
〉〈n | +

2N
3
−1∑

N
3

√
2 | n +

N

3
〉〈n | . (4.33)

In matrix form for N = 6:

B =




0 0 0 0 0 0√
k − 1 0 0 0 0 0

0
√

2(k − 1) 0 0 0 0

0 0
√

3(k − 1) 0 0 0

0 0 0
√

4(k − 1) 0 0

0 0 0 0
√

5k − 2 0


 ,

A =




0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0
√

2 0 0 0

0 0 0
√

2 0 0


 . (4.34)

The droplet shape plotted in Fig.4.1(b) has again two steps, up to local �uctuations
that vanish for N →∞.

The ansatz solution with ν∗ = 4 in the theory A4 ≈ 0 again involves a matrix
B with two-speed spectrum and a matrix A with elements ab = 1,

√
2,
√

3, on the
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diagonal extending over 3/4 of the matrix (N multiple of 4):

B =

3N/4∑
n=1

√
n(k − 1) | n〉〈n− 1 | +

N−1∑

n= 3N
4

+1

√
n(k + 3)− 3N | n〉〈n− 1 | ,

A =

N
4
−1∑

n=0

| n +
N

4
〉〈n | +

2N
4
−1∑

N
4

√
2 | n +

N

4
〉〈n | +

3N
4
−1∑

2N
4

√
3 | n +

N

4
〉〈n | .

(4.35)

In matrix form for N = 8:

B =




0 0 0 0 0 0 0 0√
k − 1 0 0 0 0 0 0 0

0
√

2(k − 1) 0 0 0 0 0 0

0 0
√

3(k − 1) 0 0 0 0 0

0 0 0
√

4(k − 1) 0 0 0 0

0 0 0 0
√

5(k − 1) 0 0 0

0 0 0 0 0
√

6(k − 1) 0 0

0 0 0 0 0 0
√

7k − 3 0




,

A =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0

0 0 0
√

2 0 0 0 0

0 0 0 0
√

3 0 0 0

0 0 0 0 0
√

3 0 0




. (4.36)

The density for N = 400 and k = 4 is plotted in Fig.4.1(c).

4.2.2 Correspondence of semiclassical and quantum states

Here we provide a simple argument to support the identi�cation of the semiclassical
solutions with the quantum states of chapter 3. Consider �rst the correspondence for
the Laughlin states, (2.44) and (2.27). We choose the gauge in which the expectation
values of B matrix elements on the quantum state take the classical values (2.27)
found in chapter 2, up to subleading corrections for N → ∞. Let us rewrite the
N = 4 wave function in terms of these non-vanishing terms only4:

Φk, gs =
[
εa1a2a3a4 ψa1 (Bψ)a2 (B

2
ψ)a3 (B

3
ψ)a4

]k

∼ [
ε3210 ψ3 (B23ψ3) (B12B23ψ3) (B01B12B23ψ3)

]k
. (4.37)

4Although this expansion should hold for N → ∞, we write the N = 4 case for simplicity; the
expression for general N can be easily inferred.
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This �semiclassical wave function� describes �particles� with matrix indices, (01), (12), (23),
in angular momentum states that precisely match the occupation numbers BabBba

given by the classical solution (2.29), equal to (k, 2k, 3k), respectively. This is a self-
consistent argument for the correspondence of states: in the semiclassical N → ∞
limit, the quantum states match the semiclassical solutions for the leading occupation
numbers.

A similar relation holds for the ν∗ = 2, 3, 4 Jain states. For ν∗ = 2, the quantum
wave function is (3.34); we evaluate it on the semiclassical non-vanishing Aab, Bab

values (4.31), given explicitly for N = 4:

Φk+1/2, gs =
[
εa1a2a3a4 ψa1 (Bψ)a2 (B

2
ψ)a3 (B

3
ψ)a4

]k−1

×εa1a2a3a4 ψa1 (Bψ)a2 (Aψ)a3 (ABψ)a4

∼ [
ε3210 ψ3 (B23ψ3) (B12B23ψ3) (B01B12B23ψ3)

]k−1

×ε3210 ψ3 (B23ψ3) (A13ψ3) (A02B23ψ3) . (4.38)

The �one-particle� occupancies of both energy and angular momentum states given by
the wave function again match the expectation values of the corresponding number
operators, AabAba and BabBba, of the classical solution. The correspondence extends
to the other ν∗ = m states that have spectrum of occupancies given by (4.33,4.35).
This argument support our belief that the large N limit of the matrix theory is
semiclassical for the incompressible �uid ground states (piecewise constant density)
and their small excitations.

4.2.3 Generalized Jain states

In the analysis of [13], we found other quantum solutions to the constraint Am ≈ 0,
for m ≥ 3, besides Jain composite fermion wave functions. They were presented
in chapter 3, eq. (3.41) and summarized in Table 3.1: these are analogs of Jain's
generalized hierarchical states, made by products of two or more wave functions with
higher-level �llings (pi > 1). In the semiclassical analysis, we �nd that some of these
states have corresponding solutions with piecewise constant density, while most of
them do not. Besides, we �nd spurious ground states that are allowed by the simplistic
quadratic boundary potential used in (4.17). Let us describe these solutions in turn.
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Spurious solutions

There is a variant of the composite-fermion solution for m = 3, 4, . . . , Eqs. (4.31,4.33),
where the A matrix elements take the same values, but their positions are permuted.
For m = 3, this is:

B =

N/3∑
n=1

√
n(k − 2) | n〉〈n− 1 | +

N−1∑

n=N
3

+1

√
n(k + 1)−N | n〉〈n− 1 | ,

A =

N
3
−1∑

n=0

√
2 | n +

N

3
〉〈n | +

2N
3
−1∑

n=N
3

| n +
N

3
〉〈n | . (4.39)

The total energy and angular momentum values are the same as those of the m = 3

Jain state, E = BN , J ∼ (k−2/3)N2/2 (cf. Table 3.1). The corresponding B matrix
again describes a two-step droplet. In order to �nd the corresponding quantum state,
we use the classical-quantum correspondence of the previous section. The single-
particle occupation numbers of the classical solution, for e.g. N = 6, correspond
to those of (k − 2) Laughlin factors plus the occupations (3, 6, 9), (2, 2, 1, 1) and
(12) for the components (B23, B34, B45), (A02A13A24A35) and ψ5, respectively. These
components should �t into two wave function of the type (3.32) that obey A2 ≈ 0 (the
product wave function obeying A3 ≈ 0). The solution, rewritten in gauge invariant
form, is:

Φ = (Φ1, gs)
k−2

(
εa1a2a3a4a5a6 ψa1 (Bψ)a2 (B

2
ψ)a3 (B

3
ψ)a4 (AB

2
ψ)a5 (AB

3
ψ)a6

)

×
(
εa1a2a3a4a5a6 ψa1 (Bψ)a2 (Aψ)a3 (ABψ)a4 (AB

2
ψ)a5 (AB

3
ψ)a6

)
. (4.40)

In this state, we recognize that some strands do not have minimal length: thus, this
is an excited state for a Hamiltonian with more realistic boundary terms (3.29) real-
izing �nite-box conditions5. The expectation value of the higher boundary potential
〈Tr

(
B

2
B2

)
〉 on this state is actually larger than that of the m = 3 Jain state (4.33)

with same energy and angular momentum: this con�rms our interpretation of the
solution (4.39).

5The quadratic potential used in (4.17) is known to yield such degeneracies ([25]).
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Figure 4.2: Plot of the density for the generalized Jain states: (a) 1/νcl = 1/k − 1

(4.42); (b) 1/νcl = 1/k − 3/2 (4.44), with k = 4 and N = 400.

Other two-step density states

Among the generalized Jain state in Table 3.1, there are those made by two kinds of
terms, as follows:

Φ 1
ν

, gs = (Φ1, gs)
k−n

(
Φ 1

2
, gs

)n

,
1

ν
=

n

2
+ (k − n) + 1 , n = 2, 3, . . . ,

(4.41)
in the notation of Eq.(3.41). They obey, An+1 ≈ 0, for n = 2, 3, . . . , and violate the
composite-fermion transformation (4.23) [5]. In the droplet interpretation of classical
solutions of section 4.2.1, we expect a density of R2 eigenvalues equal to (k + n) for
half of the spectrum and (k − n) for the second half. The ansatz has the two-block
structure of the solution (4.31), with maximal value Aab = n in agreement with the
constraint.

The �rst non-trivial value is n = 2, i.e. m = 3 in Table 3.1:

B =

N/2∑
n=1

√
(k − 2)n | n〉〈n− 1 | +

N−1∑

n=N
2

+1

√
(k + 2)n− 2N | n〉〈n− 1 |,

A =

N
2
−1∑

n=0

√
2 | N

2
+ n〉〈n | . (4.42)

In matrix representation for N = 4:

B =




0 0 0 0√
k − 2 0 0 0

0
√

2(k − 2) 0 0

0 0
√

3k − 2 0


 , A =




0 0 0 0

0 0 0 0√
2 0 0 0

0
√

2 0 0


 . (4.43)
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The analogous state for n = 3, corresponding to (Φ1/2, gs)
3 (Φ1, gs)

k−3, is:

B =

N/2∑
n=1

√
(k − 3)n | n〉〈n− 1 | +

N−1∑

n=N
2

+1

√
(k + 3)n− 3N | n〉〈n− 1 |,

A =

N
2
−1∑

n=0

√
3 | N

2
+ n〉〈n |, (4.44)

and in matrix form for N = 4:

B =




0 0 0 0√
k − 3 0 0 0

0
√

2(k − 3) 0 0

0 0
√

3(k − 1) 0


 , A =




0 0 0 0

0 0 0 0√
3 0 0 0

0
√

3 0 0


 . (4.45)

In Fig.4.2, we plot the density for these generalized Jain states: these are droplets with
two-step constant density similar to that of composite-fermion states. At present, we
do not have strong arguments to dispose of these additional states: this issue will be
further discussed at the end of the chapter.

States with many-step density

Other generalized matrix Jain states (3.41) in Table 3.1, for Am ≈ 0, m ≥ 4, are
made by the product of three or more di�erent terms. The simplest one for m = 4

is Φν = Φk−2
1 Φ1/2 Φ1/3 with energy E/B = 3N/2 and angular momentum J ∼

(k − 1− 1/6)N2/2. Within the droplet interpretation of classical solutions discussed
before, we seek for a three-step solution (N multiple of 6),

βi ∼ i(k−2) , 1 < i <
N

2
; βi ∼ ik ,

N

2
< i <

2N

3
; βi ∼ i(k+3) ,

2N

3
< i < N .

However, there is no simple Aab solution with entries (0, 1,
√

2,
√

3), that ful�lls the
Gauss law equation for the same energy and angular momentum of the quantum state.
We proved this fact for an ansatz with piecewise constant density making up to 6

steps. A four-step solution (see Fig.4.3) can be found with quantum numbers di�ering
macroscopically from the quantum values, E ∼ 1.4 N, J ∼ (k − 1 − 0.14)N2/2: in
particular, the larger angular momentum identi�es it as an excited state. Presumably,
the quantum state can be better approximated by allowing a very large number of
steps, leading to a modulated (or singular) density pro�le in the large-N limit. This
result indicates that most of the multi-component generalized matrix quantum states
found in chapter 3 for projections Am ≈ 0, m ≥ 4, are not semiclassical incompressible
�uids.



76 Semiclassical Droplet States in Maxwell Chern-Simons matrix theory

0 500 1000 1500 2000

r
2

0.1

0.3

0.5

Ρ

Figure 4.3: Plot of the density of the 4-step excited state in the A4 ≈ 0 theory,
1/νcl ∼ k − 1− 0.14, with k = 4 and N = 400.

4.2.4 Quasi-holes solutions

As shown in chapter 3, the g = 0 matrix theory, projected by Am ≈ 0, possess quasi-
hole excitations above the ν∗ = m Jain ground states. In this section we give the
corresponding semiclassical solutions for ν∗ = 2, corresponding to deformation of the
density of solution (4.31) in �g 4.1(a).

The classical equation of motion for A and B, eq. (4.18,4.19), are linear and admit
a general solution for excitations:

Aab(t) = e−i(Γa+2)t
(
eitΛ A(0) e−itΛ

)
ab

e−i(Γ′b)t ,

B(t) = e−iωt eitΛ B(0) e−itΛ . (4.46)

Therefore, we should only solve the Gauss law (4.20) and the constraint (4.21).

In the two-step �uid density in �g 4.1(a), one can have more than one quasi-hole
corresponding to punching either of the two possible �uids. A hole in the complete
�uid is obtained by generalizing the quasi-hole of the Laughlin state (2.2), found in
ref.[15]: it is a deformation of the B matrix (4.31) that describes a quasi-hole of
charge q > 0 situated at the origin. The matrix A remains unchanged:

B =

N/2∑
n=1

√
(k − 1)(n + q) | n〉〈n− 1 |

+
N−1∑

n=N
2

+1

√
(k − 1)q + n(k + 1)−N | n〉〈n− 1 | +

√
(k − 1)q | 0〉〈N − 1 | ,

A =

N
2
−1∑

n=0

| n +
N

2
〉〈n | . (4.47)
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In matrix representation:

B =




0 0 0
√

q(k − 1)√
(1 + q)(k − 1) 0 0 0

0
√

(2 + q)(k − 1) 0 0

0 0
√

(3 + q)k − 1− q 0


 , A =




0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0


 .(4.48)

The corresponding density is shown in Fig.4.4(a).

A quasi-hole only a�ecting the upper layer of the ν∗ = 2 �uid is shown in Fig.4.4(b).
It is given by the solution:

B =

q∑
n=0

√
(k + 1)(n + 1) | n + 1〉〈n | +

N
2

+q∑
n=q+1

√
(k − 1)(α− q − 1 + n) | n + 1〉〈n |

+
N−2∑

n=N
2

+q+1

√
(k + 1)(β + n− N

2
− q − 1) | n + 1〉〈n |,

A =

q∑
n=0

| n〉〈q + 1 + n | +
N
2
−q−2∑
n=0

| N

2
+ q + 1 + n〉〈2q + 2 + n | , (4.49)

with α = q+k(2+q)
k−1

, β =
2+q+(k−1)N

2

k+1
and q a positive integer. In matrix representation

for N = 8 and q = 1, it reads:

B =




0 0 0 0 0 0 0 0√
(k + 1) 0 0 0 0 0 0 0

0
√

2(k + 1) 0 0 0 0 0 0

0 0
√

3k + 1 0 0 0 0 0

0 0 0
√

4k 0 0 0 0

0 0 0 0
√

5k − 1 0 0 0

0 0 0 0 0
√

6k − 2 0 0

0 0 0 0 0 0
√

7k − 1 0




,

A =




0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0




. (4.50)

The displacement from the origin of the upper layer corresponds to ∆J = (k+1)(q+

1).

It is also possible to create a circular depletion in the whole �uid, of size (charge)
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Figure 4.4: Plot of the density of the ν∗ = 2 Jain ground state, 1/νcl = k + 1/2, for
k = 4 and N = 400, including: (a) one quasi-hole in the origin (4.47) with q = 60;
(b) a quasi-hole in the upper layer of the �uid (4.49) with q = 60; (c) the quasi-hole
out of the origin (4.51) with q = 30 and r = 60.
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∆J = q outside the origin at a distance ∆J = (k − 1)(r − 1) (see �g.4.4(c)):

B =
r−1∑
n=0

√
(k − 1)(n + 1) | n + 1〉〈n | +

N
2
−2∑

n=r

√
(k − 1)(n + 1 + q) | n + 1〉〈n |

+
√

(k − 1)q | r〉〈n− 1 | +
√

(
N

2
+ q)(k − 1) | N

2
〉〈N

2
− 1 |

+
N−2∑

n=N
2

√
(k + 1)(n + 1)−N + (k − 1)q | n + 1〉〈n |,

A =

N
2
−1∑

n=0

| n +
N

2
〉〈n | . (4.51)

In matrix representation for N = 6 and q = 2 :

B =




0 0 0 0 0 0√
(k − 1) 0 0 0 0 0

0
√

2(k − 1) 0 0 0
√

r(k − 1)

0 0
√

(3 + r)(k − 1) 0 0 0

0 0 0
√

(4 + r)k − 2− r 0 0

0 0 0 0
√

(5 + r)k − 1− r 0


 ,

A =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


 . (4.52)

In this case, the solution of the Gauss law is obtained in terms of a two-component
auxiliary �eld ψ, and it holds for rq ¿ N , namely the depletion would move back to
the origin in the scaling limit N →∞.

In this chapter, after providing better forms for the projection, Am ≈ 0, limiting
state degeneracy, we have obtained the semiclassical ground states of the theory. They
correspond to the quantum states found in the previous chapter [13], that reproduce
the Jain composite-fermion construction of phenomenological wave functions. The
density of states in the main Jain series, ν = m/(mk + 1), has been found to be that
of incompressible �uids: this con�rms our expectation that the matrix states at g = 0

are not too di�erent from the physical states at g = ∞.

The study of the phase diagram of the matrix theory is clearly necessary to make
better contact between the nice results (g = 0) and the physical regime (g = ∞), upon
varying the potential V = g Tr[X, X]2 . We expect that the relevant incompressible
�uid states have a smooth evolution for g > 0 and we plan to include the quartic
potential in the semiclassical analysis by means of a mean-�eld approximation.
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The explicit semiclassical solutions in this paper can also be useful to study the
symmetries and algebraic properties of matrix ground states. We would like:

• To make contact with the SU(m) symmetry of the conformal �eld theories
describing the edge excitations of Jain states [25].

• To �nd a projection of states more re�ned than Am ≈ 0, that could discrimi-
nate the hierarchical Jain states from the generalized (unstable) ones. Such an
expectation is based on the general belief that the observed Hall states should
be uniquely characterized by algebraic conditions and gauge invariance, rather
than by detailed dynamics, because they are exceptionally robust and universal.



Chapter 5

Conclusion

In this thesis we have studied the matrix models applied to the physics of
the Fractional QHE. In chapter 2, we started with the Susskind's proposal of
the Chern-Simons matrix model as a e�ective theory [14] and found the very
interesting result, that the ground state of this theory is the Laughlin wave
function. Nevertheless, the Jain states are not contained in the Chern-Simons
matrix model, and a larger theory is necessary.

In chapter three we have presented our �rst work in which we generalized the
Chern-Simons matrix model, proposing as a e�ective theory for the FQHE, the
Maxwell Chern-Simons matrix theory. We studied two interesting limits of the
theory corresponding to the g = 0 and g = ∞ regimes. As we have shown
(cf. section 3.2.2) the ground states in g = 0 are highly degenerate in the
energy, due to the noncommutativity between matrices. To solve this problem,
we introduced a class of projectors given by Am

ab; a, b = 1, .., N ; m = 0, 1, .. and
we obtained, for each n, a truncated Fock space with a non-degenerate gauge
invariant ground state given by a matricial version of the Jain wave function of
�lling fraction ν = m

2km+1
. It becomes the Jain state for electrons in the case

of diagonal matrices. Excitations of the ground states correspond to matrix
generalizations of the Jain quasi-holes and quasi-particles. For another hand,
in the g = ∞ regime the theory can be reduced to the Landau levels plus a
O(1/r2) two-dimensional interaction that is a good e�ective description of the
physics of the FQHE.

A crucial point in our proposal is the conjecture of smooth connection (no phase
transition) between the g = 0 and g = ∞ regimes. This conjecture is supported
principally, by two arguments:
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� As said before, the g = 0 theory presents matricial Jain states that become
the Jain wave functions in the limit of diagonal matrices. We have shown
in chapter three that this limit corresponds with the g = ∞ regime of the
Maxwell Chern-Simons theory, that is the physical limit, and contains as
ground states almost exactly the Jain wave functions.

� Another argument is the similar behaviors in the g = 0 and g = ∞
theories. In chapter four we analyzed the semiclassical limit of the g = 0

theory and found that the matricial Jain state are made of droplets of
incompressible �uid with piece-wise constant density; this is the same
density shape of the phenomenological Jain states (g = ∞), before the
projection to the lowest Landau level.

In conclusion, the Maxwell Chern-Simons matrix theory makes possible to con-
nect an exactly solvable matrix theory (g = 0) with the physical theory describ-
ing the FQHE (g = ∞). The interpolation from g = 0 to higher values of g,
will permit a better understanding of the physics of the FQHE; in particular its
relevant non-perturbative e�ects.

We hope to continue our analysis of the theory in the region g > 0 in the future:
we plan to follow the evolution of the g = 0 droplet ground states by means of
semiclassical and mean �eld methods.
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Appendix A

A.1 Moyal star product

The Moyal product is de�ned as follows:

(f ∗ g)(x) = e
i
2
θεij ∂

∂xi
1

∂

∂x
j
2 f(x1)g(x2) |x1=x2=x, (A.1)

with θ a real parameter. In the limit of small θ, equation (A.1) implies:

(f ∗ g)(x) = f(x)g(x) +
i

2
θ {f, g} |x=x1=x2 +O(θ2), (A.2)

where { , } indicates usual Poisson brackets. Using (A.2) we can calculate the
commutator between f(x) and g(x),

[f, g] = f ∗ g − g ∗ f = iθ {f, g} |x=x1=x2 +O(θ2), (A.3)

that corresponds to the Poisson brackets, to �rst order in θ. In particular,
choosing f = x1 and g = x2 we have noncommutative coordinates,

[
x1, x2

]
= x1 ∗ x2 − x2 ∗ x1 = iθ, (A.4)

showing that θ measures noncommutativity.
The Moyal product plays a crucial role in "phase space quantum mechanics"
that amounts to associating classical distributions in phase space with quantum
mechanical Hermitian operators. This map was �rst discussed by Wigner in
1932.

A.1.1 Wigner quasi-probability distribution

In Wigner's idea, quantum e�ects in phase space, are accounted for deformations
of the classical coordinates.
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The phase space distribution of a quantum state | ψ〉, called Wigner distribution
function uψ(x, y), is de�ned by:

uψ(x, y) = 〈ψ |: δ(x̂− x)δ(ŷ − y) :| ψ〉

=

(
1

2π

)2 ∫
dαdβ〈ψ | eiα(x̂−x)+iβ(ŷ−y) | ψ〉

=
1

2π

∫
dβe−iβyψ̄(x− βθ

2
)ψ(x +

βθ

2
) , (A.5)

where x and y are the phase space coordinates, [x̂, ŷ] = iθ, and the symbol
: : indicates the Weyl ordering of the noncommuting operators x̂,ŷ, that is
symmetric between them, as better explained later.
The function (A.5) veri�es,

∫
dy uψ(x, y) =| ψ(x) |2,

∫
dx uψ(x, y) =

| ψ̃(y
θ
) |2

2π
. (A.6)

Namely, it is the probability distribution in one coordinate, once traced the
other one. Clearly, the Wigner distribution function cannot be positive de�nite
as a function of both x and y: it is a quasi-probability distribution.

A.1.2 Phase space representation of an operator

The expectation value of an operator is represented by the average with the
distribution function as in classical statistical mechanics:

〈ψ |: F (x̂, ŷ) :| ψ〉 =

∫
dxdyF (x, y)uψ(x, y). (A.7)

From (A.7) we �nd that the Wigner operator: F (x̂, ŷ) : is given by,

: F (x̂, ŷ) : =

(
1

2π

)2 ∫
dxdydαdβF (x, y)eiα(x̂−x)+iβ(ŷ−y)

=

∫
dαdβF̃ (α, β)eiαx̂+iβŷ, (A.8)

where F̃ (α, β) is the Fourier transform of F (x, y).
Expression (A.8) de�nes the Wigner map that associate a function on the phase
space with a quantum operator. It can be written in another way,

: F (x̂, ŷ) := F (−i
∂

∂α
,−i

∂

∂β
)eiαx̂+iβŷ |α=β=0, (A.9)

that makes it clear that : F (x̂, ŷ) : corresponds to the classical function F (x, y)

evaluated on the operators x̂ and ŷ in totally symmetric combinations, e.g.
xy → 1

2
(x̂ŷ + ŷx̂); x2y → 1

3
(x̂2ŷ + x̂ŷx̂ + ŷx̂2), etc.
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A.1.3 Representation of operator algebra

The product between two quantum operators is given by the following convo-
lution of Fourier transforms of the associated classical functions,

: F (x̂, ŷ) :: G(x̂, ŷ) : =

∫
dαdβdα′dβ′F̃ (α, β)G̃(α′, β′)eiαx̂+iβŷeiα′x̂+iβ′ŷ

=

∫
dαdβdα′dβ′F̃ (α− α′)G̃(α′)e

iθ
2

(αβ′−βα′)eiαx̂+iβŷ

=

∫
dαdβH̃(α, β)eiαx̂+iβŷ, (A.10)

with H̃(α, β) the Fourier transform of H(x, y) given by:

H(x, y) = F (x, y)e
iθ
2

(
←−
∂x
−→
∂y−←−∂y

−→
∂x)G(x, y) = (F ∗G)(x, y), (A.11)

where ∗ indicates the Moyal product. Thus, the Wigner map allow the study of
a quantum mechanical system in phase space, characterized by noncommutative
coordinates [x̂, ŷ] = iθ: the operators on the Hilbert space, F (x̂, ŷ), G(x̂, ŷ), are
replaced by functions on the phase space, F (x, y), G(x, y), and their noncom-
mutative product is given by the Moyal form.
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A.2 Map of the Chern-Simons matrix model to
the noncommutative �eld theory

The Chern-Simons matrix model is given by the Lagrangian,

L =
B
2

εijTr(XiDtXj) + BθA0, (A.12)

where A0 and Xi, i = 1, 2, are N × N matrices, B is the magnetic �eld and
DtX

i = Ẋ i − i [A0, X
i] with i, j = 1, 2.

We introduce the classical ground states solutions xi that verify,
[
xi, xj

]
= iθεij. (A.13)

Note that (A.13) is valid only for N →∞ matrices.

We consider small perturbations Aj(x
i) of X i around the classical solutions xi,

X i = xi + θεijAj(x
i). (A.14)

Any matrix can be expressed in terms of �nite sums of products eipx1
eiqx2 ; so

the N ×N matrices Ai can be thought of as functions of the xi's.

Replacing (A.14) in (A.12) and dropping total time derivatives we �nd,

L =
B
2

Tr(−θȦ1(x1 + θA2) + iA0 [x1 + θA2, x2 − θA1]− θȦ2(x2 − θA1)−
iA0 [x2 − θA1, x1 + θA2]) + BθA0

=
Bθ2

2
Tr

(
A1Ȧ2 − Ȧ1A2 + 2A0(∂2A1 − ∂1A2) + 2iA0 [A1, A2]

)
. (A.15)

In (A.15), we used [xi, f(x1, x2)] = iθεij∂jf .

Finally, using the antisymmetric tensor εµνρ, expression (A.15) can be written
as:

L =
Bθ2

2
Tr

(
−εµνρAµ∂νAρ +

2i

3
εµνρAµAνAρ

)
. (A.16)

Now we take N →∞ and pass to the continuum limit where the N×N matrices
Ai are mapped into smooth functions Ai(xi) of the noncommutative coordinates
xi. We identify θTr → 1

2π

∫
dx1dx2 where θN = V

2π
= 1

2πρ0
with V and ρ0 the

volume and density in the x's coordinates.

In a noncommutative space, as we shown in Appendix A.1, the ordinary prod-
uct between functions must be replaced by the ∗ product. Thus in the N →∞
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limit the Chern-Simons matrix model is equivalent to the Chern-Simons non-
commutative theory,

L = −Bθ

4π

∫
d2x

(
εµνρAµ ∗ ∂νAρ − 2i

3
εµνρAµ ∗ Aν ∗ Aρ

)
. (A.17)
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A.3 Goldstone-Hoppe Matrix regularization

In the paper [44], Goldstone and Hoppe studied a membrane theory in which
the membrane surface Σ has the topology of the sphere S2. They introduced
a regularization procedure in which functions on the membrane surface are
mapped to N × N matrices. This procedure is completely classical, and after
it is carried out we can quantize the system just like any other classical system
with a �nite number of degrees of freedom. Now we review the case with S2

topology, but the argument can be generalized to arbitrary topologies.

The world-sheet of the membrane surface at �xed time can be described by a
unit sphere with an SO(3) invariant canonical symplectic form. Functions on
the membrane depend on the Cartesian coordinates ξ1, ξ2, ξ3 on the unit sphere,
i.e ξ2

1 + ξ2
2 + ξ2

3 = 1. The Poisson brackets of these functions are given by:

{ξA, ξB} = εABCξC A,B,C = 1, 2, 3. (A.18)

Observe that (A.18) is the same as the algebra of SU(2) generators. Thus, we
can associate these coordinates on S2 with matrices generating SU(2), i.e.

ξA → 2

N
JA, (A.19)

where JA, A = 1, 2, 3 are generators of the N-dimensional representation of
SU(2), satisfying the commutation relations,

−i [JA, JB] = εABCJC . (A.20)

An arbitrary function on the membrane can be expressed in terms of spherical
harmonics, as follows:

f(ξ1, ξ2, ξ3) =
∑

l,m

clmYlm(ξ1, ξ2, ξ3). (A.21)

The spherical harmonics can be written as:

Ylm(ξ1, ξ2, ξ3) =
∑

t
(lm)
A1,...,AlξA1 ...ξAl

, (A.22)

where the coe�cient t
(lm)
A1,...,Al are symmetric and traceless (because ξAξA = 1).

Using (A.19) in (A.22) we obtain the correspondence,

Ylm(ξ1, ξ2, ξ3) → Ylm =

(
2

N

)l ∑
t
(lm)
A1,...,AlJA1 ...JAl

. (A.23)
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For �nite N , only the spherical harmonics with l < N can be constructed
because the JAi

, i = 1, .., l are N × N matrices and the product of N or more
JA's is linearly dependent. Using (A.23) a function on the membrane can be
replaced by the matrix,

f(ξ1, ξ2, ξ3) → F =
∑

l<N,m

clmYlm. (A.24)

Based on these correspondence, Goldstone and Hoppe showed that the Poisson
brackets in the membrane theory can be replaced by matrix commutators as
follows:

{f, g} → −iN

2
[F, G], (A.25)

and the integral over the membrane at �xed time can be replaced with matrix
trace,

1

4π

∫
d2σf → 1

N
TrF. (A.26)

As mentioned in chapter two, the �uid Lagrangian (2.1) is invariant under
area preserving di�eomorphisms. The Goldstone-Hoppe prescription can be
interpreted as a regularization of the area preserving di�eomorphisms in terms
of the U(N) (N = ∞) rotations of matrices [44], in which spatial coordinates
are mapped into N ×N hermitian matrices.
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A.4 The low-energy e�ective action of D0-branes
in String theory

In this appendix, we consider ten-dimensional Minkowski space, with a time
coordinate x0 and space coordinates x1, ..., x9. In ref [84], Witten investigated
the existence of bound states in an stack of n Dp-branes and proposed the
e�ective low-energy action for such objects, which is the ten-dimensional U(n)

supersymmetric gauge theory dimensionally reduced to p + 1 dimensions.
A p-brane is an object that modi�es the boundary conditions of open strings.
In addition to Neumann boundary conditions, a p-brane introduces Dirichlet
boundary conditions in (d− p− 1) directions, as follows:

Xp+1(σ, t) = .... = X9(σ, t) = 0 (Dirichlet boundary condition),
∂σX

1(σ, t) = .... = ∂σX
p(σ, t) = 0 (Neumann boundary conditions).

(A.27)

Due to (A.27), the zero modes Xj with j > p are frozen, and the massless parti-
cles are functions only of X1, .., Xp . The massless bosons Ai(X

s)(i, s = 0, ..., p)

propagate as U(1) gauge bosons on the p-brane, while the other components
φj(X

s)(j > p, s = 0, ..., p) become scalars �elds on the p-brane.
The vertex operators are given by:

VA =

p∑
i=0

Ai(X
s)∂τX

i,

Vφ =
∑
j>p

φj(X
s)∂σX

j. (A.28)

For φj =constant, the boundary integral of Vφ imply the change Xj → Xj +

φj for j > p. Thus the scalars φj, j > p can be interpreted as the position
coordinates of the p-brane.
The theory on the (p+1) dimensional brane world-volume is naturally the ten-
dimensional U(1) supersymmetric gauge theory dimensionally reduced to (p+1)

dimensions.

A.4.1 Bound States of Dp-branes

Bound states of n parallel Dirichlet p-branes can be described by the low-energy
limit when the branes are nearby. We consider the case of two parallel Dirichlet
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p-branes, one at Xj = 0, and one at Xj = aj (j>p). The branes are connecting
by strings. They can start and end on the same brane and give a U(1)× U(1)

gauge theory (with one U(1) living one each p-brane) or they can start in the
�rst brane and end in the second (or viceversa). In this last case the strings
have U(1)×U(1) charges. The ground state of this con�guration has an energy
T | a |, with T and | a | the tension and length of the string respectively. When
| a |→ 0 the charged vector bosons become massless and the U(1)×U(1) gauge
symmetry is enlarged to a U(2) symmetry. In the same way, as n parallel branes
become coincident, one has a U(n) gauge symmetry on the p-brane.
The �eld content in the e�ective action is given by the U(n) gauge �eld Aj(X

s, t), s, j =

1, ..., p , and the scalar �elds φj(X
s, t), j > p, s = 1, ..., p , in the adjoint repre-

sentation of U(n).
The e�ective potential for φj is obtained by dimensional reduction of the Yang-
Mills theory:

V =
T 2

2

9∑
i,j=p+1

Tr
[
φi, φj

]2
. (A.29)

The supersymmetric classical ground states have [φi, φj] = 0, for all i, j, and
so the φ's can be diagonalized simultaneously, giving φi = diag(ai

(1), ..., a
i
(n)).

Witten interpreted the ai
(k) for k = 1, ..., n as the position of the k-th brane in

the stack of n parallel p-branes. This interpretation is con�rmed by expanding
V around the given classical solution that gives T | aλ − aµ |, 1 ≤ λ < µ ≤ n,
corresponding with masses of strings with one end at aλ an one at aµ as showed
in the previous example of two p-branes.
In the p = 0 case we have D0-branes (space points). The e�ective action is
given by the ten-dimensional supersymmetric Yang-Mills theory dimensionally
reduced to one-dimension. The �elds in the theory are a U(n) gauge �eld A0(t)

and the scalar �elds φj(t) (j = 1, ..., 9) that transform in the adjoint of U(n)

and can be represented as n × n matrices. The reduction to one dimension of
the bosonic sector of the theory is obtained as follows: from the Lagrangian,

LY M = − 1

4g2
Tr (F µνFµν) = − 1

4g2
Tr ([Dµ, Dν ] [D

µ, Dν ]) , (A.30)

with Dµ = ∂µ + igAµ, the only non zero elements of [Dµ, Dν ], after the dimen-
sional reduction, are:

[D0, Dj] = ig [∂0, φj]− g2 [A0, φj] = igD0φj, j = 1, ..., 9

[Di, Dj] = −g2 [φi, φj] , i 6= j = 1, ..., 9. (A.31)
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Using (A.31) in (A.30) we obtain the dimensional reduction of LY M ,

L′Y M =
1

4
Tr

(
9∑

j=1

D0φjD0φj −
9∑

i 6=j=1

[φi, φj]
2

)
. (A.32)

This is the action of D0-branes used in our work (cf. (3.1)). The inclusion of
the Chern-Simons kinetic term can be obtained by adding further D7-branes,
that create a magnetic �eld for the D0-branes as explained in Ref.[67].
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A.5 Projections of matrix Landau states

In this appendix we prove some properties of the projections of states described
in section 3.2.3. Let us �rst show that the general solution of the second Landau
level projection (3.30),

(
∂

∂Aab

)2

Φ(B, A, ψ) = 0 , ∀ a, b . (A.33)

and of the k = 1 Gauss law (3.20) is given by the expression (3.32). We start
from the gauge invariant expressions involving N �elds ψ,

Φ = εa1...aN (M1ψ)a1
· · · (MNψ)aN

, (A.34)

where the Mi are polynomials of B and A. In this appendix, we repeatedly use
the graphical description of these expressions in terms of bushes as shown in
Fig.3.1. Upon expanding (A.34) into monomials, we get a sum of bushes:

Φ = εa1...aN (P1ψ)a1
· · · (PNψ)aN

+ b εa1...aN (Q1ψ)a1
· · · (QNψ)aN

+ c ε . . . R1 · · ·RN+ · · · ,

(A.35)
where the monomials in a bush, e.g. the {Pi}, are all di�erent among themselves,
and two sets of monomials, e.g. {Pi} and {Qj}, di�er in one monomial (stem)
at least.

The two derivatives in (A.33) act in all possible ways on the stems of the bushes,
and can be represented by primed expressions, i.e. P ′

i , P
′′
i , . . . . Let us momen-

tarily take bushes made of two stems, i.e. N = 2:

Φ′′ = εab (P ′′
1 ψa P2ψb + 2P ′

1ψa P ′
2ψb + P1ψa P ′′

2 ψb)

+ b εab (Q′′
1ψa Q2ψb + 2Q′

1ψa Q′
2ψb + Q1ψa Q′′

2ψb) + · · · . (A.36)

We check the possibility of cancellations between terms belonging to two dif-
ferent bushes: these cannot occur between terms with the same pattern of
derivatives, i.e. P1 P ′′

2 and Q1 Q′′
2, because at least one monomial is di�erent

between the two bushes: P1 6= Q1 or P2 6= Q2. There can be cancellations
between terms that have di�erent derivatives, i.e. P ′′

1 P2 + b Q′
1 Q′

2 = 0, but
then the symmetric term would not cancel, P1 P ′′

2 + b Q′
1 Q′

2 6= 0. We conclude
that there cannot be complete cancellations between two bushes and that each
bush should vanish independently.

Consider now the action of derivatives on the stems of a single bush; the terms
with two derivatives, i.e P ′′

i ψ, should vanish independently, because the stems
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in bush are all di�erent. Thus, there cannot be more than one A per stem.
Next, we distribute one derivative per stem: each of them cuts the Aab from the
stem leaving �xed indices at the end points, leading to the expression,

(
∂

∂Aab

)2

Φ = εcd B
n1

ca B
n2

da

(
B

m1
ψ

)
b

(
B

m2
ψ

)
b

. (A.37)

This vanishes by antisymmetry of the epsilon tensor, provided that n1 = n2, i.e.
that the A matrices appear at the same level on the two stems. Furthermore,
for N > 2 one can repeat the argument, having N − 2 spectator stems over
which the derivatives do not act; the height condition should then applies for
any pair of stems that have one A. In conclusion, all A should appear in the
stems at the same height, leading to the general solution (3.32).

A.5.1 States obeying the A3 = 0 projection

We now discuss the solution of the A3 = 0 condition. Bushes can have one, two,
three A's per stem and more: we consider each case in turn. For three A's and
more, A3 = 0 can act on a single stem and not vanish: this limits the number
of A's per stem to two.

A) For bushes that have single-A stems only, we should examine the action of
A3 an all triples of stems (1-1-1 action). This vanishes by antisymmetry (cf.
(A.37)) if for any triple considered, two A's are at the same height. It follows
that on single-A bushes, the A's can stay at two heights, i.e. form two bands.

B) For bushes with double-A stems only, A3 can act on pairs (2-1 action (B1))
or on triples (1-1-1 action (B2)) of stems.

B1) Consider the action 2-1 on the pair:
(

∂
∂Aab

)3

εij

(
CADAE

)
i

(
FAGAH

)
j

= εij

[
(CiaDbaEb)

(
FjaGAHb

)
+ (CiaDbaEb)

(
FAGjaHb

)

+
(
CiaDAEb

)
(FjaGbaHb) +

(
CADiaEb

)
(FjaGbaHb)

]
.(A.38)

The �rst and third term in this equation vanish independently when C = F

due to the earlier identity εijuiuj = 0; the sum of the second and fourth term
vanishes for D = G due to the possibility of factorizing an expression of the
type, εij (uivj + ujvi) = 0. We thus found that the double-A stems should have
A located on two heights (two bands).
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B2) There are 23 = 8 possible actions 1-1-1 on triples of stems involving two
A's each. Having already enforced condition (B1), their A's are located on two
bands. The 8 terms generated by the action of A3 are found vanish by the same
two mechanism found in (A.38). Therefore, there are no new conditions.
C) For bushes involving both double- and single-A stems, we should again con-
sider the actions 2-1 on pairs (C1) and 1-1-1 on triples (C2) of stems.
C1) We consider the pair made by one double-A stem and one single-A stem; the
double derivative acts necessarily on the former stem, thus producing a unique
term. This vanishes as εijuivj = 0 if u = v, namely if the A on the single
stem-A is located at the same height of the lower A in the double-A stem. It
implies that the A form again two bands, but those on single-A stems should
stay in the lower band.
C2) The three derivatives act 1-1-1 on triples of stems with number of A's equal
to (2,1,1) or (2,2,1), yielding 2 and 4 terms respectively. All these terms vanish
independently, because single-A stems already have their A on the lowest band
by condition C1.
In summary, the A3 = 0 projection allows two A per stem at most, that should
form two bands. If both single- and double-A stems are present in the same
bush, the A on single stems should stay on the lower band. All these features
have been checked on the computer for small-N examples.

A.5.2 States with A4 = 0 projection

Again the action of the four derivatives on a single stem is not vanishing and
requires three A per stem at most. Hereafter we list the possible actions of the
four derivatives.
A) If there are single-A stems only, the derivative action is 1-1-1-1: for every
four-plet of stems, two A should be at the same height; thus, three bands of A

can be formed on bushes.
B) If there are double-A stems only, there can be: (B1) 2-2 action on pairs of
stems; (B2) 2-1-1 action on triples of stems, (B3) 1-1-1-1 action on four-plets of
stems.
B1) There is a single term that vanishes if the lower A are at the same height.
B2) There are 12 terms that vanish by the same two mechanisms of B1 in the
previous A3 = 0 case, provided the upper A form another band, i.e. stay at the
same height.



98

B3) All terms vanish once the previous conditions are enforced.

In summary, double-A stems should have their A's on two bands.

C) If there are triple-A stems only, there can be: (C1) 3-1 and 2-2 actions on
pairs; (C2) 2-1-1 action on triples; (C3) 1-1-1-1 on four-plets.

C1) There are 6 terms for the 3-1 action and 9 for the 2-2 action: these cancel
individually or in pairs by the two mechanisms of B1 in the previous A3 = 0

case, provided that all A's form three bands.

C2) The action 2-1-1 on 3-A stems generates 81 terms, that are satis�ed once
C1 has been enforced.

C3) The terms generated by the 1-1-1-1 action vanish because there are at least
two derivatives of A at the same height.

In summary, triple-A stems should have their A's on three bands.

D) Consider now the case of stems having two or one A each, as for states �lling
the second and third Landau level. From the previous analysis we know that
the double-A form 2 bands (case (B)) and the triple-A stems can have 3 bands
(case (C)). We should only consider the new cases when the four derivatives
act on stems of mixed type. There can be: (D11) 2-1-1 action on 2-2-1 stems;
(D12) 2-1-1 action on 2-1-1 stems; (D21) 1-1-1-1 action on 2-2-2-1 stems; (D22)
1-1-1-1 action on 2-2-1-1 stems; (D23) 1-1-1-1 action on 2-1-1-1 stems;

D11) Given that one derivative acts on the single-A stem, the remaining three
derivatives cancel as in case (B1) of A3 = 0, on stems already having two A

bands. No new conditions.

D12) The condition is that on any pair of single-A stems, one of them has the
A on the lowest band of the double-A stems. This allows single-A to stay on
any of the two bands, with some exceptions.

D21) It is satis�ed. D22) It yields the same condition as (D12). D23) For every
triple of single-A stems, two should be on the same band. The solution is that
each of the 2 bands of double-A stems are allowed (weaker than (D12)).

In summary, mixed double- and single-A stems should have their A's forming
two bands with some exceptions.

E) The most relevant case for Jain's ground state at ν∗ = 4 is for mixed stems
with one, two and three A's. Owing to the previous conditions, each individual
type is already organized in 3, 2 and 3 bands respectively. The possible new
actions of the four derivatives are the following ones: (E11) 3-1 and 2-2 actions
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on pairs of type 3-2; (E12) 3-1 action on pairs of type 3-1; (E21) 2-1-1 action on
triples of type 3-3-2, (E22) on triples 3-2-2, (E23) on triples 3-2-1 and (E24) on
triples 3-1-1 ; (E4) 1-1-1-1 actions on all stem types.

E11) There is cancelation by the usual two mechanisms ((B1) of A3 = 0) pro-
vided that the A's of double-A stems stay in the lowest of the three bands of
triple-A stems.

E12) As before, the A of single-A stems should all align on the lowest of the
three bands of the triple-A stems.

Once these two conditions are enforced, the other E-type actions are checked.
In summary, mixed triple-, double- and single-A stems should have their A's
forming three bands, with the condition that stems with less that three A's
should align their A's on the lowest available bands. This is the condition
enforcing the uniqueness of the state with maximal �lling ν∗ = 4 as explained
in section 3.2.3. The same mechanism works for the Am = 0 ground states with
ν∗ = m (3.39) that contain stems of any number of A's.
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A.6 Gauge invariance of the projection

Here is an explicit proof that the projection (Aab)
mΨ (cf 3.30) is a gauge in-

variant condition on quantum states. Consider the more general relation for
m = 2:

Aab Aa′,b′ Ψ
(
A, B

)
= Mbb′

(
A,B

)
VaWa′ . (A.39)

The wave function is assumed to be gauge invariant: Ψ(A, B) = Ψ(UAU †, UBU †).
The form in the r.h.s. is speci�c of the bush states of section 3.2.2, but this
is not relevant for the argument. The matrix Mbb′ vanishes for a = a′, b = b′

because Ψ is assumed to be one solution of the constraint. In general, there are
several terms in the r.h.s. with that structure, but the matrices Mbb′ should all
vanish independently because they are multiplied by monomials VaWa′ that are
all independent [13].

Let us now multiply by unitary matrices and sum over indices on both sides to
realize a gauge transformation of the two A's:

(
UAU †)

ab

(
UAU †)

a′,b′ Ψ
(
A, B

)
= Mb̃b̃′

(
A, B

)
U †

b̃b
U †

b̃′b′
(UV )a(UW )a′ ,

= Mbb′
(
UAU †, UBU †) (UV )a(UW )a′ .(A.40)

The resulting expression of M(UAU †, UBU †)bb′ vanishes whenever M(A,B)bb′

does, i.e. for b = b′, because both vanish by polynomial identities that do
not depend on the speci�c vales of the variables. Therefore, a solution of the
constraint remains a solution after gauge transformation.
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